stt_kz_quartznet15x5 / transcribe.py
transiteration's picture
Upload 8 files
0479abb verified
raw
history blame
789 Bytes
import argparse
from typing import Dict
import nemo.collections.asr as nemo_asr
def predict_model(model_path: str, audio_file_path: str) -> Dict:
# Restore the ASR model from the provided path
model = nemo_asr.models.ASRModel.restore_from(restore_path=model_path)
# Transcribe the given audio file
text = model.transcribe([audio_file_path])
print({"result": text[0]})
if __name__ == "__main__":
# Parse command line arguments
parser = argparse.ArgumentParser()
parser.add_argument("--model_path", default=None, help="Path to a model to evaluate.")
parser.add_argument("--audio_file_path", help="Path for train manifest JSON file.")
args = parser.parse_args()
predict_model(model_path=args.model_path, audio_file_path=args.audio_file_path)