treizh commited on
Commit
edacdfe
·
verified ·
1 Parent(s): a63b978

Upload folder using huggingface_hub (#5)

Browse files

- 4e1fb57dec599fbdb2a0e0d197d6792d7e3efabdaeb1ed4d3dfc2116b125be4b (1451339857657696f76a3d5dc8988f4ac4cd2728)

.gitattributes CHANGED
@@ -5333,3 +5333,4 @@ images/plates/Exp23DM09_inoc2_T6_P059.JPG filter=lfs diff=lfs merge=lfs -text
5333
  images/plates/Exp23DM09_inoc2_T6_P060.JPG filter=lfs diff=lfs merge=lfs -text
5334
  images/plates/Exp23DM09_inoc2_T6_P061.JPG filter=lfs diff=lfs merge=lfs -text
5335
  images/plates/Exp23DM09_inoc2_T6_P062.JPG filter=lfs diff=lfs merge=lfs -text
 
 
5333
  images/plates/Exp23DM09_inoc2_T6_P060.JPG filter=lfs diff=lfs merge=lfs -text
5334
  images/plates/Exp23DM09_inoc2_T6_P061.JPG filter=lfs diff=lfs merge=lfs -text
5335
  images/plates/Exp23DM09_inoc2_T6_P062.JPG filter=lfs diff=lfs merge=lfs -text
5336
+ src/leaf_patch_extractor.ipynb filter=lfs diff=lfs merge=lfs -text
src/.gitattributes ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ leaf_patch_annotation.ipynb filter=lfs diff=lfs merge=lfs -text
2
+ leaf_patch_extractor.ipynb filter=lfs diff=lfs merge=lfs -text
3
+ leaf_patch_gen_diff.ipynb filter=lfs diff=lfs merge=lfs -text
4
+ leaf_patch_oiv_predictor.ipynb filter=lfs diff=lfs merge=lfs -text
5
+ repo_manager.ipynb filter=lfs diff=lfs merge=lfs -text
src/com_const.py CHANGED
@@ -4,7 +4,7 @@ path_to_here = Path(__file__).resolve().parent
4
  path_to_root = path_to_here.parent
5
 
6
  path_to_data = path_to_root.joinpath("data")
7
-
8
  path_to_images = path_to_root.joinpath("images")
9
  path_to_plates = path_to_images.joinpath("plates")
10
  path_to_leaf_discs = path_to_images.joinpath("leaf_discs")
 
4
  path_to_root = path_to_here.parent
5
 
6
  path_to_data = path_to_root.joinpath("data")
7
+ path_to_resources = path_to_root.joinpath("resources")
8
  path_to_images = path_to_root.joinpath("images")
9
  path_to_plates = path_to_images.joinpath("plates")
10
  path_to_leaf_discs = path_to_images.joinpath("leaf_discs")
src/leaf_patch_annotation.ipynb CHANGED
@@ -4,7 +4,40 @@
4
  "cell_type": "markdown",
5
  "metadata": {},
6
  "source": [
7
- "## 202311 Dataset Annotation"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
  ]
9
  },
10
  {
@@ -158,11 +191,18 @@
158
  "metadata": {},
159
  "outputs": [],
160
  "source": [
161
- "df = cf.read_dataframe(path=cc.path_to_data.joinpath(\"oiv_annotation.csv\")).sort_values(\n",
162
- " [\"experiment\", \"inoc\", \"dpi\", \"plaque\", \"row\", \"col\"]\n",
163
- ")\n",
164
  "if \"seen_at\" not in df:\n",
165
  " df = df >> mutate(seen_at=np.nan)\n",
 
 
 
 
 
 
 
 
 
166
  "df.seen_at = pd.to_datetime(df.seen_at)\n",
167
  "df = df.set_index(\"file_name\")\n",
168
  "df"
@@ -183,7 +223,9 @@
183
  "source": [
184
  "def update_image(image_name:str, color, brightness, contrast, sharpness):\n",
185
  " image_path = cc.path_to_leaf_patches.joinpath(image_name)\n",
186
- " if image_path.is_file() is False:\n",
 
 
187
  " fig = px.imshow(\n",
188
  " np.array(\n",
189
  " [\n",
@@ -342,12 +384,6 @@
342
  " sizing_mode=\"scale_width\",\n",
343
  ")\n",
344
  "\n",
345
- "sw_ui_state = pn.widgets.Switch(name=\"active\", value=False)\n",
346
- "alt_ui_state = pn.pane.Alert(\"Annotations will be stored\", alert_type=\"primary\")\n",
347
- "\n",
348
- "pn_ui_state = pn.Row(sw_ui_state, alt_ui_state)\n",
349
- "\n",
350
- "\n",
351
  "bt_next = pn.widgets.Button(name=\"Next\", button_type=\"primary\")\n",
352
  "bt_previous = pn.widgets.Button(name=\"Previous\", button_type=\"primary\")\n",
353
  "\n",
@@ -389,20 +425,6 @@
389
  " )\n",
390
  "\n",
391
  "\n",
392
- "def update_ui_state(ui_state: bool):\n",
393
- " if ui_state is True:\n",
394
- " alt_ui_state.object = \"Annotations will be stored\"\n",
395
- " alt_ui_state.alert_type = \"primary\"\n",
396
- " else:\n",
397
- " alt_ui_state.object = \"Annotations will be discarded\"\n",
398
- " alt_ui_state.alert_type = \"danger\"\n",
399
- "\n",
400
- "\n",
401
- "@pn.depends(sw_ui_state, watch=True)\n",
402
- "def on_ui_State_changed(new_state: bool):\n",
403
- " update_ui_state(new_state)\n",
404
- "\n",
405
- "\n",
406
  "def select_next(event):\n",
407
  " global current_row\n",
408
  " global df\n",
@@ -419,9 +441,7 @@
419
  " ]\n",
420
  " cf.write_dataframe(\n",
421
  " df=df.reset_index(),\n",
422
- " path=cc.path_to_data.joinpath(\n",
423
- " \"oiv_annotation.csv\" if sw_ui_state.value is True else \"oiv_annotation_test.csv\"\n",
424
- " ),\n",
425
  " )\n",
426
  " df.at[current_row.file_name, \"seen_at\"] = now\n",
427
  "\n",
@@ -477,15 +497,9 @@
477
  " rgb_source.disabled = target == \"OIV\"\n",
478
  "\n",
479
  "\n",
480
- "# @pn.depends(rgb_oiv, watch=True)\n",
481
- "# def on_oiv_changed(_):\n",
482
- "# select_next(None)\n",
483
- "\n",
484
- "\n",
485
  "bt_next.on_click(select_next)\n",
486
  "bt_previous.on_click(select_next)\n",
487
  "\n",
488
- "update_ui_state(sw_ui_state.value)\n",
489
  "select_next(None)"
490
  ]
491
  },
@@ -502,14 +516,12 @@
502
  "metadata": {},
503
  "outputs": [],
504
  "source": [
505
- "template.sidebar.append(pn_ui_state)\n",
506
  "template.sidebar.append(c_image_processing)\n",
507
  "template.sidebar.append(c_anno_options)\n",
508
  "\n",
509
  "template.main.append(\n",
510
  " pn.Row(\n",
511
  " pn.Column(\n",
512
- " # mkd_current,\n",
513
  " img_current,\n",
514
  " ui_annotation,\n",
515
  " ),\n",
@@ -519,13 +531,6 @@
519
  "\n",
520
  "template.servable()"
521
  ]
522
- },
523
- {
524
- "cell_type": "markdown",
525
- "metadata": {},
526
- "source": [
527
- "# Please launch with command \"panel serve leaf_patch_annotation.ipynb --show --dev\" from the \"src\" folder"
528
- ]
529
  }
530
  ],
531
  "metadata": {
@@ -544,7 +549,7 @@
544
  "name": "python",
545
  "nbconvert_exporter": "python",
546
  "pygments_lexer": "ipython3",
547
- "version": "3.9.2"
548
  }
549
  },
550
  "nbformat": 4,
 
4
  "cell_type": "markdown",
5
  "metadata": {},
6
  "source": [
7
+ "# 202311 Dataset Annotation"
8
+ ]
9
+ },
10
+ {
11
+ "cell_type": "markdown",
12
+ "metadata": {},
13
+ "source": [
14
+ "## Please launch with command \n",
15
+ "\n",
16
+ " panel serve leaf_patch_annotation.ipynb --show --dev\n",
17
+ " \n",
18
+ "from the \"src\" folder"
19
+ ]
20
+ },
21
+ {
22
+ "cell_type": "markdown",
23
+ "metadata": {},
24
+ "source": [
25
+ "## Source Selection\n",
26
+ "Three options for SOURCE_FILE:\n",
27
+ "- oiv_annotation.csv for the already annotated CSV file\n",
28
+ "- oiv_annotation_empty.csv for an empty file ready to be annotated\n",
29
+ "- Your own semicolon separated CSV file containing at least a column named \"file_name\" with the name of patches located in the \"images/leaf_patches\" folder"
30
+ ]
31
+ },
32
+ {
33
+ "cell_type": "code",
34
+ "execution_count": null,
35
+ "metadata": {},
36
+ "outputs": [],
37
+ "source": [
38
+ "SOURCE_FILE = \"oiv_annotation.csv\"\n",
39
+ "# SOURCE_FILE = \"oiv_annotation_empty.csv\"\n",
40
+ "# SOURCE_FILE = \"my_csv.csv\""
41
  ]
42
  },
43
  {
 
191
  "metadata": {},
192
  "outputs": [],
193
  "source": [
194
+ "df = cf.read_dataframe(path=cc.path_to_data.joinpath(SOURCE_FILE))\n",
 
 
195
  "if \"seen_at\" not in df:\n",
196
  " df = df >> mutate(seen_at=np.nan)\n",
197
+ "if \"oiv_annotated_at\" not in df:\n",
198
+ " df = df >> mutate(oiv_annotated_at=np.nan)\n",
199
+ "if \"source_annotated_at\" not in df:\n",
200
+ " df = df >> mutate(source_annotated_at=np.nan)\n",
201
+ "if \"source\" not in df:\n",
202
+ " df = df >> mutate(source=np.nan)\n",
203
+ "if \"oiv\" not in df:\n",
204
+ " df = df >> mutate(oiv=np.nan)\n",
205
+ "\n",
206
  "df.seen_at = pd.to_datetime(df.seen_at)\n",
207
  "df = df.set_index(\"file_name\")\n",
208
  "df"
 
223
  "source": [
224
  "def update_image(image_name:str, color, brightness, contrast, sharpness):\n",
225
  " image_path = cc.path_to_leaf_patches.joinpath(image_name)\n",
226
+ " if not image_name:\n",
227
+ " fig = px.imshow(Image.open(cc.path_to_resources.joinpath(\"well_done.png\")))\n",
228
+ " elif image_path.is_file() is False:\n",
229
  " fig = px.imshow(\n",
230
  " np.array(\n",
231
  " [\n",
 
384
  " sizing_mode=\"scale_width\",\n",
385
  ")\n",
386
  "\n",
 
 
 
 
 
 
387
  "bt_next = pn.widgets.Button(name=\"Next\", button_type=\"primary\")\n",
388
  "bt_previous = pn.widgets.Button(name=\"Previous\", button_type=\"primary\")\n",
389
  "\n",
 
425
  " )\n",
426
  "\n",
427
  "\n",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
428
  "def select_next(event):\n",
429
  " global current_row\n",
430
  " global df\n",
 
441
  " ]\n",
442
  " cf.write_dataframe(\n",
443
  " df=df.reset_index(),\n",
444
+ " path=cc.path_to_data.joinpath(SOURCE_FILE),\n",
 
 
445
  " )\n",
446
  " df.at[current_row.file_name, \"seen_at\"] = now\n",
447
  "\n",
 
497
  " rgb_source.disabled = target == \"OIV\"\n",
498
  "\n",
499
  "\n",
 
 
 
 
 
500
  "bt_next.on_click(select_next)\n",
501
  "bt_previous.on_click(select_next)\n",
502
  "\n",
 
503
  "select_next(None)"
504
  ]
505
  },
 
516
  "metadata": {},
517
  "outputs": [],
518
  "source": [
 
519
  "template.sidebar.append(c_image_processing)\n",
520
  "template.sidebar.append(c_anno_options)\n",
521
  "\n",
522
  "template.main.append(\n",
523
  " pn.Row(\n",
524
  " pn.Column(\n",
 
525
  " img_current,\n",
526
  " ui_annotation,\n",
527
  " ),\n",
 
531
  "\n",
532
  "template.servable()"
533
  ]
 
 
 
 
 
 
 
534
  }
535
  ],
536
  "metadata": {
 
549
  "name": "python",
550
  "nbconvert_exporter": "python",
551
  "pygments_lexer": "ipython3",
552
+ "version": "3.12.4"
553
  }
554
  },
555
  "nbformat": 4,
src/leaf_patch_extractor.ipynb CHANGED
@@ -1,470 +1,3 @@
1
- {
2
- "cells": [
3
- {
4
- "cell_type": "markdown",
5
- "metadata": {},
6
- "source": [
7
- "# Extract Leaf Patches From Plates"
8
- ]
9
- },
10
- {
11
- "cell_type": "markdown",
12
- "metadata": {},
13
- "source": [
14
- "## Imports"
15
- ]
16
- },
17
- {
18
- "cell_type": "code",
19
- "execution_count": null,
20
- "metadata": {},
21
- "outputs": [],
22
- "source": [
23
- "%load_ext autoreload\n",
24
- "%autoreload 2"
25
- ]
26
- },
27
- {
28
- "cell_type": "code",
29
- "execution_count": null,
30
- "metadata": {},
31
- "outputs": [],
32
- "source": [
33
- "from datetime import datetime as dt\n",
34
- "import warnings\n",
35
- "import random\n",
36
- "\n",
37
- "from tqdm import tqdm\n",
38
- "\n",
39
- "import cv2\n",
40
- "\n",
41
- "import pandas as pd\n",
42
- "\n",
43
- "from siuba import _ as s\n",
44
- "from siuba import filter as sfilter\n",
45
- "from siuba import mutate, select, if_else\n",
46
- "\n",
47
- "import panel as pn\n",
48
- "\n",
49
- "import torch\n",
50
- "\n",
51
- "from pytorch_lightning.callbacks import (\n",
52
- " RichProgressBar,\n",
53
- " ModelCheckpoint,\n",
54
- " LearningRateMonitor,\n",
55
- ")\n",
56
- "from pytorch_lightning import Trainer\n",
57
- "from pytorch_lightning.callbacks.early_stopping import EarlyStopping\n",
58
- "from pytorch_lightning.loggers import TensorBoardLogger\n",
59
- "\n",
60
- "\n",
61
- "import com_const as cc\n",
62
- "import com_image as ci\n",
63
- "import com_func as cf\n",
64
- "import leaf_patch_extractor_model as lpem"
65
- ]
66
- },
67
- {
68
- "cell_type": "markdown",
69
- "metadata": {},
70
- "source": [
71
- "## Setup"
72
- ]
73
- },
74
- {
75
- "cell_type": "code",
76
- "execution_count": null,
77
- "metadata": {},
78
- "outputs": [],
79
- "source": [
80
- "warnings.simplefilter(action=\"ignore\", category=UserWarning)\n",
81
- "warnings.simplefilter(action=\"ignore\", category=FutureWarning)"
82
- ]
83
- },
84
- {
85
- "cell_type": "code",
86
- "execution_count": null,
87
- "metadata": {},
88
- "outputs": [],
89
- "source": [
90
- "pd.set_option(\"display.max_colwidth\", 500)\n",
91
- "pd.set_option(\"display.max_columns\", 500)\n",
92
- "pd.set_option(\"display.width\", 1000)\n",
93
- "pd.set_option(\"display.max_rows\", 16)"
94
- ]
95
- },
96
- {
97
- "cell_type": "code",
98
- "execution_count": null,
99
- "metadata": {},
100
- "outputs": [],
101
- "source": [
102
- "pn.extension(notifications=True, console_output=\"disable\")"
103
- ]
104
- },
105
- {
106
- "cell_type": "markdown",
107
- "metadata": {},
108
- "source": [
109
- "## Train Disc Detector"
110
- ]
111
- },
112
- {
113
- "cell_type": "markdown",
114
- "metadata": {},
115
- "source": [
116
- "### Load Datasets"
117
- ]
118
- },
119
- {
120
- "cell_type": "code",
121
- "execution_count": null,
122
- "metadata": {},
123
- "outputs": [],
124
- "source": [
125
- "train, val, test = [\n",
126
- " cf.read_dataframe(cc.path_to_data.joinpath(f\"ldd_{d}.csv\"))\n",
127
- " for d in [\"train\", \"val\", \"test\"]\n",
128
- "]\n",
129
- "\n",
130
- "print(len(train), len(test), len(val))"
131
- ]
132
- },
133
- {
134
- "cell_type": "markdown",
135
- "metadata": {},
136
- "source": [
137
- "### Test Augmentations"
138
- ]
139
- },
140
- {
141
- "cell_type": "code",
142
- "execution_count": null,
143
- "metadata": {},
144
- "outputs": [],
145
- "source": [
146
- "# aug_ = lpem.get_augmentations(image_size=10, kinds=[\"resize\", \"train\"])\n",
147
- "\n",
148
- "# test_aug_dataset = lpem.LeafDiskDetectorDataset(csv=train, transform=aug_)\n",
149
- "\n",
150
- "# file_name = train.sample(n=1).plate_name.to_list()[0]\n",
151
- "\n",
152
- "# print(aug_[0].width, aug_[0].height)\n",
153
- "\n",
154
- "# lpem.make_patches_grid(\n",
155
- "# images=[\n",
156
- "# test_aug_dataset.draw_image_with_boxes(plate_name=file_name) for _ in range(12)\n",
157
- "# ],\n",
158
- "# row_count=3,\n",
159
- "# col_count=4,\n",
160
- "# figsize=(12, 6),\n",
161
- "# )"
162
- ]
163
- },
164
- {
165
- "cell_type": "markdown",
166
- "metadata": {},
167
- "source": [
168
- "### Train"
169
- ]
170
- },
171
- {
172
- "cell_type": "code",
173
- "execution_count": null,
174
- "metadata": {},
175
- "outputs": [],
176
- "source": [
177
- "# model = lpem.LeafDiskDetector(\n",
178
- "# batch_size=15,\n",
179
- "# learning_rate=7.0e-05,\n",
180
- "# image_factor=10,\n",
181
- "# max_epochs=1000,\n",
182
- "# train_data=train,\n",
183
- "# val_data=val,\n",
184
- "# test_data=test,\n",
185
- "# augmentations_kinds=[\"resize\", \"train\", \"to_tensor\"],\n",
186
- "# augmentations_params={\"gamma\": (60, 180)},\n",
187
- "# num_workers=2,\n",
188
- "# accumulate_grad_batches=5,\n",
189
- "# scheduler=\"steplr\",\n",
190
- "# scheduler_params={\"step_size\": 10, \"gamma\": 0.80},\n",
191
- "# )\n",
192
- "\n",
193
- "# model.eval()\n",
194
- "# len(model(torch.rand(2, 3, 128, 128)))\n",
195
- "\n",
196
- "# model.hr_desc()"
197
- ]
198
- },
199
- {
200
- "cell_type": "code",
201
- "execution_count": null,
202
- "metadata": {},
203
- "outputs": [],
204
- "source": [
205
- "# trainer = Trainer(\n",
206
- "# default_root_dir=str(cc.path_to_chk_detector),\n",
207
- "# logger=TensorBoardLogger(\n",
208
- "# save_dir=str(cc.path_to_chk_detector),\n",
209
- "# version=model.model_name + \"_\" + dt.now().strftime(\"%Y%m%d_%H%M%S\"),\n",
210
- "# name=\"lightning_logs\",\n",
211
- "# ),\n",
212
- "# accelerator=\"gpu\",\n",
213
- "# max_epochs=model.max_epochs,\n",
214
- "# log_every_n_steps=5,\n",
215
- "# callbacks=[\n",
216
- "# RichProgressBar(),\n",
217
- "# EarlyStopping(monitor=\"val_loss\", mode=\"min\", patience=10, min_delta=0.0005),\n",
218
- "# ModelCheckpoint(\n",
219
- "# save_top_k=1,\n",
220
- "# monitor=\"val_loss\",\n",
221
- "# auto_insert_metric_name=True,\n",
222
- "# filename=model.model_name\n",
223
- "# + \"-{val_loss:.3f}-{epoch}-{train_loss:.3f}-{step}\",\n",
224
- "# ),\n",
225
- "# LearningRateMonitor(logging_interval=\"epoch\"),\n",
226
- "# ],\n",
227
- "# accumulate_grad_batches=model.accumulate_grad_batches,\n",
228
- "# )\n",
229
- "\n",
230
- "# trainer.fit(model)"
231
- ]
232
- },
233
- {
234
- "cell_type": "markdown",
235
- "metadata": {},
236
- "source": [
237
- "## Extract Patches"
238
- ]
239
- },
240
- {
241
- "cell_type": "markdown",
242
- "metadata": {},
243
- "source": [
244
- "### Load Model"
245
- ]
246
- },
247
- {
248
- "cell_type": "code",
249
- "execution_count": null,
250
- "metadata": {},
251
- "outputs": [],
252
- "source": [
253
- "ld_model: lpem.LeafDiskDetector = lpem.LeafDiskDetector.load_from_checkpoint(\n",
254
- " cc.path_to_chk_detector.joinpath(\"leaf_disc_detector.ckpt\")\n",
255
- ")\n",
256
- "ld_model.hr_desc()"
257
- ]
258
- },
259
- {
260
- "cell_type": "markdown",
261
- "metadata": {},
262
- "source": [
263
- "### Predict All Bounding Boxes"
264
- ]
265
- },
266
- {
267
- "cell_type": "code",
268
- "execution_count": null,
269
- "metadata": {},
270
- "outputs": [],
271
- "source": [
272
- "bb_predictions_path = cc.path_to_data.joinpath(\"train_ld_bounding_boxes.csv\")\n",
273
- "\n",
274
- "bb_predictions = (\n",
275
- " cf.read_dataframe(bb_predictions_path)\n",
276
- " if bb_predictions_path.is_file() is True\n",
277
- " else pd.DataFrame()\n",
278
- ")\n",
279
- "\n",
280
- "bb_predictions"
281
- ]
282
- },
283
- {
284
- "cell_type": "code",
285
- "execution_count": null,
286
- "metadata": {},
287
- "outputs": [],
288
- "source": [
289
- "plates = list(cc.path_to_plates.rglob(\"*.JPG\"))\n",
290
- "len(plates)"
291
- ]
292
- },
293
- {
294
- "cell_type": "code",
295
- "execution_count": null,
296
- "metadata": {},
297
- "outputs": [],
298
- "source": [
299
- "errors = []\n",
300
- "handled_plates = bb_predictions.file_name.unique()\n",
301
- "\n",
302
- "for plate in tqdm(plates):\n",
303
- " if \"file_name\" in bb_predictions and plate.name in handled_plates:\n",
304
- " continue\n",
305
- " try:\n",
306
- " current_data = ld_model.index_plate(plate) >> mutate(\n",
307
- " disc_name=s.file_name.str.replace(\" \", \"\").replace(\".JPG\", \"\")\n",
308
- " + \"_\"\n",
309
- " + s.row.astype(str)\n",
310
- " + \"_\"\n",
311
- " + s.col.astype(str)\n",
312
- " + \".png\"\n",
313
- " )\n",
314
- " bb_predictions = pd.concat([bb_predictions, current_data])\n",
315
- " except:\n",
316
- " errors.append(plate)\n",
317
- "\n",
318
- "print(errors)\n",
319
- "cf.write_dataframe(\n",
320
- " bb_predictions.sort_values([\"file_name\", \"col\", \"row\"]).reset_index(drop=True)\n",
321
- " >> mutate(disc_name=s.disc_name.str.replace(\".JPG\", \"\")),\n",
322
- " bb_predictions_path,\n",
323
- ")\n",
324
- "\n",
325
- "bb_predictions = cf.read_dataframe(bb_predictions_path)\n",
326
- "bb_predictions"
327
- ]
328
- },
329
- {
330
- "cell_type": "code",
331
- "execution_count": null,
332
- "metadata": {},
333
- "outputs": [],
334
- "source": [
335
- "selected_image = random.choice(plates)\n",
336
- "bboxes = bb_predictions >> sfilter(s.file_name == selected_image.name)\n",
337
- "pn.Column(\n",
338
- " pn.pane.Markdown(f\"### {selected_image.name}\"),\n",
339
- " pn.pane.DataFrame(bboxes),\n",
340
- " pn.pane.Image(\n",
341
- " ci.to_pil(\n",
342
- " lpem.print_boxes(\n",
343
- " image_name=selected_image,\n",
344
- " boxes=bboxes,\n",
345
- " draw_first_line=True,\n",
346
- " return_plot=False,\n",
347
- " ) #\n",
348
- " ),\n",
349
- " sizing_mode=\"scale_width\",\n",
350
- " ),\n",
351
- ")"
352
- ]
353
- },
354
- {
355
- "cell_type": "markdown",
356
- "metadata": {},
357
- "source": [
358
- "### Extract Needed Patches"
359
- ]
360
- },
361
- {
362
- "cell_type": "markdown",
363
- "metadata": {},
364
- "source": [
365
- "#### Model Training"
366
- ]
367
- },
368
- {
369
- "cell_type": "code",
370
- "execution_count": null,
371
- "metadata": {},
372
- "outputs": [],
373
- "source": [
374
- "df_model_training = pd.concat(\n",
375
- " [\n",
376
- " cf.read_dataframe(cc.path_to_data.joinpath(f\"oiv_{d}.csv\"))\n",
377
- " for d in [\"train\", \"val\", \"test\"]\n",
378
- " ]\n",
379
- ").sort_values([\"file_name\"]).reset_index(drop=True)\n",
380
- "df_model_training"
381
- ]
382
- },
383
- {
384
- "cell_type": "code",
385
- "execution_count": null,
386
- "metadata": {},
387
- "outputs": [],
388
- "source": [
389
- "err = {}\n",
390
- "\n",
391
- "for file_name in tqdm(df_model_training.file_name):\n",
392
- " row = (bb_predictions >> sfilter(s.disc_name == file_name)).reset_index(drop=True)\n",
393
- " lpem.handle_bbox(\n",
394
- " row.iloc[0],\n",
395
- " add_process_image=True,\n",
396
- " paths=dict(\n",
397
- " segmented_leaf_disc=cc.path_to_leaf_discs,\n",
398
- " leaf_disc_patch=cc.path_to_leaf_patches,\n",
399
- " plates=cc.path_to_plates,\n",
400
- " ),\n",
401
- " errors=err,\n",
402
- " )\n",
403
- "err"
404
- ]
405
- },
406
- {
407
- "cell_type": "markdown",
408
- "metadata": {},
409
- "source": [
410
- "#### Genotype differenciation"
411
- ]
412
- },
413
- {
414
- "cell_type": "code",
415
- "execution_count": null,
416
- "metadata": {},
417
- "outputs": [],
418
- "source": [
419
- "df_gd = cf.read_dataframe(\n",
420
- " cc.path_to_data.joinpath(\"genotype_differenciation_dataset.csv\")\n",
421
- ")\n",
422
- "df_gd"
423
- ]
424
- },
425
- {
426
- "cell_type": "code",
427
- "execution_count": null,
428
- "metadata": {},
429
- "outputs": [],
430
- "source": [
431
- "err = {}\n",
432
- "\n",
433
- "for file_name in tqdm(df_gd.file_name):\n",
434
- " row = (bb_predictions >> sfilter(s.disc_name == file_name)).reset_index(drop=True)\n",
435
- " lpem.handle_bbox(\n",
436
- " row.iloc[0],\n",
437
- " add_process_image=True,\n",
438
- " paths=dict(\n",
439
- " segmented_leaf_disc=cc.path_to_leaf_discs,\n",
440
- " leaf_disc_patch=cc.path_to_leaf_patches,\n",
441
- " plates=cc.path_to_plates,\n",
442
- " ),\n",
443
- " errors=err,\n",
444
- " )\n",
445
- "err"
446
- ]
447
- }
448
- ],
449
- "metadata": {
450
- "kernelspec": {
451
- "display_name": "env",
452
- "language": "python",
453
- "name": "python3"
454
- },
455
- "language_info": {
456
- "codemirror_mode": {
457
- "name": "ipython",
458
- "version": 3
459
- },
460
- "file_extension": ".py",
461
- "mimetype": "text/x-python",
462
- "name": "python",
463
- "nbconvert_exporter": "python",
464
- "pygments_lexer": "ipython3",
465
- "version": "3.9.2"
466
- }
467
- },
468
- "nbformat": 4,
469
- "nbformat_minor": 2
470
- }
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e0baba4ac3a68926405c55c55f18e86a03e58db10eb26d91c6b2e496d6c11108
3
+ size 12983025
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/leaf_patch_gen_diff.ipynb CHANGED
The diff for this file is too large to render. See raw diff
 
