File size: 5,805 Bytes
d5357ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
---
library_name: transformers
license: llama3
base_model: tsavage68/IE_L3_1000steps_1e6rate_SFT
tags:
- trl
- dpo
- generated_from_trainer
model-index:
- name: IE_L3_1000steps_1e8rate_01beta_cSFTDPO
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# IE_L3_1000steps_1e8rate_01beta_cSFTDPO

This model is a fine-tuned version of [tsavage68/IE_L3_1000steps_1e6rate_SFT](https://huggingface.co/tsavage68/IE_L3_1000steps_1e6rate_SFT) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6897
- Rewards/chosen: -0.0098
- Rewards/rejected: -0.0175
- Rewards/accuracies: 0.4200
- Rewards/margins: 0.0078
- Logps/rejected: -75.8027
- Logps/chosen: -82.8953
- Logits/rejected: -0.7964
- Logits/chosen: -0.7394

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-08
- train_batch_size: 2
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- training_steps: 1000

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
|:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
| 0.6965        | 0.4   | 50   | 0.6929          | -0.0030        | -0.0041          | 0.3700             | 0.0011          | -75.6681       | -82.8275     | -0.7963         | -0.7392       |
| 0.6948        | 0.8   | 100  | 0.6908          | -0.0022        | -0.0074          | 0.4250             | 0.0052          | -75.7008       | -82.8198     | -0.7961         | -0.7393       |
| 0.6921        | 1.2   | 150  | 0.6946          | -0.0077        | -0.0055          | 0.375              | -0.0022         | -75.6824       | -82.8750     | -0.7972         | -0.7399       |
| 0.6892        | 1.6   | 200  | 0.6941          | -0.0042        | -0.0030          | 0.3950             | -0.0012         | -75.6573       | -82.8394     | -0.7973         | -0.7404       |
| 0.6937        | 2.0   | 250  | 0.6911          | -0.0037        | -0.0083          | 0.4000             | 0.0046          | -75.7098       | -82.8345     | -0.7973         | -0.7405       |
| 0.6933        | 2.4   | 300  | 0.6899          | -0.0039        | -0.0110          | 0.4300             | 0.0071          | -75.7376       | -82.8367     | -0.7965         | -0.7395       |
| 0.6915        | 2.8   | 350  | 0.6870          | -0.0023        | -0.0151          | 0.4700             | 0.0128          | -75.7783       | -82.8204     | -0.7964         | -0.7393       |
| 0.6933        | 3.2   | 400  | 0.6894          | -0.0069        | -0.0151          | 0.4100             | 0.0082          | -75.7783       | -82.8666     | -0.7958         | -0.7387       |
| 0.6981        | 3.6   | 450  | 0.6882          | 0.0006         | -0.0100          | 0.4350             | 0.0106          | -75.7275       | -82.7918     | -0.7968         | -0.7398       |
| 0.6904        | 4.0   | 500  | 0.6896          | -0.0001        | -0.0078          | 0.4050             | 0.0077          | -75.7054       | -82.7989     | -0.7958         | -0.7391       |
| 0.6964        | 4.4   | 550  | 0.6867          | -0.0021        | -0.0157          | 0.4400             | 0.0136          | -75.7838       | -82.8187     | -0.7965         | -0.7396       |
| 0.6939        | 4.8   | 600  | 0.6902          | 0.0015         | -0.0050          | 0.4000             | 0.0065          | -75.6771       | -82.7829     | -0.7968         | -0.7398       |
| 0.6963        | 5.2   | 650  | 0.6892          | -0.0069        | -0.0155          | 0.4200             | 0.0085          | -75.7818       | -82.8672     | -0.7964         | -0.7394       |
| 0.6951        | 5.6   | 700  | 0.6873          | -0.0025        | -0.0149          | 0.4650             | 0.0124          | -75.7766       | -82.8228     | -0.7963         | -0.7389       |
| 0.6855        | 6.0   | 750  | 0.6876          | -0.0066        | -0.0183          | 0.4550             | 0.0118          | -75.8105       | -82.8633     | -0.7965         | -0.7394       |
| 0.6873        | 6.4   | 800  | 0.6877          | -0.0072        | -0.0189          | 0.4550             | 0.0117          | -75.8165       | -82.8698     | -0.7964         | -0.7394       |
| 0.6848        | 6.8   | 850  | 0.6898          | -0.0098        | -0.0173          | 0.4100             | 0.0075          | -75.8003       | -82.8958     | -0.7964         | -0.7394       |
| 0.6983        | 7.2   | 900  | 0.6897          | -0.0098        | -0.0175          | 0.4200             | 0.0078          | -75.8027       | -82.8953     | -0.7964         | -0.7394       |
| 0.6859        | 7.6   | 950  | 0.6897          | -0.0098        | -0.0175          | 0.4200             | 0.0078          | -75.8027       | -82.8953     | -0.7964         | -0.7394       |
| 0.6888        | 8.0   | 1000 | 0.6897          | -0.0098        | -0.0175          | 0.4200             | 0.0078          | -75.8027       | -82.8953     | -0.7964         | -0.7394       |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.0.0+cu117
- Datasets 3.0.0
- Tokenizers 0.19.1