trng1305 commited on
Commit
677cf00
·
1 Parent(s): b32e4c1

End of training

Browse files
README.md CHANGED
@@ -1,8 +1,6 @@
1
  ---
2
  tags:
3
  - generated_from_trainer
4
- datasets:
5
- - sroie
6
  model-index:
7
  - name: layoutlm-sroie
8
  results: []
@@ -13,17 +11,17 @@ should probably proofread and complete it, then remove this comment. -->
13
 
14
  # layoutlm-sroie
15
 
16
- This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the sroie dataset.
17
  It achieves the following results on the evaluation set:
18
- - Loss: 0.0320
19
- - Address: {'precision': 0.9154929577464789, 'recall': 0.9365994236311239, 'f1': 0.925925925925926, 'number': 347}
20
- - Company: {'precision': 0.9228650137741047, 'recall': 0.9654178674351584, 'f1': 0.9436619718309859, 'number': 347}
21
- - Date: {'precision': 0.9884393063583815, 'recall': 0.9855907780979827, 'f1': 0.987012987012987, 'number': 347}
22
- - Total: {'precision': 0.8431372549019608, 'recall': 0.8674351585014409, 'f1': 0.8551136363636365, 'number': 347}
23
- - Overall Precision: 0.9170
24
- - Overall Recall: 0.9388
25
- - Overall F1: 0.9277
26
- - Overall Accuracy: 0.9942
27
 
28
  ## Model description
29
 
@@ -52,23 +50,23 @@ The following hyperparameters were used during training:
52
 
53
  ### Training results
54
 
55
- | Training Loss | Epoch | Step | Validation Loss | Address | Company | Date | Total | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
56
- |:-------------:|:-----:|:----:|:---------------:|:--------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
57
- | 0.5392 | 1.0 | 40 | 0.1200 | {'precision': 0.8346883468834688, 'recall': 0.8876080691642652, 'f1': 0.8603351955307261, 'number': 347} | {'precision': 0.75, 'recall': 0.8126801152737753, 'f1': 0.7800829875518672, 'number': 347} | {'precision': 0.648068669527897, 'recall': 0.8703170028818443, 'f1': 0.7429274292742927, 'number': 347} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 347} | 0.7366 | 0.6427 | 0.6864 | 0.9712 |
58
- | 0.0803 | 2.0 | 80 | 0.0485 | {'precision': 0.896358543417367, 'recall': 0.9221902017291066, 'f1': 0.9090909090909091, 'number': 347} | {'precision': 0.8897849462365591, 'recall': 0.9538904899135446, 'f1': 0.9207232267037552, 'number': 347} | {'precision': 0.9628571428571429, 'recall': 0.9711815561959655, 'f1': 0.9670014347202295, 'number': 347} | {'precision': 0.5219298245614035, 'recall': 0.34293948126801155, 'f1': 0.41391304347826086, 'number': 347} | 0.8470 | 0.7976 | 0.8215 | 0.9876 |
59
- | 0.0441 | 3.0 | 120 | 0.0373 | {'precision': 0.9131652661064426, 'recall': 0.9394812680115274, 'f1': 0.9261363636363636, 'number': 347} | {'precision': 0.9277777777777778, 'recall': 0.962536023054755, 'f1': 0.9448373408769449, 'number': 347} | {'precision': 0.9826589595375722, 'recall': 0.9798270893371758, 'f1': 0.9812409812409811, 'number': 347} | {'precision': 0.5418502202643172, 'recall': 0.7089337175792507, 'f1': 0.6142322097378278, 'number': 347} | 0.8214 | 0.8977 | 0.8578 | 0.9897 |
60
- | 0.0309 | 4.0 | 160 | 0.0333 | {'precision': 0.8864265927977839, 'recall': 0.9221902017291066, 'f1': 0.903954802259887, 'number': 347} | {'precision': 0.915068493150685, 'recall': 0.962536023054755, 'f1': 0.9382022471910113, 'number': 347} | {'precision': 0.9912790697674418, 'recall': 0.9827089337175793, 'f1': 0.9869753979739508, 'number': 347} | {'precision': 0.6556122448979592, 'recall': 0.7406340057636888, 'f1': 0.6955345060893099, 'number': 347} | 0.8564 | 0.9020 | 0.8786 | 0.9916 |
61
- | 0.0249 | 5.0 | 200 | 0.0318 | {'precision': 0.907563025210084, 'recall': 0.9337175792507204, 'f1': 0.9204545454545455, 'number': 347} | {'precision': 0.9054054054054054, 'recall': 0.9654178674351584, 'f1': 0.9344490934449093, 'number': 347} | {'precision': 0.9912536443148688, 'recall': 0.9798270893371758, 'f1': 0.9855072463768115, 'number': 347} | {'precision': 0.7186700767263428, 'recall': 0.8097982708933718, 'f1': 0.7615176151761518, 'number': 347} | 0.8761 | 0.9222 | 0.8986 | 0.9924 |
62
- | 0.0183 | 6.0 | 240 | 0.0294 | {'precision': 0.9103641456582633, 'recall': 0.9365994236311239, 'f1': 0.9232954545454545, 'number': 347} | {'precision': 0.9201101928374655, 'recall': 0.962536023054755, 'f1': 0.9408450704225352, 'number': 347} | {'precision': 0.991304347826087, 'recall': 0.9855907780979827, 'f1': 0.9884393063583815, 'number': 347} | {'precision': 0.8397435897435898, 'recall': 0.7550432276657061, 'f1': 0.795144157814871, 'number': 347} | 0.9172 | 0.9099 | 0.9136 | 0.9936 |
63
- | 0.0155 | 7.0 | 280 | 0.0290 | {'precision': 0.9129213483146067, 'recall': 0.9365994236311239, 'f1': 0.9246088193456615, 'number': 347} | {'precision': 0.9155313351498637, 'recall': 0.968299711815562, 'f1': 0.9411764705882353, 'number': 347} | {'precision': 0.9855907780979827, 'recall': 0.9855907780979827, 'f1': 0.9855907780979827, 'number': 347} | {'precision': 0.8228882833787466, 'recall': 0.8703170028818443, 'f1': 0.8459383753501399, 'number': 347} | 0.9081 | 0.9402 | 0.9239 | 0.9940 |
64
- | 0.0125 | 8.0 | 320 | 0.0322 | {'precision': 0.9103641456582633, 'recall': 0.9365994236311239, 'f1': 0.9232954545454545, 'number': 347} | {'precision': 0.9027027027027027, 'recall': 0.962536023054755, 'f1': 0.9316596931659692, 'number': 347} | {'precision': 0.9884393063583815, 'recall': 0.9855907780979827, 'f1': 0.987012987012987, 'number': 347} | {'precision': 0.8269230769230769, 'recall': 0.8674351585014409, 'f1': 0.8466947960618847, 'number': 347} | 0.9061 | 0.9380 | 0.9218 | 0.9936 |
65
- | 0.0108 | 9.0 | 360 | 0.0302 | {'precision': 0.9078212290502793, 'recall': 0.9365994236311239, 'f1': 0.921985815602837, 'number': 347} | {'precision': 0.9205479452054794, 'recall': 0.968299711815562, 'f1': 0.9438202247191011, 'number': 347} | {'precision': 0.9884393063583815, 'recall': 0.9855907780979827, 'f1': 0.987012987012987, 'number': 347} | {'precision': 0.8386167146974063, 'recall': 0.8386167146974063, 'f1': 0.8386167146974063, 'number': 347} | 0.9138 | 0.9323 | 0.9230 | 0.9941 |
66
- | 0.0099 | 10.0 | 400 | 0.0304 | {'precision': 0.8833333333333333, 'recall': 0.9164265129682997, 'f1': 0.8995756718528995, 'number': 347} | {'precision': 0.9226519337016574, 'recall': 0.962536023054755, 'f1': 0.9421720733427363, 'number': 347} | {'precision': 0.9884393063583815, 'recall': 0.9855907780979827, 'f1': 0.987012987012987, 'number': 347} | {'precision': 0.8472222222222222, 'recall': 0.8789625360230547, 'f1': 0.8628005657708628, 'number': 347} | 0.9097 | 0.9359 | 0.9226 | 0.9943 |
67
- | 0.0079 | 11.0 | 440 | 0.0312 | {'precision': 0.9206798866855525, 'recall': 0.9365994236311239, 'f1': 0.9285714285714285, 'number': 347} | {'precision': 0.9203296703296703, 'recall': 0.9654178674351584, 'f1': 0.9423347398030942, 'number': 347} | {'precision': 0.9884393063583815, 'recall': 0.9855907780979827, 'f1': 0.987012987012987, 'number': 347} | {'precision': 0.8515406162464986, 'recall': 0.8760806916426513, 'f1': 0.8636363636363638, 'number': 347} | 0.9197 | 0.9409 | 0.9302 | 0.9945 |
68
- | 0.0079 | 12.0 | 480 | 0.0322 | {'precision': 0.9101123595505618, 'recall': 0.9337175792507204, 'f1': 0.9217638691322901, 'number': 347} | {'precision': 0.9153005464480874, 'recall': 0.9654178674351584, 'f1': 0.9396914446002805, 'number': 347} | {'precision': 0.9884393063583815, 'recall': 0.9855907780979827, 'f1': 0.987012987012987, 'number': 347} | {'precision': 0.8310626702997275, 'recall': 0.8789625360230547, 'f1': 0.8543417366946778, 'number': 347} | 0.9101 | 0.9409 | 0.9253 | 0.9941 |
69
- | 0.0068 | 13.0 | 520 | 0.0311 | {'precision': 0.9101123595505618, 'recall': 0.9337175792507204, 'f1': 0.9217638691322901, 'number': 347} | {'precision': 0.9226519337016574, 'recall': 0.962536023054755, 'f1': 0.9421720733427363, 'number': 347} | {'precision': 0.991304347826087, 'recall': 0.9855907780979827, 'f1': 0.9884393063583815, 'number': 347} | {'precision': 0.8467966573816156, 'recall': 0.8760806916426513, 'f1': 0.8611898016997168, 'number': 347} | 0.9170 | 0.9395 | 0.9281 | 0.9943 |
70
- | 0.0068 | 14.0 | 560 | 0.0318 | {'precision': 0.9101123595505618, 'recall': 0.9337175792507204, 'f1': 0.9217638691322901, 'number': 347} | {'precision': 0.9201101928374655, 'recall': 0.962536023054755, 'f1': 0.9408450704225352, 'number': 347} | {'precision': 0.9884393063583815, 'recall': 0.9855907780979827, 'f1': 0.987012987012987, 'number': 347} | {'precision': 0.837465564738292, 'recall': 0.8760806916426513, 'f1': 0.8563380281690142, 'number': 347} | 0.9132 | 0.9395 | 0.9261 | 0.9943 |
71
- | 0.0061 | 15.0 | 600 | 0.0320 | {'precision': 0.9154929577464789, 'recall': 0.9365994236311239, 'f1': 0.925925925925926, 'number': 347} | {'precision': 0.9228650137741047, 'recall': 0.9654178674351584, 'f1': 0.9436619718309859, 'number': 347} | {'precision': 0.9884393063583815, 'recall': 0.9855907780979827, 'f1': 0.987012987012987, 'number': 347} | {'precision': 0.8431372549019608, 'recall': 0.8674351585014409, 'f1': 0.8551136363636365, 'number': 347} | 0.9170 | 0.9388 | 0.9277 | 0.9942 |
72
 
73
 
74
  ### Framework versions
 
1
  ---
2
  tags:
3
  - generated_from_trainer
 
 
4
  model-index:
5
  - name: layoutlm-sroie
6
  results: []
 
11
 
12
  # layoutlm-sroie
13
 
14
+ This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the None dataset.
15
  It achieves the following results on the evaluation set:
16
+ - Loss: 0.0325
17
+ - Address: {'precision': 0.9044943820224719, 'recall': 0.9279538904899135, 'f1': 0.9160739687055477, 'number': 347}
18
+ - Company: {'precision': 0.9196675900277008, 'recall': 0.9567723342939481, 'f1': 0.9378531073446328, 'number': 347}
19
+ - Date: {'precision': 0.9828080229226361, 'recall': 0.9884726224783862, 'f1': 0.985632183908046, 'number': 347}
20
+ - Total: {'precision': 0.8913649025069638, 'recall': 0.9221902017291066, 'f1': 0.9065155807365438, 'number': 347}
21
+ - Overall Precision: 0.9242
22
+ - Overall Recall: 0.9488
23
+ - Overall F1: 0.9364
24
+ - Overall Accuracy: 0.9947
25
 
26
  ## Model description
27
 
 
50
 
51
  ### Training results
52
 
53
+ | Training Loss | Epoch | Step | Validation Loss | Address | Company | Date | Total | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
54
+ |:-------------:|:-----:|:----:|:---------------:|:--------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
55
+ | 0.4787 | 1.0 | 40 | 0.1051 | {'precision': 0.8115183246073299, 'recall': 0.8933717579250721, 'f1': 0.850480109739369, 'number': 347} | {'precision': 0.6813725490196079, 'recall': 0.8011527377521613, 'f1': 0.7364238410596026, 'number': 347} | {'precision': 0.7438423645320197, 'recall': 0.8703170028818443, 'f1': 0.8021248339973439, 'number': 347} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 347} | 0.7441 | 0.6412 | 0.6889 | 0.9705 |
56
+ | 0.0698 | 2.0 | 80 | 0.0453 | {'precision': 0.848, 'recall': 0.9164265129682997, 'f1': 0.8808864265927978, 'number': 347} | {'precision': 0.8080808080808081, 'recall': 0.9221902017291066, 'f1': 0.8613728129205921, 'number': 347} | {'precision': 0.9281767955801105, 'recall': 0.968299711815562, 'f1': 0.9478138222849083, 'number': 347} | {'precision': 0.6992481203007519, 'recall': 0.8040345821325648, 'f1': 0.7479892761394101, 'number': 347} | 0.8179 | 0.9027 | 0.8582 | 0.9882 |
57
+ | 0.0326 | 3.0 | 120 | 0.0317 | {'precision': 0.8763736263736264, 'recall': 0.9193083573487032, 'f1': 0.8973277074542897, 'number': 347} | {'precision': 0.888283378746594, 'recall': 0.9394812680115274, 'f1': 0.9131652661064427, 'number': 347} | {'precision': 0.9713467048710601, 'recall': 0.9769452449567724, 'f1': 0.9741379310344828, 'number': 347} | {'precision': 0.8259668508287292, 'recall': 0.861671469740634, 'f1': 0.8434414668547249, 'number': 347} | 0.8897 | 0.9244 | 0.9067 | 0.9928 |
58
+ | 0.0222 | 4.0 | 160 | 0.0333 | {'precision': 0.8922651933701657, 'recall': 0.930835734870317, 'f1': 0.9111424541607898, 'number': 347} | {'precision': 0.8983516483516484, 'recall': 0.9423631123919308, 'f1': 0.919831223628692, 'number': 347} | {'precision': 0.9912280701754386, 'recall': 0.9769452449567724, 'f1': 0.9840348330914369, 'number': 347} | {'precision': 0.7348837209302326, 'recall': 0.9106628242074928, 'f1': 0.8133848133848134, 'number': 347} | 0.8712 | 0.9402 | 0.9044 | 0.9921 |
59
+ | 0.0185 | 5.0 | 200 | 0.0288 | {'precision': 0.9209039548022598, 'recall': 0.9394812680115274, 'f1': 0.9300998573466476, 'number': 347} | {'precision': 0.8856382978723404, 'recall': 0.9596541786743515, 'f1': 0.921161825726141, 'number': 347} | {'precision': 0.991304347826087, 'recall': 0.9855907780979827, 'f1': 0.9884393063583815, 'number': 347} | {'precision': 0.8547945205479452, 'recall': 0.899135446685879, 'f1': 0.8764044943820225, 'number': 347} | 0.9118 | 0.9460 | 0.9286 | 0.9938 |
60
+ | 0.0141 | 6.0 | 240 | 0.0269 | {'precision': 0.8991596638655462, 'recall': 0.9250720461095101, 'f1': 0.9119318181818182, 'number': 347} | {'precision': 0.9108635097493036, 'recall': 0.9423631123919308, 'f1': 0.926345609065156, 'number': 347} | {'precision': 0.9884393063583815, 'recall': 0.9855907780979827, 'f1': 0.987012987012987, 'number': 347} | {'precision': 0.8795518207282913, 'recall': 0.9048991354466859, 'f1': 0.8920454545454546, 'number': 347} | 0.9190 | 0.9395 | 0.9291 | 0.9944 |
61
+ | 0.0117 | 7.0 | 280 | 0.0281 | {'precision': 0.9178470254957507, 'recall': 0.9337175792507204, 'f1': 0.9257142857142857, 'number': 347} | {'precision': 0.9138888888888889, 'recall': 0.9481268011527377, 'f1': 0.9306930693069307, 'number': 347} | {'precision': 0.9855907780979827, 'recall': 0.9855907780979827, 'f1': 0.9855907780979827, 'number': 347} | {'precision': 0.8985507246376812, 'recall': 0.8933717579250721, 'f1': 0.8959537572254335, 'number': 347} | 0.9288 | 0.9402 | 0.9345 | 0.9945 |
62
+ | 0.0104 | 8.0 | 320 | 0.0313 | {'precision': 0.9101123595505618, 'recall': 0.9337175792507204, 'f1': 0.9217638691322901, 'number': 347} | {'precision': 0.9043715846994536, 'recall': 0.9538904899135446, 'f1': 0.9284712482468442, 'number': 347} | {'precision': 0.9717514124293786, 'recall': 0.9913544668587896, 'f1': 0.9814550641940086, 'number': 347} | {'precision': 0.868632707774799, 'recall': 0.9337175792507204, 'f1': 0.8999999999999999, 'number': 347} | 0.9130 | 0.9532 | 0.9327 | 0.9941 |
63
+ | 0.009 | 9.0 | 360 | 0.0282 | {'precision': 0.9204545454545454, 'recall': 0.9337175792507204, 'f1': 0.927038626609442, 'number': 347} | {'precision': 0.9171270718232044, 'recall': 0.9567723342939481, 'f1': 0.9365303244005642, 'number': 347} | {'precision': 0.9828571428571429, 'recall': 0.9913544668587896, 'f1': 0.9870875179340028, 'number': 347} | {'precision': 0.8885793871866295, 'recall': 0.9193083573487032, 'f1': 0.9036827195467422, 'number': 347} | 0.9269 | 0.9503 | 0.9385 | 0.9949 |
64
+ | 0.0081 | 10.0 | 400 | 0.0313 | {'precision': 0.9047619047619048, 'recall': 0.930835734870317, 'f1': 0.9176136363636365, 'number': 347} | {'precision': 0.9217877094972067, 'recall': 0.9510086455331412, 'f1': 0.9361702127659575, 'number': 347} | {'precision': 0.9828080229226361, 'recall': 0.9884726224783862, 'f1': 0.985632183908046, 'number': 347} | {'precision': 0.8974358974358975, 'recall': 0.9077809798270894, 'f1': 0.9025787965616047, 'number': 347} | 0.9265 | 0.9445 | 0.9354 | 0.9945 |
65
+ | 0.0064 | 11.0 | 440 | 0.0318 | {'precision': 0.9047619047619048, 'recall': 0.930835734870317, 'f1': 0.9176136363636365, 'number': 347} | {'precision': 0.9138888888888889, 'recall': 0.9481268011527377, 'f1': 0.9306930693069307, 'number': 347} | {'precision': 0.9828080229226361, 'recall': 0.9884726224783862, 'f1': 0.985632183908046, 'number': 347} | {'precision': 0.8791208791208791, 'recall': 0.9221902017291066, 'f1': 0.90014064697609, 'number': 347} | 0.9196 | 0.9474 | 0.9333 | 0.9944 |
66
+ | 0.0063 | 12.0 | 480 | 0.0335 | {'precision': 0.8994413407821229, 'recall': 0.9279538904899135, 'f1': 0.9134751773049646, 'number': 347} | {'precision': 0.9088397790055248, 'recall': 0.9481268011527377, 'f1': 0.928067700987306, 'number': 347} | {'precision': 0.9828080229226361, 'recall': 0.9884726224783862, 'f1': 0.985632183908046, 'number': 347} | {'precision': 0.8839779005524862, 'recall': 0.9221902017291066, 'f1': 0.9026798307475318, 'number': 347} | 0.9182 | 0.9467 | 0.9322 | 0.9943 |
67
+ | 0.0054 | 13.0 | 520 | 0.0312 | {'precision': 0.9070422535211268, 'recall': 0.9279538904899135, 'f1': 0.9173789173789173, 'number': 347} | {'precision': 0.9194444444444444, 'recall': 0.9538904899135446, 'f1': 0.9363507779349363, 'number': 347} | {'precision': 0.9828080229226361, 'recall': 0.9884726224783862, 'f1': 0.985632183908046, 'number': 347} | {'precision': 0.8839779005524862, 'recall': 0.9221902017291066, 'f1': 0.9026798307475318, 'number': 347} | 0.9229 | 0.9481 | 0.9353 | 0.9947 |
68
+ | 0.0054 | 14.0 | 560 | 0.0326 | {'precision': 0.9044943820224719, 'recall': 0.9279538904899135, 'f1': 0.9160739687055477, 'number': 347} | {'precision': 0.9222222222222223, 'recall': 0.9567723342939481, 'f1': 0.9391796322489392, 'number': 347} | {'precision': 0.9828080229226361, 'recall': 0.9884726224783862, 'f1': 0.985632183908046, 'number': 347} | {'precision': 0.8910614525139665, 'recall': 0.9193083573487032, 'f1': 0.9049645390070922, 'number': 347} | 0.9248 | 0.9481 | 0.9363 | 0.9946 |
69
+ | 0.0048 | 15.0 | 600 | 0.0325 | {'precision': 0.9044943820224719, 'recall': 0.9279538904899135, 'f1': 0.9160739687055477, 'number': 347} | {'precision': 0.9196675900277008, 'recall': 0.9567723342939481, 'f1': 0.9378531073446328, 'number': 347} | {'precision': 0.9828080229226361, 'recall': 0.9884726224783862, 'f1': 0.985632183908046, 'number': 347} | {'precision': 0.8913649025069638, 'recall': 0.9221902017291066, 'f1': 0.9065155807365438, 'number': 347} | 0.9242 | 0.9488 | 0.9364 | 0.9947 |
70
 
71
 
72
  ### Framework versions
logs/events.out.tfevents.1700674111.7c58e45ee39e.832.0 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:c7f3855851e3f5b1746ded84341b9edf7b57797cbf9ff89a6b6bd7717fbc5ddb
3
- size 14153
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:afb091f892fbcc3c1d3d8da2e99ece7c838b0664711341dda38bcbc6c48e2138
3
+ size 14507
pytorch_model.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:29ae5f2515264365c0523ddead32c3ff0d603d128abf5cfa2eb5d19f6112bd92
3
  size 450611906
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:929647f0df8c22936385ffe63c245198b6b5f045eceb8d5aca9c5dffb11c042e
3
  size 450611906