src/leaf_patch_gen_diff.py ADDED
@@ -0,0 +1,227 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pandas as pd
3
+
4
+ import scipy.stats as stats
5
+ import statsmodels.api as sm
6
+ from statsmodels.formula.api import ols
7
+ from statsmodels.regression.linear_model import RegressionResultsWrapper
8
+ from statsmodels.stats.multicomp import pairwise_tukeyhsd
9
+
10
+ from matplotlib.figure import Figure
11
+ import seaborn as sns
12
+ import panel as pn
13
+
14
+ import com_const as cc
15
+ import com_func as cf
16
+ import com_image as ci
17
+
18
+ stars = [-np.log(0.05), -np.log(0.01), -np.log(0.001), -np.log(0.0001)]
19
+
20
+
21
+ def plot_single_progression(
22
+ ax,
23
+ df,
24
+ target,
25
+ title: str,
26
+ hue="gen",
27
+ style="gen",
28
+ show_legend: bool = False,
29
+ ):
30
+ lp = sns.lineplot(
31
+ df.sort_values(hue),
32
+ x="dpi",
33
+ y=target,
34
+ hue=hue,
35
+ markers=True,
36
+ style=style,
37
+ dashes=False,
38
+ palette="tab10",
39
+ markersize=12,
40
+ ax=ax,
41
+ )
42
+ lp.set_yticklabels(["", "3", "", "5", "", "7", "", "9"])
43
+ ax.set_title(title)
44
+ if show_legend is True:
45
+ sns.move_legend(ax, "upper left", bbox_to_anchor=(1, 1))
46
+ else:
47
+ ax.get_legend().set_visible(False)
48
+
49
+
50
+ def get_model(
51
+ df: pd.DataFrame, target: str, formula: str, dpi: int = None
52
+ ) -> RegressionResultsWrapper:
53
+ df_ = df[df.dpi == dpi] if dpi is not None else df
54
+ return ols(f"{target} {formula}", data=df_).fit()
55
+
56
+
57
+ def anova_table(aov, add_columns: bool = True):
58
+ """
59
+ The function below was created specifically for the one-way ANOVA table
60
+ results returned for Type II sum of squares
61
+ """
62
+ if add_columns is True:
63
+ aov["mean_sq"] = aov[:]["sum_sq"] / aov[:]["df"]
64
+
65
+ aov["eta_sq"] = aov[:-1]["sum_sq"] / sum(aov["sum_sq"])
66
+
67
+ aov["omega_sq"] = (
68
+ aov[:-1]["sum_sq"] - (aov[:-1]["df"] * aov["mean_sq"][-1])
69
+ ) / (sum(aov["sum_sq"]) + aov["mean_sq"][-1])
70
+
71
+ cols = ["sum_sq", "df", "mean_sq", "F", "PR(>F)", "eta_sq", "omega_sq"]
72
+ aov = aov[cols]
73
+ return aov
74
+
75
+
76
+ def plot_assumptions(models: list, titles: list, figsize=(12, 4)):
77
+ fig = Figure(figsize=figsize)
78
+ fig.suptitle("Probability plot of model residual's", fontsize="x-large")
79
+ axii = fig.subplots(1, len(models))
80
+ for ax, model, title in zip(axii, models, titles):
81
+ _ = stats.probplot(model.resid, plot=ax, rvalue=True)
82
+ ax.set_title(title)
83
+
84
+ return fig
85
+
86
+
87
+ def hghlight_rejection(s):
88
+ df = pd.DataFrame(columns=s.columns, index=s.index)
89
+ df.loc[s["reject_pred"].ne(s["reject_obs"]), ["group1", "group2"]] = (
90
+ "background: red"
91
+ )
92
+ df.loc[s["reject_pred"].eq(s["reject_obs"]), ["group1", "group2"]] = (
93
+ "background: green"
94
+ )
95
+ df.loc[s.reject_pred, ["reject_pred"]] = "background: green"
96
+ df.loc[~s.reject_pred, ["reject_pred"]] = "background: red"
97
+ df.loc[s.reject_obs, ["reject_obs"]] = "background: green"
98
+ df.loc[~s.reject_obs, ["reject_obs"]] = "background: red"
99
+ return df
100
+
101
+
102
+ def get_tuckey_df(endog, groups, df_genotypes) -> pd.DataFrame:
103
+ tukey = pairwise_tukeyhsd(endog=endog, groups=groups)
104
+ df_tuc = pd.DataFrame(tukey._results_table)
105
+ df_tuc.columns = [str(c) for c in df_tuc.iloc[0]]
106
+ ret = (
107
+ df_tuc.drop(df_tuc.index[0])
108
+ .assign(group1=lambda s: s.group1.astype(str))
109
+ .assign(group2=lambda s: s.group2.astype(str))
110
+ .assign(reject=lambda s: s.reject.astype(str) == "True")
111
+ )
112
+ ret["p-adj"] = tukey.pvalues
113
+ if df_genotypes is None:
114
+ return ret
115
+ else:
116
+ return (
117
+ ret.merge(right=df_genotypes, how="left", left_on="group1", right_on="gen")
118
+ .drop(["gen"], axis=1)
119
+ .rename(columns={"rpvloci": "group1_rpvloci"})
120
+ .merge(right=df_genotypes, how="left", left_on="group2", right_on="gen")
121
+ .drop(["gen"], axis=1)
122
+ .rename(columns={"rpvloci": "group2_rpvloci"})
123
+ )
124
+
125
+
126
+ def get_tuckey_compare(df, df_genotypes=None, groups: str = "gen"):
127
+ merge_on = (
128
+ ["group1", "group2"]
129
+ if df_genotypes is None
130
+ else ["group1", "group2", "group1_rpvloci", "group2_rpvloci"]
131
+ )
132
+ df_poiv = get_tuckey_df(df.p_oiv, df[groups], df_genotypes=df_genotypes)
133
+ df_oiv = get_tuckey_df(df.oiv, df[groups], df_genotypes=df_genotypes)
134
+ df = pd.merge(left=df_poiv, right=df_oiv, on=merge_on, suffixes=["_pred", "_obs"])
135
+ return df
136
+
137
+
138
+ def df_tukey_cmp_plot(df, groups):
139
+ df_tukey = (
140
+ get_tuckey_compare(df=df, groups=groups, df_genotypes=None)
141
+ .assign(pair_groups=lambda s: s.group1 + "\n" + s.group2)
142
+ .sort_values("p-adj_obs")
143
+ )
144
+
145
+ df_tukey_reject = df_tukey[df_tukey.reject_obs & df_tukey.reject_pred]
146
+ df_tukey_accept = df_tukey[~df_tukey.reject_obs & ~df_tukey.reject_pred]
147
+ df_tukey_diverge = df_tukey[df_tukey.reject_obs != df_tukey.reject_pred]
148
+
149
+ fig = Figure(figsize=(20, 6))
150
+ ax_reject, ax_diverge, ax_accept = fig.subplots(
151
+ 1,
152
+ 3,
153
+ gridspec_kw={
154
+ "width_ratios": [
155
+ len(df_tukey_reject),
156
+ len(df_tukey_diverge),
157
+ len(df_tukey_accept),
158
+ ]
159
+ },
160
+ sharey=True,
161
+ )
162
+
163
+ for ax in [ax_reject, ax_accept, ax_diverge]:
164
+ ax.set_yticks(ticks=stars, labels=["*", "**", "***", "****"])
165
+ ax.grid(False)
166
+
167
+ ax_reject.set_title("Rejected")
168
+ ax_diverge.set_title("Conflict")
169
+ ax_accept.set_title("Accepted")
170
+
171
+ for ax, df in zip(
172
+ [ax_reject, ax_accept, ax_diverge],
173
+ [df_tukey_reject, df_tukey_accept, df_tukey_diverge],
174
+ ):
175
+ for star in stars:
176
+ ax.axhline(y=star, linestyle="-", color="black", alpha=0.5)
177
+ ax.bar(
178
+ x=df["pair_groups"],
179
+ height=-np.log(df["p-adj_pred"]),
180
+ width=-0.4,
181
+ align="edge",
182
+ color="green",
183
+ label="predictions",
184
+ )
185
+ ax.bar(
186
+ x=df["pair_groups"],
187
+ height=-np.log(df["p-adj_obs"]),
188
+ width=0.4,
189
+ align="edge",
190
+ color="blue",
191
+ label="scorings",
192
+ )
193
+ ax.margins(0.01)
194
+
195
+ ax_accept.legend(loc="upper left", bbox_to_anchor=[0, 1], ncols=1, fancybox=True)
196
+ ax_reject.set_ylabel("-log(p value)")
197
+ ax_reject.tick_params(axis="y", which="major", labelsize=16)
198
+
199
+ fig.subplots_adjust(wspace=0.05, hspace=0.05)
200
+
201
+ return fig
202
+
203
+
204
+ def plot_patches(df, diff_only: bool = True):
205
+ if diff_only is True:
206
+ df = df[(df.oiv != df.p_oiv)]
207
+ df = df.assign(diff=lambda s: s.oiv != s.p_oiv).sort_values(
208
+ ["diff", "oiv", "p_oiv"]
209
+ )
210
+ return pn.GridBox(
211
+ *[
212
+ pn.Column(
213
+ pn.pane.Markdown(f"### {row.file_name}|{row.oiv}->p{row.p_oiv}"),
214
+ pn.pane.Image(
215
+ object=ci.enhance_pil_image(
216
+ image=ci.load_image(
217
+ file_name=row.file_name,
218
+ path_to_images=cc.path_to_leaf_patches,
219
+ ),
220
+ brightness=1.5,
221
+ )
222
+ ),
223
+ )
224
+ for _, row in df.iterrows()
225
+ ],
226
+ ncols=len(df),
227
+ )
src/leaf_patch_oiv_predictor.ipynb CHANGED
The diff for this file is too large to render. See raw diff
 
