trasul commited on
Commit
e21dbce
·
verified ·
1 Parent(s): 4a76d53

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,444 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: BAAI/bge-base-en
3
+ datasets:
4
+ - sentence-transformers/all-nli
5
+ language:
6
+ - en
7
+ library_name: sentence-transformers
8
+ metrics:
9
+ - cosine_accuracy
10
+ - dot_accuracy
11
+ - manhattan_accuracy
12
+ - euclidean_accuracy
13
+ - max_accuracy
14
+ pipeline_tag: sentence-similarity
15
+ tags:
16
+ - sentence-transformers
17
+ - sentence-similarity
18
+ - feature-extraction
19
+ - generated_from_trainer
20
+ - dataset_size:5000
21
+ - loss:MultipleNegativesRankingLoss
22
+ widget:
23
+ - source_sentence: A man is jumping unto his filthy bed.
24
+ sentences:
25
+ - A young male is looking at a newspaper while 2 females walks past him.
26
+ - The bed is dirty.
27
+ - The man is on the moon.
28
+ - source_sentence: A carefully balanced male stands on one foot near a clean ocean
29
+ beach area.
30
+ sentences:
31
+ - A man is ouside near the beach.
32
+ - Three policemen patrol the streets on bikes
33
+ - A man is sitting on his couch.
34
+ - source_sentence: The man is wearing a blue shirt.
35
+ sentences:
36
+ - Near the trashcan the man stood and smoked
37
+ - A man in a blue shirt leans on a wall beside a road with a blue van and red car
38
+ with water in the background.
39
+ - A man in a black shirt is playing a guitar.
40
+ - source_sentence: The girls are outdoors.
41
+ sentences:
42
+ - Two girls riding on an amusement part ride.
43
+ - a guy laughs while doing laundry
44
+ - Three girls are standing together in a room, one is listening, one is writing
45
+ on a wall and the third is talking to them.
46
+ - source_sentence: A construction worker peeking out of a manhole while his coworker
47
+ sits on the sidewalk smiling.
48
+ sentences:
49
+ - A worker is looking out of a manhole.
50
+ - A man is giving a presentation.
51
+ - The workers are both inside the manhole.
52
+ model-index:
53
+ - name: SentenceTransformer based on BAAI/bge-base-en
54
+ results:
55
+ - task:
56
+ type: triplet
57
+ name: Triplet
58
+ dataset:
59
+ name: all nli test
60
+ type: all-nli-test
61
+ metrics:
62
+ - type: cosine_accuracy
63
+ value: 0.9378120744439401
64
+ name: Cosine Accuracy
65
+ - type: dot_accuracy
66
+ value: 0.06218792555605992
67
+ name: Dot Accuracy
68
+ - type: manhattan_accuracy
69
+ value: 0.9355424421243759
70
+ name: Manhattan Accuracy
71
+ - type: euclidean_accuracy
72
+ value: 0.9378120744439401
73
+ name: Euclidean Accuracy
74
+ - type: max_accuracy
75
+ value: 0.9378120744439401
76
+ name: Max Accuracy
77
+ ---
78
+
79
+ # SentenceTransformer based on BAAI/bge-base-en
80
+
81
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en](https://huggingface.co/BAAI/bge-base-en) on the [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
82
+
83
+ ## Model Details
84
+
85
+ ### Model Description
86
+ - **Model Type:** Sentence Transformer
87
+ - **Base model:** [BAAI/bge-base-en](https://huggingface.co/BAAI/bge-base-en) <!-- at revision b737bf5dcc6ee8bdc530531266b4804a5d77b5d8 -->
88
+ - **Maximum Sequence Length:** 512 tokens
89
+ - **Output Dimensionality:** 768 tokens
90
+ - **Similarity Function:** Cosine Similarity
91
+ - **Training Dataset:**
92
+ - [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli)
93
+ - **Language:** en
94
+ <!-- - **License:** Unknown -->
95
+
96
+ ### Model Sources
97
+
98
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
99
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
100
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
101
+
102
+ ### Full Model Architecture
103
+
104
+ ```
105
+ SentenceTransformer(
106
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
107
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
108
+ (2): Normalize()
109
+ )
110
+ ```
111
+
112
+ ## Usage
113
+
114
+ ### Direct Usage (Sentence Transformers)
115
+
116
+ First install the Sentence Transformers library:
117
+
118
+ ```bash
119
+ pip install -U sentence-transformers
120
+ ```
121
+
122
+ Then you can load this model and run inference.
123
+ ```python
124
+ from sentence_transformers import SentenceTransformer
125
+
126
+ # Download from the 🤗 Hub
127
+ model = SentenceTransformer("trasul/mpnet-base-all-nli-triplet")
128
+ # Run inference
129
+ sentences = [
130
+ 'A construction worker peeking out of a manhole while his coworker sits on the sidewalk smiling.',
131
+ 'A worker is looking out of a manhole.',
132
+ 'The workers are both inside the manhole.',
133
+ ]
134
+ embeddings = model.encode(sentences)
135
+ print(embeddings.shape)
136
+ # [3, 768]
137
+
138
+ # Get the similarity scores for the embeddings
139
+ similarities = model.similarity(embeddings, embeddings)
140
+ print(similarities.shape)
141
+ # [3, 3]
142
+ ```
143
+
144
+ <!--
145
+ ### Direct Usage (Transformers)
146
+
147
+ <details><summary>Click to see the direct usage in Transformers</summary>
148
+
149
+ </details>
150
+ -->
151
+
152
+ <!--
153
+ ### Downstream Usage (Sentence Transformers)
154
+
155
+ You can finetune this model on your own dataset.
156
+
157
+ <details><summary>Click to expand</summary>
158
+
159
+ </details>
160
+ -->
161
+
162
+ <!--
163
+ ### Out-of-Scope Use
164
+
165
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
166
+ -->
167
+
168
+ ## Evaluation
169
+
170
+ ### Metrics
171
+
172
+ #### Triplet
173
+ * Dataset: `all-nli-test`
174
+ * Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
175
+
176
+ | Metric | Value |
177
+ |:-------------------|:-----------|
178
+ | cosine_accuracy | 0.9378 |
179
+ | dot_accuracy | 0.0622 |
180
+ | manhattan_accuracy | 0.9355 |
181
+ | euclidean_accuracy | 0.9378 |
182
+ | **max_accuracy** | **0.9378** |
183
+
184
+ <!--
185
+ ## Bias, Risks and Limitations
186
+
187
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
188
+ -->
189
+
190
+ <!--
191
+ ### Recommendations
192
+
193
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
194
+ -->
195
+
196
+ ## Training Details
197
+
198
+ ### Training Dataset
199
+
200
+ #### sentence-transformers/all-nli
201
+
202
+ * Dataset: [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab)
203
+ * Size: 5,000 training samples
204
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
205
+ * Approximate statistics based on the first 1000 samples:
206
+ | | anchor | positive | negative |
207
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
208
+ | type | string | string | string |
209
+ | details | <ul><li>min: 7 tokens</li><li>mean: 10.46 tokens</li><li>max: 46 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 12.81 tokens</li><li>max: 40 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 13.4 tokens</li><li>max: 50 tokens</li></ul> |
210
+ * Samples:
211
+ | anchor | positive | negative |
212
+ |:---------------------------------------------------------------------------|:-------------------------------------------------|:-----------------------------------------------------------|
213
+ | <code>A person on a horse jumps over a broken down airplane.</code> | <code>A person is outdoors, on a horse.</code> | <code>A person is at a diner, ordering an omelette.</code> |
214
+ | <code>Children smiling and waving at camera</code> | <code>There are children present</code> | <code>The kids are frowning</code> |
215
+ | <code>A boy is jumping on skateboard in the middle of a red bridge.</code> | <code>The boy does a skateboarding trick.</code> | <code>The boy skates down the sidewalk.</code> |
216
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
217
+ ```json
218
+ {
219
+ "scale": 20.0,
220
+ "similarity_fct": "cos_sim"
221
+ }
222
+ ```
223
+
224
+ ### Evaluation Dataset
225
+
226
+ #### sentence-transformers/all-nli
227
+
228
+ * Dataset: [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab)
229
+ * Size: 6,584 evaluation samples
230
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
231
+ * Approximate statistics based on the first 1000 samples:
232
+ | | anchor | positive | negative |
233
+ |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
234
+ | type | string | string | string |
235
+ | details | <ul><li>min: 6 tokens</li><li>mean: 17.95 tokens</li><li>max: 63 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 9.78 tokens</li><li>max: 29 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 10.35 tokens</li><li>max: 29 tokens</li></ul> |
