truthdotphd commited on
Commit
8df89b4
·
verified ·
1 Parent(s): a29be39

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +83 -3
README.md CHANGED
@@ -1,3 +1,83 @@
1
- ---
2
- license: agpl-3.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: en
3
+ license: agpl-3.0
4
+ tags:
5
+ - yolov11
6
+ - object-detection
7
+ - vessels
8
+ - computer-vision
9
+ task: object-detection
10
+ library: ultralytics
11
+ base_model:
12
+ - Ultralytics/YOLO11
13
+ ---
14
+
15
+ # Vessel Detection Model
16
+
17
+ This model performs vessel detection using YOLOv11 architecture. Two versions are available:
18
+ - YOLOv11-nano (public)
19
+ - YOLOv11-xlarge (private, enterprise)
20
+
21
+ ## Model Description
22
+
23
+ The model is trained to detect vessels in maritime imagery. It uses the YOLOv11 architecture with improvements in detection accuracy and speed.
24
+
25
+ ## Performance
26
+
27
+ **YOLOv11-nano (Public Version)**
28
+ - mAP50: 0.474
29
+ - mAP50-95: 0.192
30
+ - Precision: 0.587
31
+ - Recall: 0.476
32
+
33
+ **YOLOv11-xlarge (Enterprise Version)**
34
+ - mAP50: 0.579
35
+ - mAP50-95: 0.318
36
+ - Precision: 0.612
37
+ - Recall: 0.571
38
+
39
+ For access to the enterprise version, please contact [email protected]
40
+
41
+ ## Usage
42
+ ```bash
43
+ pip install huggingface_hub ultralytics matplotlib
44
+ ```
45
+ ```python
46
+ from huggingface_hub import hf_hub_download
47
+ from ultralytics import YOLO
48
+ import matplotlib.pyplot as plt
49
+
50
+ # Download the model file and a sample image from Hugging Face
51
+ repo_id = "truthdotphd/vessel-detection"
52
+ model_path = hf_hub_download(repo_id=repo_id, filename="model.pt")
53
+ image_path = hf_hub_download(repo_id=repo_id, filename="vessels.jpg")
54
+
55
+ # Load the model
56
+ model = YOLO(model_path)
57
+
58
+ # Use the model for inference
59
+ results = model(image_path)
60
+ plt.figure(figsize=(10, 10))
61
+ plt.imshow(cv2.cvtColor(img, cv2.COLOR_BGR2RGB)) # Convert BGR to RGB for matplotlib
62
+ plt.axis('off')
63
+ plt.show()
64
+ ```
65
+ ![Vessel Detection Predictions](vessels-preds.jpg)
66
+ ## Limitations
67
+
68
+ - Performance may vary depending on image quality and lighting conditions
69
+ - Optimized for daytime maritime imagery
70
+ - Detection accuracy may decrease in crowded scenes
71
+
72
+ ## Training Data
73
+
74
+ The model was trained on a proprietary dataset of maritime vessel images. The dataset includes various vessel types under different weather and lighting conditions.
75
+
76
+ ## Training Procedure
77
+
78
+ - Architecture: YOLOv11
79
+ - Training Framework: Ultralytics
80
+ - Hardware: NVIDIA GPUs
81
+ - Optimization: AdamW optimizer
82
+
83
+ For enterprise solutions and access to YOLOv11-xlarge, please contact [email protected]