src/repo_manager.ipynb CHANGED
@@ -2,10 +2,13 @@
2
  "cells": [
3
  {
4
  "cell_type": "code",
5
- "execution_count": 1,
6
  "metadata": {},
7
  "outputs": [],
8
  "source": [
 
 
 
9
  "from huggingface_hub import create_repo, HfApi\n",
10
  "\n",
11
  "import com_const as cc"
@@ -13,7 +16,7 @@
13
  },
14
  {
15
  "cell_type": "code",
16
- "execution_count": 2,
17
  "metadata": {},
18
  "outputs": [],
19
  "source": [
@@ -22,27 +25,16 @@
22
  },
23
  {
24
  "cell_type": "code",
25
- "execution_count": 3,
26
  "metadata": {},
27
- "outputs": [
28
- {
29
- "data": {
30
- "text/plain": [
31
- "RepoUrl('https://huggingface.co/treizh/oiv_ld_phenotyping', endpoint='https://huggingface.co', repo_type='model', repo_id='treizh/oiv_ld_phenotyping')"
32
- ]
33
- },
34
- "execution_count": 3,
35
- "metadata": {},
36
- "output_type": "execute_result"
37
- }
38
- ],
39
  "source": [
40
  "create_repo(repo_id, exist_ok=True)"
41
  ]
42
  },
43
  {
44
  "cell_type": "code",
45
- "execution_count": 4,
46
  "metadata": {},
47
  "outputs": [],
48
  "source": [
@@ -51,22 +43,71 @@
51
  },
52
  {
53
  "cell_type": "code",
54
- "execution_count": 5,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55
  "metadata": {},
56
- "outputs": [
57
- {
58
- "data": {
59
- "text/plain": [
60
- "CommitInfo(commit_url='https://huggingface.co/treizh/oiv_ld_phenotyping/commit/ac0c4c71a2b6842d45cd5fa99ca15429f647027c', commit_message='Upload .gitignore with huggingface_hub', commit_description='', oid='ac0c4c71a2b6842d45cd5fa99ca15429f647027c', pr_url=None, pr_revision=None, pr_num=None)"
61
- ]
62
- },
63
- "execution_count": 5,
64
- "metadata": {},
65
- "output_type": "execute_result"
66
- }
67
- ],
68
  "source": [
69
- "api.upload_file(path_or_fileobj=cc.path_to_root.joinpath(\".gitignore\"), path_in_repo=\".gitignore\", repo_id=repo_id)"
 
70
  ]
71
  },
72
  {
@@ -75,28 +116,35 @@
75
  "metadata": {},
76
  "outputs": [],
77
  "source": [
78
- "def upload_folder(fld):\n",
79
- " api.upload_folder(folder_path=fld, repo_id=repo_id, path_in_repo=fld.name)"
80
  ]
81
  },
82
  {
83
  "cell_type": "code",
84
- "execution_count": 6,
85
  "metadata": {},
86
- "outputs": [
87
- {
88
- "data": {
89
- "text/plain": [
90
- "CommitInfo(commit_url='https://huggingface.co/treizh/oiv_ld_phenotyping/commit/fc262e75f2db77ba4440372fe5e564be596968bb', commit_message='Upload folder using huggingface_hub', commit_description='', oid='fc262e75f2db77ba4440372fe5e564be596968bb', pr_url=None, pr_revision=None, pr_num=None)"
91
- ]
92
- },
93
- "execution_count": 6,
94
- "metadata": {},
95
- "output_type": "execute_result"
96
- }
97
- ],
 
