oiv_ld_phenotyping / src /leaf_patch_extractor_model.py
treizh's picture
Upload folder using huggingface_hub
fc262e7 verified
raw
history blame
37.2 kB
from pathlib import Path
import math
from rich.console import Console
from rich.table import Table
from rich.pretty import Pretty
import numpy as np
import pandas as pd
import cv2
from sklearn.cluster import MeanShift
from skimage.transform import hough_circle, hough_circle_peaks
import torch
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms
from torchvision.models.detection.faster_rcnn import FastRCNNPredictor
from torchvision.models.detection import (
fasterrcnn_resnet50_fpn_v2,
FasterRCNN_ResNet50_FPN_V2_Weights,
)
import pytorch_lightning as pl
from pytorch_lightning.callbacks import RichProgressBar
from pytorch_lightning import Trainer
import albumentations as A
from albumentations.pytorch.transforms import ToTensorV2
import matplotlib.pyplot as plt
import com_const as cc
import com_image as ci
g_device = (
"mps"
if torch.backends.mps.is_built() is True
else "cuda" if torch.backends.cuda.is_built() else "cpu"
)
def load_tray_image(image_name):
return ci.load_image(
file_name=image_name, path_to_images=cc.path_to_plates, rgb=True
)
def build_albumentations(
image_size: int = 10,
gamma=(60, 180),
mean=(0.485, 0.456, 0.406),
std=(0.229, 0.224, 0.225),
):
return {
"resize": [
A.Resize(height=image_size * 32 * 2, width=image_size * 32 * 3, p=1)
],
"train": [
A.HorizontalFlip(p=0.3),
A.RandomBrightnessContrast(
brightness_limit=0.25, contrast_limit=0.25, p=0.5
),
A.RandomGamma(gamma_limit=gamma, p=0.5),
],
"to_tensor": [A.Normalize(mean=mean, std=std, p=1), ToTensorV2()],
"un_normalize": [
A.Normalize(
mean=[-m / s for m, s in zip(mean, std)],
std=[1.0 / s for s in std],
always_apply=True,
max_pixel_value=1.0,
),
],
}
def get_augmentations(
image_size: int = 10,
gamma=(60, 180),
kinds: list = ["resize", "to_tensor"],
mean=(0.485, 0.456, 0.406),
std=(0.229, 0.224, 0.225),
inferrence: bool = False,
):
td_ = build_albumentations(
image_size=image_size,
gamma=gamma,
mean=mean,
std=std,
)
augs = []
for k in kinds:
augs += td_[k]
if inferrence is True:
return A.Compose(augs)
else:
return A.Compose(
augs,
bbox_params={"format": "pascal_voc", "label_fields": ["labels"]},
)
def safe_row_col(row, col):
"""Ensures that row is a string and col is an integer
Args:
row (int or str): row output must be string
col (int or str): col output must be int
"""
if row is not None and col is not None:
if isinstance(col, str):
row, col = col, row
return row, col
def _update_axis(axis, image, title=None, fontsize=10, remove_axis=True):
axis.imshow(image, origin="upper")
if title is not None:
axis.set_title(title, fontsize=fontsize)
def make_patches_grid(images, row_count, col_count=None, figsize=(20, 20)):
col_count = row_count if col_count is None else col_count
_, axii = plt.subplots(row_count, col_count, figsize=figsize)
for ax, image in zip(axii.reshape(-1), images):
if isinstance(image, tuple):
title = image[1]
image = image[0]
else:
title = None
try:
_update_axis(axis=ax, image=image, remove_axis=True, title=title)
except:
pass
ax.set_axis_off()
plt.tight_layout()
plt.show()
def print_boxes(
image_name,
boxes,
highlight=(None, None),
draw_first_line: bool = False,
return_plot: bool = True,
):
r, c = safe_row_col(*highlight)
image = load_tray_image(image_name=image_name)
fnt = cv2.FONT_HERSHEY_SIMPLEX
fnt_scale = 3
fnt_thickness = 8
column_colors = {
1: (255, 0, 0),
2: (0, 0, 255),
3: (255, 255, 0),
4: (0, 255, 255),
}
for box in boxes[["x1", "y1", "x2", "y2", "cx", "cy", "row", "col"]].values:
color = (
(255, 0, 255)
if c == box[7] and r == box[6]
else column_colors.get(box[7], (255, 255, 244))
)
thickness = 20 if c == box[7] and r == box[6] else 10
image = cv2.rectangle(
image,
(int(box[0]), int(box[1])),
(int(box[2]), int(box[3])),
color,
thickness,
)
label = str(box[6]).upper() + str(int(box[7]))
(w, h), _ = cv2.getTextSize(label, fnt, fnt_scale, fnt_thickness)
x, y = (int(box[0]), int(box[1]) - fnt_thickness)
image = cv2.rectangle(
image,
(x - fnt_thickness, y - h - fnt_thickness),
(x + fnt_thickness + w, y + fnt_thickness),
color,
-1,
)
image = cv2.putText(
image,
label,
(x + fnt_thickness, y),
fnt,
fnt_scale,
(0, 0, 0),
fnt_thickness,
)
if draw_first_line is True:
line = get_first_vert_line(image_name=image_name)
if line is not None:
x1, y1, x2, y2 = line
cv2.line(
image,
[
int(i)
for i in (np.array([x2, y2]) - np.array([x1, y1])) * 10
+ np.array([x1, y1])
],
[
int(i)
for i in (np.array([x1, y1]) - np.array([x2, y2])) * 10
+ np.array([x2, y2])
],
(255, 0, 255),
20,
lineType=8,
)
if return_plot is True:
plt.figure(figsize=(10, 10))
plt.imshow(image)
plt.tight_layout()
plt.axis("off")
plt.show()
else:
return image
def crop_to_vert(image):
return image[0 : image.shape[1] // 2, 0 : image.shape[0] // 3]
def get_first_vert_line(image_name, min_angle=80, max_angle=100):
r, *_ = cv2.split(load_tray_image(image_name))
red_crop = cv2.normalize(
crop_to_vert(r),
None,
alpha=0,
beta=200,
norm_type=cv2.NORM_MINMAX,
)
lines = cv2.HoughLinesP(
image=ci.close(
cv2.Canny(red_crop, 50, 200, None, 3),
kernel_size=5,
proc_times=5,
),
rho=1,
theta=np.pi / 180,
threshold=50,
minLineLength=red_crop.shape[0] // 5,
maxLineGap=20,
)
if lines is not None:
min_x = red_crop.shape[0]
sel_line = None
for _, line in enumerate(lines):
x1, y1, x2, y2 = line[0]
min_angle, max_angle = min(min_angle, max_angle), max(min_angle, max_angle)
line_angle = math.atan2(y2 - y1, x2 - x1) * 180 / math.pi * -1
if min_angle <= abs(line_angle) <= max_angle and min(x1, x2) < min_x:
min_x = min(x1, x2)
sel_line = (x1, y1, x2, y2)
if sel_line is not None:
return sel_line
else:
return None
def draw_first_line(image_name, dot_size=10, crop_canvas: bool = False):
line = get_first_vert_line(image_name=image_name)
if line is None:
return canvas
x1, y1, x2, y2 = line
canvas = load_tray_image(image_name)
if crop_canvas is True:
canvas = crop_to_vert(canvas)
cv2.circle(canvas, (x1, y1), dot_size, (255, 0, 0))
cv2.circle(canvas, (x2, y2), dot_size, (0, 255, 0))
cv2.line(canvas, (x1, y1), (x2, y2), (0, 0, 255), 10)
return canvas
def get_bbox(image_name, bboxes, row, col):
if isinstance(bboxes, pd.Series):
return bboxes
else:
row, col = safe_row_col(row, col)
return bboxes[
(
bboxes.file_name
== (image_name.name if isinstance(image_name, Path) else image_name)
)
& (bboxes.row == row)
& (bboxes.col == col)
].iloc[0]
def get_hough_leaf_disc_circle(
image_name,
bboxes,
row=-1,
col=-1,
padding: int = 10,
allow_move: bool = False,
):
padded_leaf_disk = get_leaf_disk_wbb(
image_name=image_name,
bboxes=bboxes,
row=row,
col=col,
padding=padding,
)
*_, b = cv2.split(padded_leaf_disk)
min_t, max_t = 100, 200
rb = cv2.Canny(
cv2.normalize(
b,
None,
alpha=0,
beta=200,
norm_type=cv2.NORM_MINMAX,
),
min_t,
max_t,
None,
3,
)
bbox = get_bbox(image_name=image_name, bboxes=bboxes, row=row, col=col)
hough_radii = np.arange(bbox.max_size // 2 - 10, bbox.max_size // 2 + 10, 10)
hough_res = hough_circle(rb, hough_radii)
# Select the most prominent n circles
_, cx, cy, radii = hough_circle_peaks(
hough_res,
hough_radii,
min_xdistance=10,
min_ydistance=10,
total_num_peaks=1,
)
cx = cx[0]
cy = cy[0]
r = radii[0]
if allow_move is True:
h, w, c = padded_leaf_disk.shape
if cx - r < 0:
cx += abs(r - cx)
if cx + r > w:
cx -= abs(r - cx)
if cy - r < 0:
cy += abs(cy - r)
if cy + r > h:
cy -= abs(cy - r)
return dict(cx=cx, cy=cy, r=radii)
def get_hough_leaf_disk_patch(
image_name,
bboxes,
patch_size=-1,
row=-1,
col=-1,
padding: int = 10,
radius_crop=0,
disc=None,
allow_move: bool = False,
image_folder=None,
):
if patch_size > 0:
try:
bbox = get_bbox(image_name, bboxes, row, col)
cx = int(bbox.cx)
cy = int(bbox.cy)
except:
return None
patch_size = patch_size // 2
return A.crop(
load_tray_image(image_name, image_folder=image_folder),
cx - patch_size,
cy - patch_size,
cx + patch_size,
cy + patch_size,
)
else:
if disc is None:
disc = get_hough_leaf_disc_circle(
image_name=image_name,
bboxes=bboxes,
row=row,
col=col,
padding=padding,
allow_move=allow_move,
)
r = int((disc["r"] - radius_crop) / math.sqrt(2))
cx = int(disc["cx"])
cy = int(disc["cy"])
left = cx - r
top = cy - r
right = cx + r
bottom = cy + r
return get_leaf_disk_wbb(
image_name=image_name,
bboxes=bboxes,
row=row,
col=col,
padding=padding,
)[top:bottom, left:right]
def get_hough_segment_disk(
image_name,
bboxes,
row=-1,
col=-1,
padding: int = 10,
radius_crop=0,
disc=None,
allow_move: bool = False,
):
if disc is None:
disc = get_hough_leaf_disc_circle(
image_name=image_name,
bboxes=bboxes,
row=row,
col=col,
padding=padding,
allow_move=allow_move,
)
padded_leaf_disk = get_leaf_disk_wbb(
image_name=image_name,
bboxes=bboxes,
row=row,
col=col,
padding=padding,
)
r = int(disc["r"] - radius_crop)
rc = int((disc["r"] - radius_crop) / math.sqrt(2))
cx = int(disc["cx"])
cy = int(disc["cy"])
left = cx - r
top = cy - r
right = cx + r
bottom = cy + r
return cv2.bitwise_and(
padded_leaf_disk,
padded_leaf_disk,
mask=cv2.circle(np.zeros_like(padded_leaf_disk[:, :, 0]), (cx, cy), r, 255, -1),
)[top:bottom, left:right]
def draw_hough_bb_to_patch_process(
image_name,
bboxes,
row=-1,
col=-1,
padding: int = 10,
radius_crop=0,
disc=None,
allow_move: bool = False,
):
if disc is None:
disc = get_hough_leaf_disc_circle(
image_name=image_name,
bboxes=bboxes,
row=row,
col=col,
padding=padding,
allow_move=allow_move,
)
padded_leaf_disk = get_leaf_disk_wbb(
image_name=image_name,
bboxes=bboxes,
row=row,
col=col,
padding=padding,
)
r = int(disc["r"] - radius_crop)
rc = int((disc["r"] - radius_crop) / math.sqrt(2))
cx = int(disc["cx"])
cy = int(disc["cy"])
left = cx - r
top = cy - r
right = cx + r
bottom = cy + r
return cv2.circle(
cv2.circle(
cv2.rectangle(
cv2.rectangle(
padded_leaf_disk,
(cx - rc, cy - rc),
(cx + rc, cy + rc),
(0, 255, 0),
5,
),
(left, top),
(right, bottom),
(255, 0, 155),
5,
),
(cx, cy),
10,
(255, 0, 155),
-1,
),
(cx, cy),
r,
(255, 0, 155),
5,
)
def get_leaf_disk_wbb(image_name, bboxes, row=-1, col=-1, image_path: Path = None):
try:
bbox = get_bbox(image_name, bboxes, row, col)
return load_tray_image(image_name if image_path is None else image_path)[
int(bbox.y1) : int(bbox.y2), int(bbox.x1) : int(bbox.x2)
]
except:
return None
def get_fast_leaf_disc_circle(
image_name, bboxes, row=-1, col=-1, percent_radius: float = 1.0
):
bbox = get_bbox(image_name=image_name, bboxes=bboxes, row=row, col=col)
return int(bbox.cx), int(bbox.cy), int((bbox.max_size / 2) * percent_radius)
