transiteration
commited on
Commit
•
aeeafe2
1
Parent(s):
8ea3efa
Delete transcribe_speech.py
Browse files- transcribe_speech.py +0 -173
transcribe_speech.py
DELETED
@@ -1,173 +0,0 @@
|
|
1 |
-
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
|
2 |
-
#
|
3 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
-
# you may not use this file except in compliance with the License.
|
5 |
-
# You may obtain a copy of the License at
|
6 |
-
#
|
7 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
-
#
|
9 |
-
# Unless required by applicable law or agreed to in writing, software
|
10 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
-
# See the License for the specific language governing permissions and
|
13 |
-
# limitations under the License.
|
14 |
-
|
15 |
-
import contextlib
|
16 |
-
import glob
|
17 |
-
import json
|
18 |
-
import os
|
19 |
-
from dataclasses import dataclass
|
20 |
-
from typing import Optional
|
21 |
-
|
22 |
-
import pytorch_lightning as pl
|
23 |
-
import torch
|
24 |
-
from omegaconf import OmegaConf
|
25 |
-
|
26 |
-
from nemo.collections.asr.metrics.rnnt_wer import RNNTDecodingConfig
|
27 |
-
from nemo.collections.asr.metrics.wer import word_error_rate
|
28 |
-
from nemo.collections.asr.models import ASRModel
|
29 |
-
from nemo.core.config import hydra_runner
|
30 |
-
from nemo.utils import logging, model_utils
|
31 |
-
|
32 |
-
|
33 |
-
"""
|
34 |
-
# Transcribe audio
|
35 |
-
# Arguments
|
36 |
-
# model_path: path to .nemo ASR checkpoint
|
37 |
-
# pretrained_name: name of pretrained ASR model (from NGC registry)
|
38 |
-
# audio_dir: path to directory with audio files
|
39 |
-
# dataset_manifest: path to dataset JSON manifest file (in NeMo format)
|
40 |
-
#
|
41 |
-
# ASR model can be specified by either "model_path" or "pretrained_name".
|
42 |
-
# Data for transcription can be defined with either "audio_dir" or "dataset_manifest".
|
43 |
-
# Results are returned in a JSON manifest file.
|
44 |
-
|
45 |
-
python transcribe_speech.py \
|
46 |
-
model_path=null \
|
47 |
-
pretrained_name=null \
|
48 |
-
audio_dir="" \
|
49 |
-
dataset_manifest="" \
|
50 |
-
output_filename=""
|
51 |
-
"""
|
52 |
-
|
53 |
-
|
54 |
-
@dataclass
|
55 |
-
class TranscriptionConfig:
|
56 |
-
# Required configs
|
57 |
-
model_path: Optional[str] = None # Path to a .nemo file
|
58 |
-
pretrained_name: Optional[str] = None # Name of a pretrained model
|
59 |
-
audio_dir: Optional[str] = None # Path to a directory which contains audio files
|
60 |
-
dataset_manifest: Optional[str] = None # Path to dataset's JSON manifest
|
61 |
-
|
62 |
-
# General configs
|
63 |
-
output_filename: Optional[str] = None
|
64 |
-
batch_size: int = 32
|
65 |
-
cuda: Optional[bool] = None # will switch to cuda if available, defaults to CPU otherwise
|
66 |
-
amp: bool = False
|
67 |
-
audio_type: str = "wav"
|
68 |
-
|
69 |
-
# decoding strategy for RNNT models
|
70 |
-
rnnt_decoding: RNNTDecodingConfig = RNNTDecodingConfig()
|
71 |
-
|
72 |
-
|
73 |
-
@hydra_runner(config_name="TranscriptionConfig", schema=TranscriptionConfig)
|
74 |
-
def main(cfg: TranscriptionConfig):
|
75 |
-
logging.info(f'Hydra config: {OmegaConf.to_yaml(cfg)}')
|
76 |
-
|
77 |
-
if cfg.model_path is None and cfg.pretrained_name is None:
|
78 |
-
raise ValueError("Both cfg.model_path and cfg.pretrained_name cannot be None!")
|
79 |
-
if cfg.audio_dir is None and cfg.dataset_manifest is None:
|
80 |
-
raise ValueError("Both cfg.audio_dir and cfg.dataset_manifest cannot be None!")
|
81 |
-
|
82 |
-
# setup GPU
|
83 |
-
if cfg.cuda is None:
|
84 |
-
cfg.cuda = torch.cuda.is_available()
|
85 |
-
|
86 |
-
if type(cfg.cuda) == int:
|
87 |
-
device_id = int(cfg.cuda)
|
88 |
-
else:
|
89 |
-
device_id = 0
|
90 |
-
|
91 |
-
device = torch.device(f'cuda:{device_id}' if cfg.cuda else 'cpu')
|
92 |
-
|
93 |
-
# setup model
|
94 |
-
if cfg.model_path is not None:
|
95 |
-
# restore model from .nemo file path
|
96 |
-
model_cfg = ASRModel.restore_from(restore_path=cfg.model_path, return_config=True)
|
97 |
-
classpath = model_cfg.target # original class path
|
98 |
-
imported_class = model_utils.import_class_by_path(classpath) # type: ASRModel
|
99 |
-
logging.info(f"Restoring model : {imported_class.__name__}")
|
100 |
-
asr_model = imported_class.restore_from(restore_path=cfg.model_path, map_location=device) # type: ASRModel
|
101 |
-
model_name = os.path.splitext(os.path.basename(cfg.model_path))[0]
|
102 |
-
else:
|
103 |
-
# restore model by name
|
104 |
-
asr_model = ASRModel.from_pretrained(model_name=cfg.pretrained_name, map_location=device) # type: ASRModel
|
105 |
-
model_name = cfg.pretrained_name
|
106 |
-
|
107 |
-
trainer = pl.Trainer(gpus=int(cfg.cuda))
|
108 |
-
asr_model.set_trainer(trainer)
|
109 |
-
asr_model = asr_model.eval()
|
110 |
-
|
111 |
-
# Setup decoding strategy
|
112 |
-
if hasattr(asr_model, 'change_decoding_strategy'):
|
113 |
-
asr_model.change_decoding_strategy(cfg.rnnt_decoding)
|
114 |
-
|
115 |
-
# get audio filenames
|
116 |
-
if cfg.audio_dir is not None:
|
117 |
-
filepaths = list(glob.glob(os.path.join(cfg.audio_dir, f"*.{cfg.audio_type}")))
|
118 |
-
else:
|
119 |
-
# get filenames from manifest
|
120 |
-
filepaths = []
|
121 |
-
references = []
|
122 |
-
with open(cfg.dataset_manifest, 'r', encoding='utf-8') as f:
|
123 |
-
for line in f:
|
124 |
-
item = json.loads(line)
|
125 |
-
filepaths.append(item['audio_filepath'])
|
126 |
-
references.append(item['text'])
|
127 |
-
logging.info(f"\nTranscribing {len(filepaths)} files...\n")
|
128 |
-
|
129 |
-
# setup AMP (optional)
|
130 |
-
if cfg.amp and torch.cuda.is_available() and hasattr(torch.cuda, 'amp') and hasattr(torch.cuda.amp, 'autocast'):
|
131 |
-
logging.info("AMP enabled!\n")
|
132 |
-
autocast = torch.cuda.amp.autocast
|
133 |
-
else:
|
134 |
-
|
135 |
-
@contextlib.contextmanager
|
136 |
-
def autocast():
|
137 |
-
yield
|
138 |
-
|
139 |
-
# transcribe audio
|
140 |
-
with autocast():
|
141 |
-
with torch.no_grad():
|
142 |
-
transcriptions = asr_model.transcribe(filepaths, batch_size=cfg.batch_size)
|
143 |
-
logging.info(f"Finished transcribing {len(filepaths)} files !")
|
144 |
-
|
145 |
-
wer_value = word_error_rate(hypotheses=transcriptions, references=references, use_cer=False)
|
146 |
-
logging.info(f'Got WER of {wer_value}. Tolerance was 1.0')
|
147 |
-
|
148 |
-
if cfg.output_filename is None:
|
149 |
-
# create default output filename
|
150 |
-
if cfg.audio_dir is not None:
|
151 |
-
cfg.output_filename = os.path.dirname(os.path.join(cfg.audio_dir, '.')) + '.json'
|
152 |
-
else:
|
153 |
-
cfg.output_filename = cfg.dataset_manifest.replace('.json', f'_{model_name}.json')
|
154 |
-
|
155 |
-
logging.info(f"Writing transcriptions into file: {cfg.output_filename}")
|
156 |
-
|
157 |
-
with open(cfg.output_filename, 'w', encoding='utf-8') as f:
|
158 |
-
if cfg.audio_dir is not None:
|
159 |
-
for idx, text in enumerate(transcriptions):
|
160 |
-
item = {'audio_filepath': filepaths[idx], 'pred_text': text}
|
161 |
-
f.write(json.dumps(item) + "\n")
|
162 |
-
else:
|
163 |
-
with open(cfg.dataset_manifest, 'r', encoding='utf-8') as fr:
|
164 |
-
for idx, line in enumerate(fr):
|
165 |
-
item = json.loads(line)
|
166 |
-
item['pred_text'] = transcriptions[idx]
|
167 |
-
f.write(json.dumps(item, ensure_ascii=False) + "\n")
|
168 |
-
|
169 |
-
logging.info("Finished writing predictions !")
|
170 |
-
|
171 |
-
|
172 |
-
if __name__ == '__main__':
|
173 |
-
main() # noqa pylint: disable=no-value-for-parameter
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|