File size: 7,088 Bytes
c655e64 b5e47a5 c655e64 d6da083 b5e47a5 6b285d8 fa7acc5 6b285d8 c37c153 c655e64 536b869 0647dd1 1103e88 685332c 05823f1 5a0c6ad 54f7795 5a0c6ad 0647dd1 c655e64 0647dd1 037ecd3 0647dd1 b83c25e 0647dd1 8da6675 0647dd1 b83c25e 0647dd1 8f54877 0647dd1 33c79b4 e998256 33c79b4 0647dd1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 |
---
license: mit
language:
- en
- ja
base_model:
- trendmicro-ailab/Llama-Primus-Base
pipeline_tag: text-generation
extra_gated_fields:
Affiliation: text
Country: country
I want to use this model for:
type: select
options:
- Research
- Commercial
- label: Other
value: other
Job title:
type: select
options:
- Student
- Research graduate
- AI researcher
- AI developer/engineer
- Cybersecurity researcher
- Reporter
- Other
geo: ip_location
library_name: transformers
datasets:
- trendmicro-ailab/Primus-Seed
- trendmicro-ailab/Primus-FineWeb
- trendmicro-ailab/Primus-Instruct
---
# Primus: A Pioneering Collection of Open-Source Datasets for Cybersecurity LLM Training
<img src="https://i.imgur.com/PtqeTZw.png" alt="Llama-Primus-Merged Overview" width="60%">
> TL;DR: Llama-Primus-Merged was first pre-trained on a large cybersecurity corpus (2.77B, _Primus-Seed_ and _Primus-FineWeb_), and then instruction fine-tuned on around 1,000 carefully curated cybersecurity QA tasks (_Primus-Instruct_) to restore its instruction-following ability. Finally, it was merged with Llama-3.1-8B-Instruct, maintaining the same instruction-following capability while achieving a 🚀**14.84%** improvement in aggregated scores across multiple cybersecurity benchmarks.
**🔥 For more details, please refer to the paper: [[📄Paper]](https://arxiv.org/abs/2502.11191).**
## Introduction
Large Language Models (LLMs) have demonstrated remarkable versatility in recent years, with promising applications in specialized domains such as finance, law, and biomedicine. However, in the domain of cybersecurity, we noticed a lack of open-source datasets specifically designed for LLM pre-training—even though much research has shown that LLMs acquire their knowledge during pre-training. To fill this gap, we present a collection of datasets covering multiple stages of cybersecurity LLM training, including pre-training (_Primus-Seed_ and _Primus-FineWeb_), instruction fine-tuning (_Primus-Instruct_), and reasoning data for distillation (_Primus-Reasoning_). Based on these datasets and Llama-3.1-8B-Instruct, we developed _Llama-Primus-Base_, _Llama-Primus-Merged_, and _Llama-Primus-Reasoning_. This model card is **Llama-Primus-Merged**.
> **Note:** No TrendMicro customer information is included.
## Benchmark Results
- [Cybersecurity](#cybersecurity)
- [Function Calling](#function-calling)
- [Safety & Toxicity](#safety--toxicity)
- [Multilingual](#multilingual)
- [General Chat Performance](#general-chat-performance)
- [Long-Context](#long-context)
#### Cybersecurity
| **Metric** (5-shot, w/o CoT) | **Llama-3.1-8B-Instruct** | **Llama-Primus-Merged** |
|---------------------------------|---------------------------|------------------------------|
| **CTI-Bench (MCQ)** | 0.6420 | 0.6656 |
| **CTI-Bench (CVE → CWE)** | 0.5910 | 0.6620 |
| **CTI-Bench (CVSS, _lower is better_)** | 1.2712 | 1.1233 |
| **CTI-Bench (ATE)** | 0.2721 | 0.3387 |
| **CyberMetric (500)** | 0.8560 | 0.8660 |
| **SecEval** | 0.4966 | 0.5062 |
| **Cissp (Exams in book)** | 0.7073 | 0.7191 |
| **_Agg._** | 2.29 | 2.63 ↑**14.84%** 🔥 |
CTI-Bench(CVSS) is scored using Mean Absolute Deviation (_lower is better_), CTI-ATE uses F1 score, and the others use accuracy. The aggregate score (_Agg._) is the sum of all benchmarks, with CTI-Bench(CVSS) negated.
References:
- **CyberMetric**: [CyberMetric: A Benchmark Dataset based on Retrieval-Augmented...](https://arxiv.org/abs/2402.07688)
- **CTI-Bench**: [CTIBench: A Benchmark for Evaluating LLMs in Cyber Threat Intelligence](https://arxiv.org/abs/2406.07599)
- **SecEval**: [SecEval: A Comprehensive Benchmark for Evaluating Cybersecurity Knowledge of Foundation Models](https://xuanwuai.github.io/SecEval/)
#### Function Calling
| **Metric** | **Llama-3.1-8B-Instruct** | **Llama-Primus-Merged**|
|---------------|---------------------------|------------------------------|
| **BFCL (V2)** | 73.02 (prompt) | 74.77 (prompt) | - |
Reference:
- [BFCL (V2)](https://gorilla.cs.berkeley.edu/blogs/12_bfcl_v2_live.html)
### Safety & Toxicity
| **Metric** | **Llama-3.1-8B-Instruct** | **Llama-Primus-Merged** |
|----------------------------------|---------------------------|------------------------------|
| **dan (Jailbreak)** | 28.98% | 41.70% |
| **encoding (Jailbreak)** | 100.00% | 100.00% |
| **goodside (Hallucination/Injection)** | 77.08% | 72.10% |
| **latentinjection (Injection)** | 75.55% | 74.00% |
| **leakreplay (Copyright)** | 95.71% | 96.90% |
| **malwaregen (Disallowed)** | 14.34% | 29.00% |
| **realtoxicityprompts (Disallowed)** | 90.03% | 85.40% |
| **snowball (Hallucination)** | 59.67% | 84.20% |
| **xss (Injection)** | 100.00% | 98.30% |
| **XSTest (Over Refuse)** | 93.20% | 83.20% |
References:
- **Garak**: [Garak Repository](https://github.com/leondz/garak)
- **XSTest**: [XSTest Repository](https://github.com/paul-rottger/exaggerated-safety)
### Multilingual
| **Language** | **Llama-3.1-8B-Instruct** | **Llama-Primus-Merged** |
|---------------|---------------------------|------------------------------|
| **MMLU (English)** | 68.16% | 67.36% |
| **MMLU (Japanese)** | 49.22% | 47.85% |
| **MMLU (French)** | 58.91% | 58.14% |
| **MMLU (German)** | 57.70% | 56.68% |
References:
- **English**: [MMLU Dataset](https://arxiv.org/abs/2009.03300)
- **German/French**: [MLMM Evaluation](https://github.com/nlp-uoregon/mlmm-evaluation?tab=readme-ov-file)
- **Japanese**: [Freedom Intelligence MMLU Japanese](https://huggingface.co/datasets/FreedomIntelligence/MMLU_Japanese)
#### General Chat Performance
| **Metric** | **Llama-3.1-8B-Instruct** | **Llama-Primus-Merged** |
|-----------------|---------------------------|------------------------------|
| **MT Bench** | 8.3491 | 8.29375 |
Reference:
- [MT Bench](https://arxiv.org/abs/2306.05685)
### Long-Context
| **Length** | **Llama-3.1-8B-Instruct** | **Llama-Primus-Merged** |
|------------|---------------------------|------------------------------|
| **8K+** | 51.08 | 50.66 |
| **16K+** | 29.18 | 27.13 |
Reference:
- [LongBench](https://arxiv.org/abs/2308.14508)
## About _Primus_
_Primus_ is Trend Micro's pioneering family of lightweight, state-of-the-art open cybersecurity language models and datasets. Developed through our cutting-edge research initiatives and advanced technology, these resources share the innovative foundation that powers our enterprise-class [Trend Cybertron](https://newsroom.trendmicro.com/2025-02-25-Trend-Micro-Puts-Industry-Ahead-of-Cyberattacks-with-Industrys-First-Proactive-Cybersecurity-AI) solution. As an industry leader in cybersecurity, Trend Micro is proud to contribute these powerful, efficiency-optimized models and datasets to the community, while maintaining the excellence and reliability that define our global security standards.
## License
This model is based on the MIT license, but you must also comply with the Llama 3.1 Community License Agreement. |