def get_fast_segment_disk(
image_name,
bboxes,
row=-1,
col=-1,
percent_radius: float = 1.0,
image_path: Path = None,
):
cx, cy, r = get_fast_leaf_disc_circle(
image_name=image_name,
bboxes=bboxes,
row=row,
col=col,
percent_radius=percent_radius,
)
src_image = load_tray_image(image_name if image_path is None else image_path)
left = cx - r
top = cy - r
right = cx + r
bottom = cy + r
return cv2.bitwise_and(
src_image,
src_image,
mask=cv2.circle(np.zeros_like(src_image[:, :, 0]), (cx, cy), r, 255, -1),
)[top:bottom, left:right]
def get_fast_leaf_disk_patch(
image_name,
bboxes,
row=-1,
col=-1,
percent_radius: float = 1.0,
image_path: Path = None,
):
cx, cy, r = get_fast_leaf_disc_circle(
image_name=image_name,
bboxes=bboxes,
row=row,
col=col,
percent_radius=percent_radius,
)
r = int(r / math.sqrt(2))
left = cx - r
top = cy - r
right = cx + r
bottom = cy + r
return load_tray_image(image_name if image_path is None else image_path)[
top:bottom, left:right
]
def draw_fast_bb_to_patch_process(
image_name,
bboxes,
row=-1,
col=-1,
percent_radius: float = 1.0,
image_path: Path = None,
add_center: bool = True,
):
cx, cy, r = get_fast_leaf_disc_circle(
image_name=image_name,
bboxes=bboxes,
row=row,
col=col,
percent_radius=percent_radius,
)
bbox = get_bbox(image_name=image_name, bboxes=bboxes, row=row, col=col)
image = load_tray_image(image_name if image_path is None else image_path)
rc = int(r / math.sqrt(2))
cv2.circle(image, (cx, cy), r, color=(255, 0, 155), thickness=5)
if add_center is True:
cv2.circle(image, (cx, cy), 10, color=(255, 0, 155), thickness=-1)
cv2.rectangle(image, (cx - rc, cy - rc), (cx + rc, cy + rc), (0, 255, 0), 5)
return image[int(bbox.y1) : int(bbox.y2), int(bbox.x1) : int(bbox.x2)]
class LeafDiskDetectorDataset(Dataset):
def __init__(
self,
csv,
transform=None,
yxyx: bool = False,
return_id: bool = False,
bboxes: bool = True,
):
self.boxes = csv.copy()
self.images = list(self.boxes.plate_name.unique())
self.transforms = transform
if transform is not None:
self.width, self.height = transform[0].width, transform[0].height
else:
self.width, self.height = 0, 0
self.yxyx = yxyx
self.return_id = return_id
self.bboxes = bboxes
def __len__(self):
return len(self.images)
def load_boxes(self, idx):
if "x" in self.boxes.columns:
boxes = self.boxes[self.boxes.plate_name == self.images[idx]].dropna()
size = boxes.shape[0]
return (
(size, boxes[["x1", "y1", "x2", "y2"]].values) if size > 0 else (0, [])
)
return 0, []
def load_tray_image(self, idx):
return load_tray_image(self.images[idx])
def get_by_sample_name(self, plate_name):
return self[self.images.index(plate_name)]
def get_image_by_name(self, plate_name):
return load_tray_image(plate_name)
def draw_image_with_boxes(self, plate_name):
image, labels, *_ = self[self.images.index(plate_name)]
boxes = labels[self.get_boxes_key()]
for box in boxes:
box_indexes = [1, 0, 3, 2] if self.yxyx is True else [0, 1, 2, 3]
image = cv2.rectangle(
image,
# Boxes are in yxyx format
(int(box[box_indexes[0]]), int(box[box_indexes[1]])),
(int(box[box_indexes[2]]), int(box[box_indexes[3]])),
(255, 0, 0),
2,
)
return image
def get_boxes_key(self):
return "bboxes" if self.bboxes is True else "boxes"
def __getitem__(self, index):
num_box, boxes = self.load_boxes(
index
) # return list of [xmin, ymin, xmax, ymax]
img = self.load_tray_image(index) # return an image
if num_box > 0:
boxes = torch.as_tensor(boxes, dtype=torch.float32)
else:
# negative example, ref: https://github.com/pytorch/vision/issues/2144
boxes = torch.zeros((0, 4), dtype=torch.float32)
image_id = torch.tensor([index])
labels = torch.ones((num_box,), dtype=torch.int64)
target = {
self.get_boxes_key(): boxes,
"labels": labels,
"image_id": image_id,
"area": torch.as_tensor(
(boxes[:, 3] - boxes[:, 1]) * (boxes[:, 2] - boxes[:, 0]),
dtype=torch.float32,
),
"iscrowd": torch.zeros((num_box,), dtype=torch.int64),
"img_size": torch.tensor([self.height, self.width]),
"img_scale": torch.tensor([1.0]),
}
if self.transforms is not None:
sample = {
"image": img,
"bboxes": target[self.get_boxes_key()],
"labels": labels,
}
sample = self.transforms(**sample)
img = sample["image"]
if num_box > 0:
# Convert to ndarray to allow slicing
boxes = np.array(sample["bboxes"])
# Convert to yxyx
if self.yxyx is True:
boxes[:, [0, 1, 2, 3]] = boxes[:, [1, 0, 3, 2]]
# Convert to tensor
target[self.get_boxes_key()] = torch.as_tensor(
boxes, dtype=torch.float32
)
else:
target[self.get_boxes_key()] = torch.zeros((0, 4), dtype=torch.float32)
else:
img = transforms.ToTensor()(img)
if self.return_id is True:
return img, target, image_id
else:
return img, target
def collate_fn(batch):
images, targets = tuple(zip(*batch))
images = torch.stack(images)
images = images.float()
boxes = [target["boxes"].float() for target in targets]
labels = [target["labels"].float() for target in targets]
return images, targets
def find_best_lr(model, default_root_dir=cc.path_to_chk_detector):
# run learning rate finder, results override hparams.learning_rate
trainer = Trainer(
default_root_dir=default_root_dir,
auto_lr_find=True,
accelerator="gpu",
callbacks=[RichProgressBar()],
)
# call tune to find the lr
trainer.tune(model)
return model.learning_rate
class LeafDiskDetector(pl.LightningModule):
def __init__(
self,
batch_size: int,
learning_rate: float,
max_epochs: int,
image_factor: int,
train_data: pd.DataFrame,
val_data: pd.DataFrame,
test_data: pd.DataFrame,
augmentations_kinds: list = ["resize", "train", "to_tensor"],
augmentations_params: dict = {"gamma": (60, 180)},
num_workers: int = 0,
accumulate_grad_batches: int = 3,
selected_device: str = g_device,
optimizer: str = "adam",
scheduler: str = None,
scheduler_params: dict = {},
):
super().__init__()
self.model_name = "ldd"
# Hyperparameters
self.batch_size = batch_size
self.selected_device = selected_device
self.learning_rate = learning_rate
self.num_workers = num_workers
self.max_epochs = max_epochs
self.accumulate_grad_batches = accumulate_grad_batches
# dataframes
self.train_data = train_data
self.val_data = val_data
self.test_data = test_data
# Optimizer
self.optimizer = optimizer
self.scheduler = scheduler
self.scheduler_params = scheduler_params
# albumentations
self.image_factor = image_factor
self.augmentations_kinds = augmentations_kinds
self.augmentations_params = augmentations_params
self.train_augmentations = get_augmentations(
image_size=self.image_factor,
kinds=self.augmentations_kinds,
**self.augmentations_params,
)
self.val_augmentations = get_augmentations(
image_size=self.image_factor,
kinds=["resize", "to_tensor"],
**self.augmentations_params,
)
# Model
self.encoder = fasterrcnn_resnet50_fpn_v2(
weights=FasterRCNN_ResNet50_FPN_V2_Weights
)
num_classes = 2 # 1 class (wheat) + background
# get number of input features for the classifier
in_features = self.encoder.roi_heads.box_predictor.cls_score.in_features
# replace the pre-trained head with a new one
self.encoder.roi_heads.box_predictor = FastRCNNPredictor(
in_features, num_classes
)
self.save_hyperparameters()
def hr_desc(self):
table = Table(title=f"{self.model_name} params & values")
table.add_column("Param", justify="right", style="bold", no_wrap=True)
table.add_column("Value")
def add_pairs(table_, attributes: list) -> None:
for a in attributes:
try:
table_.add_row(a, Pretty(getattr(self, a)))
except:
pass
add_pairs(
table,
["model_name", "batch_size", "num_workers", "accumulate_grad_batches"],
)
table.add_row("image_width", Pretty(self.train_augmentations[0].width))
table.add_row("image_height", Pretty(self.train_augmentations[0].height))
add_pairs(
table,
["image_factor", "augmentations_kinds", "augmentations_params"],
)
add_pairs(
table,
["learning_rate", "optimizer", "scheduler", "scheduler_params"],
)
for name, df in zip(
["train", "val", "test"],
[self.train_data, self.val_data, self.test_data],
):
table.add_row(
name,
Pretty(
f"shape: {str(df.shape)}, images: {len(df.plate_name.unique())}"
),
)
Console().print(table)
def configure_optimizers(self):
# Optimizer
if self.optimizer == "adam":
optimizer = torch.optim.Adam(self.parameters(), lr=self.learning_rate)
elif self.optimizer == "sgd":
optimizer = torch.optim.SGD(self.parameters(), lr=self.learning_rate)
else:
optimizer = None
# Scheduler
if self.scheduler == "cycliclr":
scheduler = torch.optim.lr_scheduler.CyclicLR(
optimizer,
base_lr=self.learning_rate,
max_lr=0.01,
step_size_up=100,
mode=self.scheduler_mode,
)
elif self.scheduler == "steplr":
self.scheduler_params["optimizer"] = optimizer
scheduler = torch.optim.lr_scheduler.StepLR(**self.scheduler_params)
self.scheduler_params.pop("optimizer")
elif self.scheduler == "plateau":
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(
optimizer,
mode="min",
factor=0.2,
patience=10,
min_lr=1e-6,
)
scheduler = {"scheduler": scheduler, "monitor": "val_loss"}
else:
scheduler = None
if scheduler is None:
return optimizer
else:
return [optimizer], [scheduler]
def train_dataloader(self):
return DataLoader(
LeafDiskDetectorDataset(
csv=self.train_data,
transform=self.train_augmentations,
bboxes=False,
),
batch_size=self.batch_size,
shuffle=True,
num_workers=self.num_workers,
collate_fn=collate_fn,
pin_memory=True,
)
def val_dataloader(self):
return DataLoader(
LeafDiskDetectorDataset(
csv=self.train_data,
transform=self.val_augmentations,
bboxes=False,
),
batch_size=self.batch_size,
num_workers=self.num_workers,
collate_fn=collate_fn,
pin_memory=True,
)
def test_dataloader(self):
return DataLoader(
LeafDiskDetectorDataset(
csv=self.train_data,
transform=self.val_augmentations,
bboxes=False,
),
batch_size=self.batch_size,
num_workers=self.num_workers,
collate_fn=collate_fn,
pin_memory=True,
)
def forward(self, x):
return self.encoder(x)
def step_(self, batch, batch_index):
x, y = batch
self.train()
loss_dict = self.encoder(x, y)
return sum(loss for loss in loss_dict.values())
def training_step(self, batch, batch_idx):
loss = self.step_(batch=batch, batch_index=batch_idx)
self.log(
"train_loss", loss, on_step=True, prog_bar=True, batch_size=self.batch_size
)
return loss
def validation_step(self, batch, batch_idx):
loss = self.step_(batch=batch, batch_index=batch_idx)
self.log(
"val_loss",
loss,
on_epoch=True,
on_step=False,
prog_bar=True,
batch_size=self.batch_size,
)
self.log("train_loss", loss)
return loss
def test_step(self, batch, batch_idx):
loss = self.step_(
batch=batch, batch_index=batch_idx, batch_size=self.batch_size
)
self.log("test_loss", loss)
return loss
def prepare_bboxes(
self,
image_name,
score_threshold=0.90,
ar_threshold=1.5,
size_threshold=0.30,
):
augs = get_augmentations(
image_size=self.image_factor,
kinds=["resize", "to_tensor"],
inferrence=True,
**self.augmentations_params,
)
image = load_tray_image(image_name=image_name)
self.to(g_device)
self.eval()
predictions = self(augs(image=image)["image"].to(g_device).unsqueeze(0))
boxes = predictions[0]["boxes"].detach().to("cpu").numpy()
scores = predictions[0]["scores"].detach().to("cpu").numpy()
filtered_predictions = [
[box[i] for i in range(4)]
for box, score in zip(boxes, scores)
if score > score_threshold
]
restore_size = A.Compose(
[A.Resize(width=image.shape[1], height=image.shape[0])],
# [A.Resize(width=5000, height=5000)],
bbox_params={"format": "pascal_voc", "label_fields": ["labels"]},
)
sample = {
"image": image,
"bboxes": filtered_predictions,
"labels": [1 for _ in range(len(filtered_predictions))],
}
sample = restore_size(**sample)
resized_predictions = sample["bboxes"]
from siuba import _, filter, mutate
boxes = (
pd.DataFrame(data=resized_predictions, columns=["x1", "y1", "x2", "y2"])
>> mutate(
x1=_.x1 * image.shape[1] / augs[0].width,
y1=_.y1 * image.shape[0] / augs[0].height,
x2=_.x2 * image.shape[1] / augs[0].width,
y2=_.y2 * image.shape[0] / augs[0].height,
)
>> mutate(width=_.x2 - _.x1, height=_.y2 - _.y1)
>> mutate(cx=(_.x1 + _.x2) / 2, cy=(_.y1 + _.y2) / 2)
>> mutate(area=_.width * _.height)
>> mutate(ar=_.width / _.height)
)
boxes.insert(
0,
"file_name",
image_name.name if isinstance(image_name, Path) else image_name,
)
boxes["max_size"] = boxes[["width", "height"]].max(axis=1)
ar_boxes = (
boxes
>> filter(_.width / _.height < ar_threshold)
>> filter(_.height / _.width < ar_threshold)
)
return ar_boxes[ar_boxes.area > ar_boxes.area.max() * size_threshold]
@staticmethod
def init_cols(bboxes):
bboxes = bboxes.copy()
# Handle columns
X = np.reshape(bboxes.cx.to_list(), (-1, 1))
ms = MeanShift(bandwidth=100, bin_seeding=True)
ms.fit(X)
cols = ms.predict(X)
bboxes["col"] = cols
bboxes = bboxes.sort_values("cx")
bboxes["mean_cx"] = (
bboxes.groupby("col").transform("mean", numeric_only=True).cx
)
bboxes = bboxes.sort_values("mean_cx")
for i, val in enumerate(bboxes.mean_cx.unique()):
bboxes.loc[bboxes["mean_cx"] == val, "col"] = i
# Handle Rows
bboxes = bboxes.sort_values("cy")
X = np.reshape(bboxes.cy.to_list(), (-1, 1))
ms = MeanShift(bandwidth=100, bin_seeding=True)
ms.fit(X)
rows = ms.predict(X)
bboxes["row"] = rows
bboxes = bboxes.sort_values("cy")
bboxes["mean_cy"] = (
bboxes.groupby("row").transform("mean", numeric_only=True).cy
)
bboxes = bboxes.sort_values("mean_cy")
for i, val in zip(["a", "b", "c"], bboxes.mean_cy.unique()):
bboxes.loc[bboxes["mean_cy"] == val, "row"] = i
bboxes = bboxes.sort_values("cx")
return bboxes
@staticmethod
def finalize_indexing(bboxes, image_name):
bboxes = bboxes.copy()
bboxes = bboxes.sort_values("cx")
labels_unique = bboxes.col.unique()
labels = bboxes.col.to_numpy()
if len(labels_unique) < 4:
inc_labels = [[i, 0] for i in range(len(labels_unique))]
max_width = bboxes.max_size.max()
# Handle left-most label
# We remove half of max width to take into account trails margins
left_most_line = get_first_vert_line(image_name=image_name)
if left_most_line is not None:
left_most_point = bboxes.x1.min() - min(
left_most_line[0], left_most_line[1]
)
else:
left_most_point = bboxes.x1.min() - (max_width / 2)
i = 1
while left_most_point > i * 1.1 * max_width:
inc_labels[0][1] += 1
i += 1
# Handle the next labels
prev_min_min = bboxes[bboxes.col == 0].x2.max()
for label in labels_unique[1:]:
current_label_contours = bboxes[bboxes.col == label]
max_width = current_label_contours.max_size.max()
min_left = current_label_contours.x1.min()
i = 1
while min_left - prev_min_min > i * 1.1 * max_width:
inc_labels[label][1] += 1
i += 1
prev_min_min = min_left + max_width
for pos, inc in reversed(inc_labels):
labels[labels >= pos] += inc
bboxes["col"] = labels
labels_unique = np.unique(labels)
bboxes["col"] += 1
return bboxes.sort_values(["row", "col"])
def index_plate(
self,
image_name,
score_threshold=0.90,
ar_threshold=1.5,
size_threshold=0.50,
):
bboxes = self.prepare_bboxes(
image_name=image_name,
score_threshold=score_threshold,
ar_threshold=ar_threshold,
size_threshold=size_threshold,
)
if bboxes.shape[0] == 0:
return bboxes
bboxes = self.init_cols(bboxes=bboxes)
bboxes = self.finalize_indexing(bboxes=bboxes, image_name=image_name)
return bboxes
def test_augmentations(
df,
image_size,
kinds: list = ["resize", "train"],
row_count=2,
col_count=4,
**aug_params,
):
src_dataset = LeafDiskDetectorDataset(
csv=df,
transform=get_augmentations(
image_size=image_size, kinds=["resize"], **aug_params
),
)
test_dataset = LeafDiskDetectorDataset(
csv=df,
transform=get_augmentations(image_size=image_size, kinds=kinds, **aug_params),
)
image_name = df.sample(n=1).iloc[0].plate_name
images = [(src_dataset.draw_image_with_boxes(plate_name=image_name), "Source")] + [
(test_dataset.draw_image_with_boxes(plate_name=image_name), "Augmented")
for i in range(row_count * col_count - 1)
]
make_patches_grid(
images=images,
row_count=row_count,
col_count=col_count,
figsize=(col_count * 4, row_count * 3),
)
def get_file_path_from_row(row, path_to_patches: Path):
return path_to_patches.joinpath(row.file_name)
def get_fast_images(
row, path_to_patches, percent_radius: float = 1.0, add_process_image: bool = False
):
d = {}
try:
d["leaf_disc_box"] = get_leaf_disk_wbb(
row.file_name, row, image_path=get_file_path_from_row(row, path_to_patches)
)
except:
pass
try:
d["segmented_leaf_disc"] = get_fast_segment_disk(
image_name=row.file_name,
bboxes=row,
percent_radius=percent_radius,
image_path=get_file_path_from_row(row, path_to_patches),
)
except:
pass
try:
d["leaf_disc_patch"] = get_fast_leaf_disk_patch(
image_name=row.file_name,
bboxes=row,
percent_radius=percent_radius,
image_path=get_file_path_from_row(row, path_to_patches),
)
except:
pass
if add_process_image is True:
try:
d["process_image"] = draw_fast_bb_to_patch_process(
image_name=row.file_name,
bboxes=row,
percent_radius=percent_radius,
image_path=get_file_path_from_row(row, path_to_patches),
)
except:
pass
return d
def save_images(row: pd.Series, images_data: dict, errors: dict, paths: dict):
fn = f"{Path(row.file_name).stem}_{row.row}_{int(row.col)}.png"
for k, image in images_data.items():
if k not in paths:
continue
path_to_image = paths[k].joinpath(fn)
if image is not None:
if path_to_image.is_file() is False:
cv2.imwrite(str(path_to_image), cv2.cvtColor(image, cv2.COLOR_RGB2BGR))
elif errors is not None:
errors[k].append(row.file_name)
else:
pass
def handle_bbox(
row: pd.Series,
paths: dict,
errors: dict = None,
percent_radius: float = 1.0,
add_process_image: bool = False,
):
save_images(
row=row,
images_data=get_fast_images(
row=row,
percent_radius=percent_radius,
add_process_image=add_process_image,
path_to_patches=paths["plates"],
),
errors=errors,
paths=paths,
)