236
+ * Samples:
237
+ | anchor | positive | negative |
238
+ |:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------|:--------------------------------------------------------|
239
+ | <code>Two women are embracing while holding to go packages.</code> | <code>Two woman are holding packages.</code> | <code>The men are fighting outside a deli.</code> |
240
+ | <code>Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink.</code> | <code>Two kids in numbered jerseys wash their hands.</code> | <code>Two kids in jackets walk to school.</code> |
241
+ | <code>A man selling donuts to a customer during a world exhibition event held in the city of Angeles</code> | <code>A man selling donuts to a customer.</code> | <code>A woman drinks her coffee in a small cafe.</code> |
242
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
243
+ ```json
244
+ {
245
+ "scale": 20.0,
246
+ "similarity_fct": "cos_sim"
247
+ }
248
+ ```
249
+
250
+ ### Training Hyperparameters
251
+ #### Non-Default Hyperparameters
252
+
253
+ - `eval_strategy`: epoch
254
+ - `per_device_train_batch_size`: 32
255
+ - `per_device_eval_batch_size`: 16
256
+ - `gradient_accumulation_steps`: 16
257
+ - `learning_rate`: 2e-05
258
+ - `lr_scheduler_type`: cosine
259
+ - `warmup_ratio`: 0.1
260
+ - `bf16`: True
261
+ - `tf32`: False
262
+ - `load_best_model_at_end`: True
263
+ - `optim`: adamw_torch_fused
264
+ - `batch_sampler`: no_duplicates
265
+
266
+ #### All Hyperparameters
267
+ <details><summary>Click to expand</summary>
268
+
269
+ - `overwrite_output_dir`: False
270
+ - `do_predict`: False
271
+ - `eval_strategy`: epoch
272
+ - `prediction_loss_only`: True
273
+ - `per_device_train_batch_size`: 32
274
+ - `per_device_eval_batch_size`: 16
275
+ - `per_gpu_train_batch_size`: None
276
+ - `per_gpu_eval_batch_size`: None
277
+ - `gradient_accumulation_steps`: 16
278
+ - `eval_accumulation_steps`: None
279
+ - `learning_rate`: 2e-05
280
+ - `weight_decay`: 0.0
281
+ - `adam_beta1`: 0.9
282
+ - `adam_beta2`: 0.999
283
+ - `adam_epsilon`: 1e-08
284
+ - `max_grad_norm`: 1.0
285
+ - `num_train_epochs`: 3
286
+ - `max_steps`: -1
287
+ - `lr_scheduler_type`: cosine
288
+ - `lr_scheduler_kwargs`: {}
289
+ - `warmup_ratio`: 0.1
290
+ - `warmup_steps`: 0
291
+ - `log_level`: passive
292
+ - `log_level_replica`: warning
293
+ - `log_on_each_node`: True
294
+ - `logging_nan_inf_filter`: True
295
+ - `save_safetensors`: True
296
+ - `save_on_each_node`: False
297
+ - `save_only_model`: False
298
+ - `restore_callback_states_from_checkpoint`: False
299
+ - `no_cuda`: False
300
+ - `use_cpu`: False
301
+ - `use_mps_device`: False
302
+ - `seed`: 42
303
+ - `data_seed`: None
304
+ - `jit_mode_eval`: False
305
+ - `use_ipex`: False
306
+ - `bf16`: True
307
+ - `fp16`: False
308
+ - `fp16_opt_level`: O1
309
+ - `half_precision_backend`: auto
310
+ - `bf16_full_eval`: False
311
+ - `fp16_full_eval`: False
312
+ - `tf32`: False
313
+ - `local_rank`: 0
314
+ - `ddp_backend`: None
315
+ - `tpu_num_cores`: None
316
+ - `tpu_metrics_debug`: False
317
+ - `debug`: []
318
+ - `dataloader_drop_last`: False
319
+ - `dataloader_num_workers`: 0
320
+ - `dataloader_prefetch_factor`: None
321
+ - `past_index`: -1
322
+ - `disable_tqdm`: False
323
+ - `remove_unused_columns`: True
324
+ - `label_names`: None
325
+ - `load_best_model_at_end`: True
326
+ - `ignore_data_skip`: False
327
+ - `fsdp`: []
328
+ - `fsdp_min_num_params`: 0
329
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
330
+ - `fsdp_transformer_layer_cls_to_wrap`: None
331
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
332
+ - `deepspeed`: None
333
+ - `label_smoothing_factor`: 0.0
334
+ - `optim`: adamw_torch_fused
335
+ - `optim_args`: None
336
+ - `adafactor`: False
337
+ - `group_by_length`: False
338
+ - `length_column_name`: length
339
+ - `ddp_find_unused_parameters`: None
340
+ - `ddp_bucket_cap_mb`: None
341
+ - `ddp_broadcast_buffers`: False
342
+ - `dataloader_pin_memory`: True
343
+ - `dataloader_persistent_workers`: False
344
+ - `skip_memory_metrics`: True
345
+ - `use_legacy_prediction_loop`: False
346
+ - `push_to_hub`: False
