tsantosh7 commited on
Commit
834dc10
1 Parent(s): 08eedbd

added few more examples

Browse files
Files changed (1) hide show
  1. README.md +2 -1
README.md CHANGED
@@ -5,7 +5,8 @@ tags:
5
  language:
6
  - en
7
  widget:
8
- - text: "In recent years, fatty acid binding protein 5 (FABP5), also known as fatty acid transporter, has been widely researched with the help of modern genetic technology. Emerging evidence suggests its critical role in regulating lipid transport, homeostasis, and metabolism. Its involvement in the pathogenesis of various diseases such as metabolic syndrome, skin diseases, cancer, and neurological diseases is the key to understanding the true nature of the protein. This makes FABP5 be a promising component for numerous clinical applications. This review has summarized the most recent advances in the research of FABP5 in modulating cellular processes, providing an in-depth analysis of the protein’s biological properties, biological functions, and mechanisms involved in various diseases. In addition, we have discussed the possibility of using FABP5 as a new diagnostic biomarker and therapeutic target for human diseases, shedding light on challenges facing future research."
 
9
  model-index:
10
  - name: en_BiomedNER_EuropePMC
11
  results:
 
5
  language:
6
  - en
7
  widget:
8
+ - text: "Blood glucose control is the primary strategy to prevent complications in diabetes. At the onset of kidney disease, therapies that inhibit components of the renin angiotensin system (RAS) are also indicated, but these approaches are not wholly effective. Here, we show that once daily administration of the novel glucose lowering agent, empagliflozin, an SGLT2 inhibitor which targets the kidney to block glucose reabsorption, has the potential to improve kidney disease in type 2 diabetes. In male db/db mice, a 10-week treatment with empagliflozin attenuated the diabetes-induced upregulation of profibrotic gene markers, fibronectin and transforming-growth-factor-beta. Other molecular (collagen IV and connective tissue growth factor) and histological (tubulointerstitial total collagen and glomerular collagen IV accumulation) benefits were seen upon dual therapy with metformin. Albuminuria, urinary markers of tubule damage (kidney injury molecule-1, KIM-1 and neutrophil gelatinase-associated lipocalin, NGAL), kidney growth, and glomerulosclerosis, however, were not improved with empagliflozin or metformin, and plasma and intra-renal renin activity was enhanced with empagliflozin. In this model, blood glucose lowering with empagliflozin attenuated some molecular and histological markers of fibrosis but, as per treatment with metformin, did not provide complete renoprotection. Further research to refine the treatment regimen in type 2 diabetes and nephropathy is warranted."
9
+ - text: "Chronic kidney disease (CKD) is a global public health problem, and its prevalence is gradually increasing, mainly due to an increase in the number of patients with type 2 diabetes mellitus (T2DM) [1,2,3,4]. Human multidrug and toxin extrusion member 2 (MATE2-K, SLC47A2) plays an important role in the renal elimination of various clinical drugs including the antidiabetic drug metformin. The goal of this study was to characterize genetic variants of MATE2-K and determine their association with the pharmacokinetics of metformin."
10
  model-index:
11
  - name: en_BiomedNER_EuropePMC
12
  results: