stt_kz_quartznet15x5 / transcribe_speech.py
transiteration's picture
Upload transcribe_speech.py
5072015
raw
history blame
6.06 kB
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import contextlib
import glob
import json
import os
from dataclasses import dataclass
from typing import Optional
import pytorch_lightning as pl
import torch
from omegaconf import OmegaConf
from nemo.collections.asr.metrics.rnnt_wer import RNNTDecodingConfig
from nemo.collections.asr.metrics.wer import word_error_rate
from nemo.collections.asr.models import ASRModel
from nemo.core.config import hydra_runner
from nemo.utils import logging, model_utils
"""
# Transcribe audio
# Arguments
# model_path: path to .nemo ASR checkpoint
# pretrained_name: name of pretrained ASR model (from NGC registry)
# audio_dir: path to directory with audio files
# dataset_manifest: path to dataset JSON manifest file (in NeMo format)
#
# ASR model can be specified by either "model_path" or "pretrained_name".
# Data for transcription can be defined with either "audio_dir" or "dataset_manifest".
# Results are returned in a JSON manifest file.
python transcribe_speech.py \
model_path=null \
pretrained_name=null \
audio_dir="" \
dataset_manifest="" \
output_filename=""
"""
@dataclass
class TranscriptionConfig:
# Required configs
model_path: Optional[str] = None # Path to a .nemo file
pretrained_name: Optional[str] = None # Name of a pretrained model
audio_dir: Optional[str] = None # Path to a directory which contains audio files
dataset_manifest: Optional[str] = None # Path to dataset's JSON manifest
# General configs
output_filename: Optional[str] = None
batch_size: int = 32
cuda: Optional[bool] = None # will switch to cuda if available, defaults to CPU otherwise
amp: bool = False
audio_type: str = "wav"
# decoding strategy for RNNT models
rnnt_decoding: RNNTDecodingConfig = RNNTDecodingConfig()
@hydra_runner(config_name="TranscriptionConfig", schema=TranscriptionConfig)
def main(cfg: TranscriptionConfig):
logging.info(f'Hydra config: {OmegaConf.to_yaml(cfg)}')
if cfg.model_path is None and cfg.pretrained_name is None:
raise ValueError("Both cfg.model_path and cfg.pretrained_name cannot be None!")
if cfg.audio_dir is None and cfg.dataset_manifest is None:
raise ValueError("Both cfg.audio_dir and cfg.dataset_manifest cannot be None!")
# setup GPU
if cfg.cuda is None:
cfg.cuda = torch.cuda.is_available()
if type(cfg.cuda) == int:
device_id = int(cfg.cuda)
else:
device_id = 0
device = torch.device(f'cuda:{device_id}' if cfg.cuda else 'cpu')
# setup model
if cfg.model_path is not None:
# restore model from .nemo file path
model_cfg = ASRModel.restore_from(restore_path=cfg.model_path, return_config=True)
classpath = model_cfg.target # original class path
imported_class = model_utils.import_class_by_path(classpath) # type: ASRModel
logging.info(f"Restoring model : {imported_class.__name__}")
asr_model = imported_class.restore_from(restore_path=cfg.model_path, map_location=device) # type: ASRModel
model_name = os.path.splitext(os.path.basename(cfg.model_path))[0]
else:
# restore model by name
asr_model = ASRModel.from_pretrained(model_name=cfg.pretrained_name, map_location=device) # type: ASRModel
model_name = cfg.pretrained_name
trainer = pl.Trainer(gpus=int(cfg.cuda))
asr_model.set_trainer(trainer)
asr_model = asr_model.eval()
# Setup decoding strategy
if hasattr(asr_model, 'change_decoding_strategy'):
asr_model.change_decoding_strategy(cfg.rnnt_decoding)
# get audio filenames
if cfg.audio_dir is not None:
filepaths = list(glob.glob(os.path.join(cfg.audio_dir, f"*.{cfg.audio_type}")))
else:
# get filenames from manifest
filepaths = []
references = []
with open(cfg.dataset_manifest, 'r', encoding='utf-8') as f:
for line in f:
item = json.loads(line)
filepaths.append(item['audio_filepath'])
references.append(item['text'])
logging.info(f"\nTranscribing {len(filepaths)} files...\n")
# setup AMP (optional)
if cfg.amp and torch.cuda.is_available() and hasattr(torch.cuda, 'amp') and hasattr(torch.cuda.amp, 'autocast'):
logging.info("AMP enabled!\n")
autocast = torch.cuda.amp.autocast
else:
@contextlib.contextmanager
def autocast():
yield
# transcribe audio
with autocast():
with torch.no_grad():
transcriptions = asr_model.transcribe(filepaths, batch_size=cfg.batch_size)
logging.info(f"Finished transcribing {len(filepaths)} files !")
wer_value = word_error_rate(hypotheses=transcriptions, references=references, use_cer=False)
logging.info(f'Got WER of {wer_value}. Tolerance was 1.0')
if cfg.output_filename is None:
# create default output filename
if cfg.audio_dir is not None:
cfg.output_filename = os.path.dirname(os.path.join(cfg.audio_dir, '.')) + '.json'
else:
cfg.output_filename = cfg.dataset_manifest.replace('.json', f'_{model_name}.json')
logging.info(f"Writing transcriptions into file: {cfg.output_filename}")
with open(cfg.output_filename, 'w', encoding='utf-8') as f:
if cfg.audio_dir is not None:
for idx, text in enumerate(transcriptions):
item = {'audio_filepath': filepaths[idx], 'pred_text': text}
f.write(json.dumps(item) + "\n")
else:
with open(cfg.dataset_manifest, 'r', encoding='utf-8') as fr:
for idx, line in enumerate(fr):
item = json.loads(line)
item['pred_text'] = transcriptions[idx]
f.write(json.dumps(item, ensure_ascii=False) + "\n")
logging.info("Finished writing predictions !")
if __name__ == '__main__':
main() # noqa pylint: disable=no-value-for-parameter