File size: 1,479 Bytes
a2f75b1 5e4c0f0 a2f75b1 5e4c0f0 bd9ff00 5e4c0f0 bd9ff00 5e4c0f0 bd9ff00 5e4c0f0 bd9ff00 5e4c0f0 bd9ff00 5e4c0f0 bd9ff00 5e4c0f0 a2f75b1 5e4c0f0 a2f75b1 5e4c0f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 |
---
library_name: transformers
license: apache-2.0
base_model: vidore/colqwen2-base
tags:
- colpali
- generated_from_trainer
model-index:
- name: finetune_colqwen2-v1.0
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetune_colqwen2-v1.0
This model is a fine-tuned version of [vidore/colqwen2-base](https://huggingface.co/vidore/colqwen2-base) on the None dataset.
It achieves the following results on the evaluation set:
- eval_loss: 0.4260
- eval_model_preparation_time: 0.0093
- eval_runtime: 188.0038
- eval_samples_per_second: 0.532
- eval_steps_per_second: 0.266
- epoch: 0.4796
- step: 100
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 16
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 1
### Framework versions
- Transformers 4.46.3
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.20.3
|