347
+ - `resume_from_checkpoint`: None
348
+ - `hub_model_id`: None
349
+ - `hub_strategy`: every_save
350
+ - `hub_private_repo`: False
351
+ - `hub_always_push`: False
352
+ - `gradient_checkpointing`: False
353
+ - `gradient_checkpointing_kwargs`: None
354
+ - `include_inputs_for_metrics`: False
355
+ - `eval_do_concat_batches`: True
356
+ - `fp16_backend`: auto
357
+ - `push_to_hub_model_id`: None
358
+ - `push_to_hub_organization`: None
359
+ - `mp_parameters`:
360
+ - `auto_find_batch_size`: False
361
+ - `full_determinism`: False
362
+ - `torchdynamo`: None
363
+ - `ray_scope`: last
364
+ - `ddp_timeout`: 1800
365
+ - `torch_compile`: False
366
+ - `torch_compile_backend`: None
367
+ - `torch_compile_mode`: None
368
+ - `dispatch_batches`: None
369
+ - `split_batches`: None
370
+ - `include_tokens_per_second`: False
371
+ - `include_num_input_tokens_seen`: False
372
+ - `neftune_noise_alpha`: None
373
+ - `optim_target_modules`: None
374
+ - `batch_eval_metrics`: False
375
+ - `eval_on_start`: False
376
+ - `batch_sampler`: no_duplicates
377
+ - `multi_dataset_batch_sampler`: proportional
378
+
379
+ </details>
380
+
381
+ ### Training Logs
382
+ | Epoch | Step | Training Loss | loss | all-nli-test_max_accuracy |
383
+ |:----------:|:------:|:-------------:|:----------:|:-------------------------:|
384
+ | 1.0191 | 10 | 1.3895 | - | - |
385
+ | 2.0382 | 20 | 0.7304 | - | - |
386
+ | **2.7516** | **27** | **-** | **0.7206** | **0.9378** |
387
+
388
+ * The bold row denotes the saved checkpoint.
389
+
390
+ ### Framework Versions
391
+ - Python: 3.10.12
392
+ - Sentence Transformers: 3.0.1
393
+ - Transformers: 4.42.4
394
+ - PyTorch: 2.3.1+cu121
395
+ - Accelerate: 0.32.1
396
+ - Datasets: 2.20.0
397
+ - Tokenizers: 0.19.1
398
+
399
+ ## Citation
400
+
401
+ ### BibTeX
402
+
403
+ #### Sentence Transformers
404
+ ```bibtex
405
+ @inproceedings{reimers-2019-sentence-bert,
406
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
407
+ author = "Reimers, Nils and Gurevych, Iryna",
408
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
409
+ month = "11",
410
+ year = "2019",
411
+ publisher = "Association for Computational Linguistics",
412
+ url = "https://arxiv.org/abs/1908.10084",
413
+ }
414
+ ```
415
+
416
+ #### MultipleNegativesRankingLoss
417
+ ```bibtex
418
+ @misc{henderson2017efficient,
419
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
420
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
421
+ year={2017},
422
+ eprint={1705.00652},
423
+ archivePrefix={arXiv},
424
+ primaryClass={cs.CL}
425
+ }
426
+ ```
427
+
428
+ <!--
429
+ ## Glossary
430
+
431
+ *Clearly define terms in order to be accessible across audiences.*
432
+ -->
433
+
434
+ <!--
435
+ ## Model Card Authors
436
+
437
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
438
+ -->
439
+
440
+ <!--
441
+ ## Model Card Contact
442
+
443
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
444
+ -->
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "BAAI/bge-base-en",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "id2label": {
13
+ "0": "LABEL_0"
14
+ },
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 3072,
17
+ "label2id": {
18
+ "LABEL_0": 0
19
+ },
20
+ "layer_norm_eps": 1e-12,
21
+ "max_position_embeddings": 512,
22
+ "model_type": "bert",
23
+ "num_attention_heads": 12,
24
+ "num_hidden_layers": 12,
25
+ "pad_token_id": 0,
26
+ "position_embedding_type": "absolute",
27
+ "torch_dtype": "float32",
28
+ "transformers_version": "4.42.4",
29
+ "type_vocab_size": 2,
30
+ "use_cache": true,
31
+ "vocab_size": 30522
32
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.42.4",
5
+ "pytorch": "2.3.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dcf53b23b97529183a33ab555468b764dcb1d1ebc44707a61124ebe319ef5bfa
3
+ size 437951328
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": true
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 512,
50
+ "never_split": null,
51
+ "pad_token": "[PAD]",
52
+ "sep_token": "[SEP]",
53
+ "strip_accents": null,
54
+ "tokenize_chinese_chars": true,
55
+ "tokenizer_class": "BertTokenizer",
56
+ "unk_token": "[UNK]"
57
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff