File size: 1,479 Bytes
a2f75b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5e4c0f0
 
 
 
 
 
 
 
 
a2f75b1
 
 
5e4c0f0
bd9ff00
5e4c0f0
bd9ff00
5e4c0f0
bd9ff00
5e4c0f0
bd9ff00
5e4c0f0
bd9ff00
5e4c0f0
bd9ff00
5e4c0f0
a2f75b1
 
 
5e4c0f0
 
 
 
 
 
 
a2f75b1
 
 
 
 
5e4c0f0
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
---
library_name: transformers
license: apache-2.0
base_model: vidore/colqwen2-base
tags:
- colpali
- generated_from_trainer
model-index:
- name: finetune_colqwen2-v1.0
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# finetune_colqwen2-v1.0

This model is a fine-tuned version of [vidore/colqwen2-base](https://huggingface.co/vidore/colqwen2-base) on the None dataset.
It achieves the following results on the evaluation set:
- eval_loss: 0.4260
- eval_model_preparation_time: 0.0093
- eval_runtime: 188.0038
- eval_samples_per_second: 0.532
- eval_steps_per_second: 0.266
- epoch: 0.4796
- step: 100

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 16
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 1

### Framework versions

- Transformers 4.46.3
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.20.3