File size: 6,055 Bytes
5072015 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 |
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import contextlib
import glob
import json
import os
from dataclasses import dataclass
from typing import Optional
import pytorch_lightning as pl
import torch
from omegaconf import OmegaConf
from nemo.collections.asr.metrics.rnnt_wer import RNNTDecodingConfig
from nemo.collections.asr.metrics.wer import word_error_rate
from nemo.collections.asr.models import ASRModel
from nemo.core.config import hydra_runner
from nemo.utils import logging, model_utils
"""
# Transcribe audio
# Arguments
# model_path: path to .nemo ASR checkpoint
# pretrained_name: name of pretrained ASR model (from NGC registry)
# audio_dir: path to directory with audio files
# dataset_manifest: path to dataset JSON manifest file (in NeMo format)
#
# ASR model can be specified by either "model_path" or "pretrained_name".
# Data for transcription can be defined with either "audio_dir" or "dataset_manifest".
# Results are returned in a JSON manifest file.
python transcribe_speech.py \
model_path=null \
pretrained_name=null \
audio_dir="" \
dataset_manifest="" \
output_filename=""
"""
@dataclass
class TranscriptionConfig:
# Required configs
model_path: Optional[str] = None # Path to a .nemo file
pretrained_name: Optional[str] = None # Name of a pretrained model
audio_dir: Optional[str] = None # Path to a directory which contains audio files
dataset_manifest: Optional[str] = None # Path to dataset's JSON manifest
# General configs
output_filename: Optional[str] = None
batch_size: int = 32
cuda: Optional[bool] = None # will switch to cuda if available, defaults to CPU otherwise
amp: bool = False
audio_type: str = "wav"
# decoding strategy for RNNT models
rnnt_decoding: RNNTDecodingConfig = RNNTDecodingConfig()
@hydra_runner(config_name="TranscriptionConfig", schema=TranscriptionConfig)
def main(cfg: TranscriptionConfig):
logging.info(f'Hydra config: {OmegaConf.to_yaml(cfg)}')
if cfg.model_path is None and cfg.pretrained_name is None:
raise ValueError("Both cfg.model_path and cfg.pretrained_name cannot be None!")
if cfg.audio_dir is None and cfg.dataset_manifest is None:
raise ValueError("Both cfg.audio_dir and cfg.dataset_manifest cannot be None!")
# setup GPU
if cfg.cuda is None:
cfg.cuda = torch.cuda.is_available()
if type(cfg.cuda) == int:
device_id = int(cfg.cuda)
else:
device_id = 0
device = torch.device(f'cuda:{device_id}' if cfg.cuda else 'cpu')
# setup model
if cfg.model_path is not None:
# restore model from .nemo file path
model_cfg = ASRModel.restore_from(restore_path=cfg.model_path, return_config=True)
classpath = model_cfg.target # original class path
imported_class = model_utils.import_class_by_path(classpath) # type: ASRModel
logging.info(f"Restoring model : {imported_class.__name__}")
asr_model = imported_class.restore_from(restore_path=cfg.model_path, map_location=device) # type: ASRModel
model_name = os.path.splitext(os.path.basename(cfg.model_path))[0]
else:
# restore model by name
asr_model = ASRModel.from_pretrained(model_name=cfg.pretrained_name, map_location=device) # type: ASRModel
model_name = cfg.pretrained_name
trainer = pl.Trainer(gpus=int(cfg.cuda))
asr_model.set_trainer(trainer)
asr_model = asr_model.eval()
# Setup decoding strategy
if hasattr(asr_model, 'change_decoding_strategy'):
asr_model.change_decoding_strategy(cfg.rnnt_decoding)
# get audio filenames
if cfg.audio_dir is not None:
filepaths = list(glob.glob(os.path.join(cfg.audio_dir, f"*.{cfg.audio_type}")))
else:
# get filenames from manifest
filepaths = []
references = []
with open(cfg.dataset_manifest, 'r', encoding='utf-8') as f:
for line in f:
item = json.loads(line)
filepaths.append(item['audio_filepath'])
references.append(item['text'])
logging.info(f"\nTranscribing {len(filepaths)} files...\n")
# setup AMP (optional)
if cfg.amp and torch.cuda.is_available() and hasattr(torch.cuda, 'amp') and hasattr(torch.cuda.amp, 'autocast'):
logging.info("AMP enabled!\n")
autocast = torch.cuda.amp.autocast
else:
@contextlib.contextmanager
def autocast():
yield
# transcribe audio
with autocast():
with torch.no_grad():
transcriptions = asr_model.transcribe(filepaths, batch_size=cfg.batch_size)
logging.info(f"Finished transcribing {len(filepaths)} files !")
wer_value = word_error_rate(hypotheses=transcriptions, references=references, use_cer=False)
logging.info(f'Got WER of {wer_value}. Tolerance was 1.0')
if cfg.output_filename is None:
# create default output filename
if cfg.audio_dir is not None:
cfg.output_filename = os.path.dirname(os.path.join(cfg.audio_dir, '.')) + '.json'
else:
cfg.output_filename = cfg.dataset_manifest.replace('.json', f'_{model_name}.json')
logging.info(f"Writing transcriptions into file: {cfg.output_filename}")
with open(cfg.output_filename, 'w', encoding='utf-8') as f:
if cfg.audio_dir is not None:
for idx, text in enumerate(transcriptions):
item = {'audio_filepath': filepaths[idx], 'pred_text': text}
f.write(json.dumps(item) + "\n")
else:
with open(cfg.dataset_manifest, 'r', encoding='utf-8') as fr:
for idx, line in enumerate(fr):
item = json.loads(line)
item['pred_text'] = transcriptions[idx]
f.write(json.dumps(item, ensure_ascii=False) + "\n")
logging.info("Finished writing predictions !")
if __name__ == '__main__':
main() # noqa pylint: disable=no-value-for-parameter
|