 
 
 
 
 
 
98
  "source": [
99
- "api.upload_folder(folder_path=cc.path_to_src, repo_id=repo_id, path_in_repo=cc.path_to_src.name)"
100
  ]
101
  },
102
  {
@@ -105,9 +153,7 @@
105
  "metadata": {},
106
  "outputs": [],
107
  "source": [
108
- "# for file in cc.path_to_src.rglob(\"*\"):\n",
109
- "# if api.file_exists(repo_id=repo_name, filename=file.name) is True:\n",
110
- "# api.delete_file(path_in_repo=file.name, repo_id=repo_name)"
111
  ]
112
  },
113
  {
 
2
  "cells": [
3
  {
4
  "cell_type": "code",
5
+ "execution_count": null,
6
  "metadata": {},
7
  "outputs": [],
8
  "source": [
9
+ "from pathlib import Path\n",
10
+ "import time\n",
11
+ "\n",
12
  "from huggingface_hub import create_repo, HfApi\n",
13
  "\n",
14
  "import com_const as cc"
 
16
  },
17
  {
18
  "cell_type": "code",
19
+ "execution_count": null,
20
  "metadata": {},
21
  "outputs": [],
22
  "source": [
 
25
  },
26
  {
27
  "cell_type": "code",
28
+ "execution_count": null,
29
  "metadata": {},
30
+ "outputs": [],
 
 
 
 
 
 
 
 
 
 
 
31
  "source": [
32
  "create_repo(repo_id, exist_ok=True)"
33
  ]
34
  },
35
  {
36
  "cell_type": "code",
37
+ "execution_count": null,
38
  "metadata": {},
39
  "outputs": [],
40
  "source": [
 
43
  },
44
  {
45
  "cell_type": "code",
46
+ "execution_count": null,
47
+ "metadata": {},
48
+ "outputs": [],
49
+ "source": [
50
+ "def upload_file(file_path: Path, dst_path=None):\n",
51
+ " api.upload_file(\n",
52
+ " path_or_fileobj=file_path,\n",
53
+ " path_in_repo=(\n",
54
+ " dst_path\n",
55
+ " if dst_path is not None\n",
56
+ " else str(file_path.relative_to(cc.path_to_root))\n",
57
+ " ),\n",
58
+ " repo_id=repo_id,\n",
59
+ " )"
60
+ ]
61
+ },
62
+ {
63
+ "cell_type": "code",
64
+ "execution_count": null,
65
+ "metadata": {},
66
+ "outputs": [],
67
+ "source": [
68
+ "def upload_folder(fld, multi_commits=True, multi_commits_verbose=True):\n",
69
+ " api.upload_folder(\n",
70
+ " folder_path=fld,\n",
71
+ " repo_id=repo_id,\n",
72
+ " path_in_repo=str(fld.relative_to(cc.path_to_root)),\n",
73
+ " multi_commits=multi_commits,\n",
74
+ " multi_commits_verbose=multi_commits_verbose,\n",
75
+ " )"
76
+ ]
77
+ },
78
+ {
79
+ "cell_type": "code",
80
+ "execution_count": null,
81
+ "metadata": {},
82
+ "outputs": [],
83
+ "source": [
84
+ "def upload_big_folder(\n",
85
+ " fld, multi_commits=True, multi_commits_verbose=True, max_attempts: int = -1\n",
86
+ "):\n",
87
+ " i = 1\n",
88
+ " while i < max_attempts or max_attempts < 0:\n",
89
+ " try:\n",
90
+ " upload_folder(\n",
91
+ " fld=fld,\n",
92
+ " multi_commits=multi_commits,\n",
93
+ " multi_commits_verbose=multi_commits_verbose,\n",
94
+ " )\n",
95
+ " except:\n",
96
+ " print(f\"Trying once more: {i}\")\n",
97
+ " i += 1\n",
98
+ " time.sleep(100)\n",
99
+ " else:\n",
100
+ " break"
101
+ ]
102
+ },
103
+ {
104
+ "cell_type": "code",
105
+ "execution_count": null,
106
  "metadata": {},
107
+ "outputs": [],
 
 
 
 
 
 
 
 
 
 
 
108
  "source": [
109
+ "# for file in [\".gitignore\", \"LICENSE\", \"README.md\", \"requirements.txt\"]:\n",
110
+ "# upload_file(Path(\"..\").joinpath(file), dst_path=file)"
111
  ]
112
  },
113
  {
 
116
  "metadata": {},
117
  "outputs": [],
118
  "source": [
119
+ "# upload_folder(cc.path_to_src)\n",
120
+ "# upload_folder(cc.path_to_data)"
121
  ]
122
  },
123
  {
124
  "cell_type": "code",
125
+ "execution_count": null,
126
  "metadata": {},
127
+ "outputs": [],
128
+ "source": [
129
+ "# upload_file(file_path=cc.path_to_chk_detector.joinpath(\"leaf_disc_detector.ckpt\"))"
130
+ ]
131
+ },
132
+ {
133
+ "cell_type": "code",
134
+ "execution_count": null,
135
+ "metadata": {},
136
+ "outputs": [],
137
+ "source": [
138
+ "# upload_file(file_path=cc.path_to_chk_oiv.joinpath(\"oiv_scorer.ckpt\"))"
139
+ ]
140
+ },
141
+ {
142
+ "cell_type": "code",
143
+ "execution_count": null,
144
+ "metadata": {},
145
+ "outputs": [],
146
  "source": [
147
+ "# upload_big_folder(fld=cc.path_to_leaf_patches, multi_commits_verbose=False)"
148
  ]
149
  },
150
  {
 
153
  "metadata": {},
154
  "outputs": [],
155
  "source": [
156
+ "# upload_big_folder(fld=cc.path_to_plates, multi_commits_verbose=False)"
 
 
157
  ]
158
  },
159
  {