toto10 commited on
Commit
55f64b0
·
1 Parent(s): e0f474a

fc7e96b182b21f5be42d5060b4cc04b1c2e517067a0c471c97505b29f93f45e5

Browse files
Files changed (34) hide show
  1. .gitattributes +9 -0
  2. ebsynth_utility/__pycache__/stage8.cpython-310.pyc +0 -0
  3. ebsynth_utility/calculator.py +237 -0
  4. ebsynth_utility/ebsynth_utility.py +185 -0
  5. ebsynth_utility/imgs/clipseg.png +0 -0
  6. ebsynth_utility/imgs/controlnet_0.png +0 -0
  7. ebsynth_utility/imgs/controlnet_1.png +0 -0
  8. ebsynth_utility/imgs/controlnet_option_in_ebsynthutil.png +0 -0
  9. ebsynth_utility/imgs/controlnet_setting.png +0 -0
  10. ebsynth_utility/imgs/sample1.mp4 +3 -0
  11. ebsynth_utility/imgs/sample2.mp4 +3 -0
  12. ebsynth_utility/imgs/sample3.mp4 +3 -0
  13. ebsynth_utility/imgs/sample4.mp4 +3 -0
  14. ebsynth_utility/imgs/sample5.mp4 +3 -0
  15. ebsynth_utility/imgs/sample6.mp4 +3 -0
  16. ebsynth_utility/imgs/sample_anyaheh.mp4 +3 -0
  17. ebsynth_utility/imgs/sample_autotag.mp4 +3 -0
  18. ebsynth_utility/imgs/sample_clipseg.mp4 +3 -0
  19. ebsynth_utility/install.py +24 -0
  20. ebsynth_utility/sample/add_token.txt +54 -0
  21. ebsynth_utility/sample/blacklist.txt +10 -0
  22. ebsynth_utility/scripts/__pycache__/custom_script.cpython-310.pyc +0 -0
  23. ebsynth_utility/scripts/__pycache__/ui.cpython-310.pyc +0 -0
  24. ebsynth_utility/scripts/custom_script.py +1012 -0
  25. ebsynth_utility/scripts/ui.py +199 -0
  26. ebsynth_utility/stage1.py +258 -0
  27. ebsynth_utility/stage2.py +173 -0
  28. ebsynth_utility/stage3_5.py +178 -0
  29. ebsynth_utility/stage5.py +279 -0
  30. ebsynth_utility/stage7.py +234 -0
  31. ebsynth_utility/stage8.py +146 -0
  32. ebsynth_utility/style.css +39 -0
  33. microsoftexcel-controlnet/__pycache__/preload.cpython-310.pyc +0 -0
  34. microsoftexcel-controlnet/annotator/__pycache__/util.cpython-310.pyc +0 -0
.gitattributes CHANGED
@@ -55,3 +55,12 @@ SD-CN-Animation/examples/gold_1.gif filter=lfs diff=lfs merge=lfs -text
55
  SD-CN-Animation/examples/macaroni_1.gif filter=lfs diff=lfs merge=lfs -text
56
  SD-CN-Animation/examples/tree_2.gif filter=lfs diff=lfs merge=lfs -text
57
  SD-CN-Animation/examples/tree_2.mp4 filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
55
  SD-CN-Animation/examples/macaroni_1.gif filter=lfs diff=lfs merge=lfs -text
56
  SD-CN-Animation/examples/tree_2.gif filter=lfs diff=lfs merge=lfs -text
57
  SD-CN-Animation/examples/tree_2.mp4 filter=lfs diff=lfs merge=lfs -text
58
+ ebsynth_utility/imgs/sample1.mp4 filter=lfs diff=lfs merge=lfs -text
59
+ ebsynth_utility/imgs/sample2.mp4 filter=lfs diff=lfs merge=lfs -text
60
+ ebsynth_utility/imgs/sample3.mp4 filter=lfs diff=lfs merge=lfs -text
61
+ ebsynth_utility/imgs/sample4.mp4 filter=lfs diff=lfs merge=lfs -text
62
+ ebsynth_utility/imgs/sample5.mp4 filter=lfs diff=lfs merge=lfs -text
63
+ ebsynth_utility/imgs/sample6.mp4 filter=lfs diff=lfs merge=lfs -text
64
+ ebsynth_utility/imgs/sample_anyaheh.mp4 filter=lfs diff=lfs merge=lfs -text
65
+ ebsynth_utility/imgs/sample_autotag.mp4 filter=lfs diff=lfs merge=lfs -text
66
+ ebsynth_utility/imgs/sample_clipseg.mp4 filter=lfs diff=lfs merge=lfs -text
ebsynth_utility/__pycache__/stage8.cpython-310.pyc ADDED
Binary file (3.97 kB). View file
 
ebsynth_utility/calculator.py ADDED
@@ -0,0 +1,237 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # https://www.mycompiler.io/view/3TFZagC
2
+
3
+ class ParseError(Exception):
4
+ def __init__(self, pos, msg, *args):
5
+ self.pos = pos
6
+ self.msg = msg
7
+ self.args = args
8
+
9
+ def __str__(self):
10
+ return '%s at position %s' % (self.msg % self.args, self.pos)
11
+
12
+ class Parser:
13
+ def __init__(self):
14
+ self.cache = {}
15
+
16
+ def parse(self, text):
17
+ self.text = text
18
+ self.pos = -1
19
+ self.len = len(text) - 1
20
+ rv = self.start()
21
+ self.assert_end()
22
+ return rv
23
+
24
+ def assert_end(self):
25
+ if self.pos < self.len:
26
+ raise ParseError(
27
+ self.pos + 1,
28
+ 'Expected end of string but got %s',
29
+ self.text[self.pos + 1]
30
+ )
31
+
32
+ def eat_whitespace(self):
33
+ while self.pos < self.len and self.text[self.pos + 1] in " \f\v\r\t\n":
34
+ self.pos += 1
35
+
36
+ def split_char_ranges(self, chars):
37
+ try:
38
+ return self.cache[chars]
39
+ except KeyError:
40
+ pass
41
+
42
+ rv = []
43
+ index = 0
44
+ length = len(chars)
45
+
46
+ while index < length:
47
+ if index + 2 < length and chars[index + 1] == '-':
48
+ if chars[index] >= chars[index + 2]:
49
+ raise ValueError('Bad character range')
50
+
51
+ rv.append(chars[index:index + 3])
52
+ index += 3
53
+ else:
54
+ rv.append(chars[index])
55
+ index += 1
56
+
57
+ self.cache[chars] = rv
58
+ return rv
59
+
60
+ def char(self, chars=None):
61
+ if self.pos >= self.len:
62
+ raise ParseError(
63
+ self.pos + 1,
64
+ 'Expected %s but got end of string',
65
+ 'character' if chars is None else '[%s]' % chars
66
+ )
67
+
68
+ next_char = self.text[self.pos + 1]
69
+ if chars == None:
70
+ self.pos += 1
71
+ return next_char
72
+
73
+ for char_range in self.split_char_ranges(chars):
74
+ if len(char_range) == 1:
75
+ if next_char == char_range:
76
+ self.pos += 1
77
+ return next_char
78
+ elif char_range[0] <= next_char <= char_range[2]:
79
+ self.pos += 1
80
+ return next_char
81
+
82
+ raise ParseError(
83
+ self.pos + 1,
84
+ 'Expected %s but got %s',
85
+ 'character' if chars is None else '[%s]' % chars,
86
+ next_char
87
+ )
88
+
89
+ def keyword(self, *keywords):
90
+ self.eat_whitespace()
91
+ if self.pos >= self.len:
92
+ raise ParseError(
93
+ self.pos + 1,
94
+ 'Expected %s but got end of string',
95
+ ','.join(keywords)
96
+ )
97
+
98
+ for keyword in keywords:
99
+ low = self.pos + 1
100
+ high = low + len(keyword)
101
+
102
+ if self.text[low:high] == keyword:
103
+ self.pos += len(keyword)
104
+ self.eat_whitespace()
105
+ return keyword
106
+
107
+ raise ParseError(
108
+ self.pos + 1,
109
+ 'Expected %s but got %s',
110
+ ','.join(keywords),
111
+ self.text[self.pos + 1],
112
+ )
113
+
114
+ def match(self, *rules):
115
+ self.eat_whitespace()
116
+ last_error_pos = -1
117
+ last_exception = None
118
+ last_error_rules = []
119
+
120
+ for rule in rules:
121
+ initial_pos = self.pos
122
+ try:
123
+ rv = getattr(self, rule)()
124
+ self.eat_whitespace()
125
+ return rv
126
+ except ParseError as e:
127
+ self.pos = initial_pos
128
+
129
+ if e.pos > last_error_pos:
130
+ last_exception = e
131
+ last_error_pos = e.pos
132
+ last_error_rules.clear()
133
+ last_error_rules.append(rule)
134
+ elif e.pos == last_error_pos:
135
+ last_error_rules.append(rule)
136
+
137
+ if len(last_error_rules) == 1:
138
+ raise last_exception
139
+ else:
140
+ raise ParseError(
141
+ last_error_pos,
142
+ 'Expected %s but got %s',
143
+ ','.join(last_error_rules),
144
+ self.text[last_error_pos]
145
+ )
146
+
147
+ def maybe_char(self, chars=None):
148
+ try:
149
+ return self.char(chars)
150
+ except ParseError:
151
+ return None
152
+
153
+ def maybe_match(self, *rules):
154
+ try:
155
+ return self.match(*rules)
156
+ except ParseError:
157
+ return None
158
+
159
+ def maybe_keyword(self, *keywords):
160
+ try:
161
+ return self.keyword(*keywords)
162
+ except ParseError:
163
+ return None
164
+
165
+ class CalcParser(Parser):
166
+ def start(self):
167
+ return self.expression()
168
+
169
+ def expression(self):
170
+ rv = self.match('term')
171
+ while True:
172
+ op = self.maybe_keyword('+', '-')
173
+ if op is None:
174
+ break
175
+
176
+ term = self.match('term')
177
+ if op == '+':
178
+ rv += term
179
+ else:
180
+ rv -= term
181
+
182
+ return rv
183
+
184
+ def term(self):
185
+ rv = self.match('factor')
186
+ while True:
187
+ op = self.maybe_keyword('*', '/')
188
+ if op is None:
189
+ break
190
+
191
+ term = self.match('factor')
192
+ if op == '*':
193
+ rv *= term
194
+ else:
195
+ rv /= term
196
+
197
+ return rv
198
+
199
+ def factor(self):
200
+ if self.maybe_keyword('('):
201
+ rv = self.match('expression')
202
+ self.keyword(')')
203
+
204
+ return rv
205
+
206
+ return self.match('number')
207
+
208
+ def number(self):
209
+ chars = []
210
+
211
+ sign = self.maybe_keyword('+', '-')
212
+ if sign is not None:
213
+ chars.append(sign)
214
+
215
+ chars.append(self.char('0-9'))
216
+
217
+ while True:
218
+ char = self.maybe_char('0-9')
219
+ if char is None:
220
+ break
221
+
222
+ chars.append(char)
223
+
224
+ if self.maybe_char('.'):
225
+ chars.append('.')
226
+ chars.append(self.char('0-9'))
227
+
228
+ while True:
229
+ char = self.maybe_char('0-9')
230
+ if char is None:
231
+ break
232
+
233
+ chars.append(char)
234
+
235
+ rv = float(''.join(chars))
236
+ return rv
237
+
ebsynth_utility/ebsynth_utility.py ADDED
@@ -0,0 +1,185 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+
3
+ from modules.ui import plaintext_to_html
4
+
5
+ import cv2
6
+ import glob
7
+ from PIL import Image
8
+
9
+ from extensions.ebsynth_utility.stage1 import ebsynth_utility_stage1,ebsynth_utility_stage1_invert
10
+ from extensions.ebsynth_utility.stage2 import ebsynth_utility_stage2
11
+ from extensions.ebsynth_utility.stage5 import ebsynth_utility_stage5
12
+ from extensions.ebsynth_utility.stage7 import ebsynth_utility_stage7
13
+ from extensions.ebsynth_utility.stage8 import ebsynth_utility_stage8
14
+ from extensions.ebsynth_utility.stage3_5 import ebsynth_utility_stage3_5
15
+
16
+
17
+ def x_ceiling(value, step):
18
+ return -(-value // step) * step
19
+
20
+ def dump_dict(string, d:dict):
21
+ for key in d.keys():
22
+ string += ( key + " : " + str(d[key]) + "\n")
23
+ return string
24
+
25
+ class debug_string:
26
+ txt = ""
27
+ def print(self, comment):
28
+ print(comment)
29
+ self.txt += comment + '\n'
30
+ def to_string(self):
31
+ return self.txt
32
+
33
+ def ebsynth_utility_process(stage_index: int, project_dir:str, original_movie_path:str, frame_width:int, frame_height:int, st1_masking_method_index:int, st1_mask_threshold:float, tb_use_fast_mode:bool, tb_use_jit:bool, clipseg_mask_prompt:str, clipseg_exclude_prompt:str, clipseg_mask_threshold:int, clipseg_mask_blur_size:int, clipseg_mask_blur_size2:int, key_min_gap:int, key_max_gap:int, key_th:float, key_add_last_frame:bool, color_matcher_method:str, st3_5_use_mask:bool, st3_5_use_mask_ref:bool, st3_5_use_mask_org:bool, color_matcher_ref_type:int, color_matcher_ref_image:Image, blend_rate:float, export_type:str, bg_src:str, bg_type:str, mask_blur_size:int, mask_threshold:float, fg_transparency:float, mask_mode:str):
34
+ args = locals()
35
+ info = ""
36
+ info = dump_dict(info, args)
37
+ dbg = debug_string()
38
+
39
+
40
+ def process_end(dbg, info):
41
+ return plaintext_to_html(dbg.to_string()), plaintext_to_html(info)
42
+
43
+
44
+ if not os.path.isdir(project_dir):
45
+ dbg.print("{0} project_dir not found".format(project_dir))
46
+ return process_end( dbg, info )
47
+
48
+ if not os.path.isfile(original_movie_path):
49
+ dbg.print("{0} original_movie_path not found".format(original_movie_path))
50
+ return process_end( dbg, info )
51
+
52
+ is_invert_mask = False
53
+ if mask_mode == "Invert":
54
+ is_invert_mask = True
55
+
56
+ frame_path = os.path.join(project_dir , "video_frame")
57
+ frame_mask_path = os.path.join(project_dir, "video_mask")
58
+
59
+ if is_invert_mask:
60
+ inv_path = os.path.join(project_dir, "inv")
61
+ os.makedirs(inv_path, exist_ok=True)
62
+
63
+ org_key_path = os.path.join(inv_path, "video_key")
64
+ img2img_key_path = os.path.join(inv_path, "img2img_key")
65
+ img2img_upscale_key_path = os.path.join(inv_path, "img2img_upscale_key")
66
+ else:
67
+ org_key_path = os.path.join(project_dir, "video_key")
68
+ img2img_key_path = os.path.join(project_dir, "img2img_key")
69
+ img2img_upscale_key_path = os.path.join(project_dir, "img2img_upscale_key")
70
+
71
+ if mask_mode == "None":
72
+ frame_mask_path = ""
73
+
74
+
75
+ project_args = [project_dir, original_movie_path, frame_path, frame_mask_path, org_key_path, img2img_key_path, img2img_upscale_key_path]
76
+
77
+
78
+ if stage_index == 0:
79
+ ebsynth_utility_stage1(dbg, project_args, frame_width, frame_height, st1_masking_method_index, st1_mask_threshold, tb_use_fast_mode, tb_use_jit, clipseg_mask_prompt, clipseg_exclude_prompt, clipseg_mask_threshold, clipseg_mask_blur_size, clipseg_mask_blur_size2, is_invert_mask)
80
+ if is_invert_mask:
81
+ inv_mask_path = os.path.join(inv_path, "inv_video_mask")
82
+ ebsynth_utility_stage1_invert(dbg, frame_mask_path, inv_mask_path)
83
+
84
+ elif stage_index == 1:
85
+ ebsynth_utility_stage2(dbg, project_args, key_min_gap, key_max_gap, key_th, key_add_last_frame, is_invert_mask)
86
+ elif stage_index == 2:
87
+
88
+ sample_image = glob.glob( os.path.join(frame_path , "*.png" ) )[0]
89
+ img_height, img_width, _ = cv2.imread(sample_image).shape
90
+ if img_width < img_height:
91
+ re_w = 512
92
+ re_h = int(x_ceiling( (512 / img_width) * img_height , 64))
93
+ else:
94
+ re_w = int(x_ceiling( (512 / img_height) * img_width , 64))
95
+ re_h = 512
96
+ img_width = re_w
97
+ img_height = re_h
98
+
99
+ dbg.print("stage 3")
100
+ dbg.print("")
101
+ dbg.print("!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!")
102
+ dbg.print("1. Go to img2img tab")
103
+ dbg.print("2. Select [ebsynth utility] in the script combo box")
104
+ dbg.print("3. Fill in the \"Project directory\" field with [" + project_dir + "]" )
105
+ dbg.print("4. Select in the \"Mask Mode(Override img2img Mask mode)\" field with [" + ("Invert" if is_invert_mask else "Normal") + "]" )
106
+ dbg.print("5. I recommend to fill in the \"Width\" field with [" + str(img_width) + "]" )
107
+ dbg.print("6. I recommend to fill in the \"Height\" field with [" + str(img_height) + "]" )
108
+ dbg.print("7. I recommend to fill in the \"Denoising strength\" field with lower than 0.35" )
109
+ dbg.print(" (When using controlnet together, you can put in large values (even 1.0 is possible).)")
110
+ dbg.print("8. Fill in the remaining configuration fields of img2img. No image and mask settings are required.")
111
+ dbg.print("9. Drop any image onto the img2img main screen. This is necessary to avoid errors, but does not affect the results of img2img.")
112
+ dbg.print("10. Generate")
113
+ dbg.print("(Images are output to [" + img2img_key_path + "])")
114
+ dbg.print("!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!")
115
+ return process_end( dbg, "" )
116
+
117
+ elif stage_index == 3:
118
+ ebsynth_utility_stage3_5(dbg, project_args, color_matcher_method, st3_5_use_mask, st3_5_use_mask_ref, st3_5_use_mask_org, color_matcher_ref_type, color_matcher_ref_image)
119
+
120
+ elif stage_index == 4:
121
+ sample_image = glob.glob( os.path.join(frame_path , "*.png" ) )[0]
122
+ img_height, img_width, _ = cv2.imread(sample_image).shape
123
+
124
+ sample_img2img_key = glob.glob( os.path.join(img2img_key_path , "*.png" ) )[0]
125
+ img_height_key, img_width_key, _ = cv2.imread(sample_img2img_key).shape
126
+
127
+ if is_invert_mask:
128
+ project_dir = inv_path
129
+
130
+ dbg.print("stage 4")
131
+ dbg.print("")
132
+
133
+ if img_height == img_height_key and img_width == img_width_key:
134
+ dbg.print("!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!")
135
+ dbg.print("!! The size of frame and img2img_key matched.")
136
+ dbg.print("!! You can skip this stage.")
137
+
138
+ dbg.print("!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!")
139
+ dbg.print("0. Enable the following item")
140
+ dbg.print("Settings ->")
141
+ dbg.print(" Saving images/grids ->")
142
+ dbg.print(" Use original name for output filename during batch process in extras tab")
143
+ dbg.print("!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!")
144
+ dbg.print("1. If \"img2img_upscale_key\" directory already exists in the %s, delete it manually before executing."%(project_dir))
145
+ dbg.print("2. Go to Extras tab")
146
+ dbg.print("3. Go to Batch from Directory tab")
147
+ dbg.print("4. Fill in the \"Input directory\" field with [" + img2img_key_path + "]" )
148
+ dbg.print("5. Fill in the \"Output directory\" field with [" + img2img_upscale_key_path + "]" )
149
+ dbg.print("6. Go to Scale to tab")
150
+ dbg.print("7. Fill in the \"Width\" field with [" + str(img_width) + "]" )
151
+ dbg.print("8. Fill in the \"Height\" field with [" + str(img_height) + "]" )
152
+ dbg.print("9. Fill in the remaining configuration fields of Upscaler.")
153
+ dbg.print("10. Generate")
154
+ dbg.print("!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!")
155
+ return process_end( dbg, "" )
156
+ elif stage_index == 5:
157
+ ebsynth_utility_stage5(dbg, project_args, is_invert_mask)
158
+ elif stage_index == 6:
159
+
160
+ if is_invert_mask:
161
+ project_dir = inv_path
162
+
163
+ dbg.print("stage 6")
164
+ dbg.print("")
165
+ dbg.print("!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!")
166
+ dbg.print("Running ebsynth.(on your self)")
167
+ dbg.print("Open the generated .ebs under %s and press [Run All] button."%(project_dir))
168
+ dbg.print("If ""out-*"" directory already exists in the %s, delete it manually before executing."%(project_dir))
169
+ dbg.print("If multiple .ebs files are generated, run them all.")
170
+ dbg.print("(I recommend associating the .ebs file with EbSynth.exe.)")
171
+ dbg.print("!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!")
172
+ return process_end( dbg, "" )
173
+ elif stage_index == 7:
174
+ ebsynth_utility_stage7(dbg, project_args, blend_rate, export_type, is_invert_mask)
175
+ elif stage_index == 8:
176
+ if mask_mode != "Normal":
177
+ dbg.print("!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!")
178
+ dbg.print("Please reset [configuration]->[etc]->[Mask Mode] to Normal.")
179
+ dbg.print("!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!")
180
+ return process_end( dbg, "" )
181
+ ebsynth_utility_stage8(dbg, project_args, bg_src, bg_type, mask_blur_size, mask_threshold, fg_transparency, export_type)
182
+ else:
183
+ pass
184
+
185
+ return process_end( dbg, info )
ebsynth_utility/imgs/clipseg.png ADDED
ebsynth_utility/imgs/controlnet_0.png ADDED
ebsynth_utility/imgs/controlnet_1.png ADDED
ebsynth_utility/imgs/controlnet_option_in_ebsynthutil.png ADDED
ebsynth_utility/imgs/controlnet_setting.png ADDED
ebsynth_utility/imgs/sample1.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c5458eea82a691a584af26f51d1db728092069a3409c6f9eb2dd14fd2b71173
3
+ size 4824162
ebsynth_utility/imgs/sample2.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:537b8331b74d8ea49ee580aed138d460735ef897ab31ca694031d7a56d99ff72
3
+ size 2920523
ebsynth_utility/imgs/sample3.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c49739c2ef1f2ecaf14453f463e46b1a05de1688ce22b50200563a03b1758ddf
3
+ size 5161880
ebsynth_utility/imgs/sample4.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:62ed25263b6e5328a49460714c0b6e6ac46759921c87c91850f749f5bf068cfa
3
+ size 5617838
ebsynth_utility/imgs/sample5.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4e429cfef8b3ed7829ce3219895fcfdbbe94e1494a2e4dcd87988e03509c8d50
3
+ size 4190467
ebsynth_utility/imgs/sample6.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fb9a9ea8662ef1b7fc7151b987006eef8dd3598e320242bd87a2838ac8733df6
3
+ size 6890883
ebsynth_utility/imgs/sample_anyaheh.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4de4e9b9758cefe28c430f909da9dfc086e5b3510e9d0aa7becab7b4be355447
3
+ size 12159686
ebsynth_utility/imgs/sample_autotag.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4e904d68fc0fd9ac09ce153a9d54e9f1ce9f8db7cf5e96109c496f7e64924c92
3
+ size 7058129
ebsynth_utility/imgs/sample_clipseg.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:17701c5c3a376d3c4cf8ce0acfb991033830d56670ca3178eedd6e671e096af3
3
+ size 10249706
ebsynth_utility/install.py ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import launch
2
+
3
+ def update_transparent_background():
4
+ from importlib.metadata import version as meta_version
5
+ from packaging import version
6
+ v = meta_version("transparent-background")
7
+ print("current transparent-background " + v)
8
+ if version.parse(v) < version.parse('1.2.3'):
9
+ launch.run_pip("install -U transparent-background", "update transparent-background version for Ebsynth Utility")
10
+
11
+ if not launch.is_installed("transparent_background"):
12
+ launch.run_pip("install transparent-background", "requirements for Ebsynth Utility")
13
+
14
+ update_transparent_background()
15
+
16
+ if not launch.is_installed("IPython"):
17
+ launch.run_pip("install ipython", "requirements for Ebsynth Utility")
18
+
19
+ if not launch.is_installed("seaborn"):
20
+ launch.run_pip("install ""seaborn>=0.11.0""", "requirements for Ebsynth Utility")
21
+
22
+ if not launch.is_installed("color_matcher"):
23
+ launch.run_pip("install color-matcher", "requirements for Ebsynth Utility")
24
+
ebsynth_utility/sample/add_token.txt ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "target":"smile",
4
+ "min_score":0.5,
5
+ "token": ["lottalewds_v0", "1.2"],
6
+ "type":"lora"
7
+ },
8
+ {
9
+ "target":"smile",
10
+ "min_score":0.5,
11
+ "token": ["anyahehface", "score*1.2"],
12
+ "type":"normal"
13
+ },
14
+ {
15
+ "target":"smile",
16
+ "min_score":0.5,
17
+ "token": ["wicked smug", "score*1.2"],
18
+ "type":"normal"
19
+ },
20
+ {
21
+ "target":"smile",
22
+ "min_score":0.5,
23
+ "token": ["half closed eyes", "0.2 + score*0.3"],
24
+ "type":"normal"
25
+ },
26
+
27
+
28
+
29
+ {
30
+ "target":"test_token",
31
+ "min_score":0.8,
32
+ "token": ["lora_name_A", "0.5"],
33
+ "type":"lora"
34
+ },
35
+ {
36
+ "target":"test_token",
37
+ "min_score":0.5,
38
+ "token": ["bbbb", "score - 0.1"],
39
+ "type":"normal"
40
+ },
41
+ {
42
+ "target":"test_token2",
43
+ "min_score":0.8,
44
+ "token": ["hypernet_name_A", "score"],
45
+ "type":"hypernet"
46
+ },
47
+ {
48
+ "target":"test_token3",
49
+ "min_score":0.0,
50
+ "token": ["dddd", "score"],
51
+ "type":"normal"
52
+ }
53
+ ]
54
+
ebsynth_utility/sample/blacklist.txt ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ motion_blur
2
+ blurry
3
+ realistic
4
+ depth_of_field
5
+ mountain
6
+ tree
7
+ water
8
+ underwater
9
+ tongue
10
+ tongue_out
ebsynth_utility/scripts/__pycache__/custom_script.cpython-310.pyc ADDED
Binary file (25.8 kB). View file
 
ebsynth_utility/scripts/__pycache__/ui.cpython-310.pyc ADDED
Binary file (10.2 kB). View file
 
ebsynth_utility/scripts/custom_script.py ADDED
@@ -0,0 +1,1012 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import modules.scripts as scripts
2
+ import gradio as gr
3
+ import os
4
+ import torch
5
+ import random
6
+ import time
7
+ import pprint
8
+ import shutil
9
+
10
+ from modules.processing import process_images,Processed
11
+ from modules.paths import models_path
12
+ from modules.textual_inversion import autocrop
13
+ import modules.images
14
+ from modules import shared,deepbooru,masking
15
+ import cv2
16
+ import copy
17
+ import numpy as np
18
+ from PIL import Image,ImageOps
19
+ import glob
20
+ import requests
21
+ import json
22
+ import re
23
+ from extensions.ebsynth_utility.calculator import CalcParser,ParseError
24
+
25
+ def get_my_dir():
26
+ if os.path.isdir("extensions/ebsynth_utility"):
27
+ return "extensions/ebsynth_utility"
28
+ return scripts.basedir()
29
+
30
+ def x_ceiling(value, step):
31
+ return -(-value // step) * step
32
+
33
+ def remove_pngs_in_dir(path):
34
+ if not os.path.isdir(path):
35
+ return
36
+ pngs = glob.glob( os.path.join(path, "*.png") )
37
+ for png in pngs:
38
+ os.remove(png)
39
+
40
+ def resize_img(img, w, h):
41
+ if img.shape[0] + img.shape[1] < h + w:
42
+ interpolation = interpolation=cv2.INTER_CUBIC
43
+ else:
44
+ interpolation = interpolation=cv2.INTER_AREA
45
+
46
+ return cv2.resize(img, (w, h), interpolation=interpolation)
47
+
48
+ def download_and_cache_models(dirname):
49
+ download_url = 'https://github.com/zymk9/yolov5_anime/blob/8b50add22dbd8224904221be3173390f56046794/weights/yolov5s_anime.pt?raw=true'
50
+ model_file_name = 'yolov5s_anime.pt'
51
+
52
+ if not os.path.exists(dirname):
53
+ os.makedirs(dirname)
54
+
55
+ cache_file = os.path.join(dirname, model_file_name)
56
+ if not os.path.exists(cache_file):
57
+ print(f"downloading face detection model from '{download_url}' to '{cache_file}'")
58
+ response = requests.get(download_url)
59
+ with open(cache_file, "wb") as f:
60
+ f.write(response.content)
61
+
62
+ if os.path.exists(cache_file):
63
+ return cache_file
64
+ return None
65
+
66
+ class Script(scripts.Script):
67
+ anime_face_detector = None
68
+ face_detector = None
69
+ face_merge_mask_filename = "face_crop_img2img_mask.png"
70
+ face_merge_mask_image = None
71
+ prompts_dir = ""
72
+ calc_parser = None
73
+ is_invert_mask = False
74
+ controlnet_weight = 0.5
75
+ controlnet_weight_for_face = 0.5
76
+ add_tag_replace_underscore = False
77
+
78
+
79
+ # The title of the script. This is what will be displayed in the dropdown menu.
80
+ def title(self):
81
+ return "ebsynth utility"
82
+
83
+ # Determines when the script should be shown in the dropdown menu via the
84
+ # returned value. As an example:
85
+ # is_img2img is True if the current tab is img2img, and False if it is txt2img.
86
+ # Thus, return is_img2img to only show the script on the img2img tab.
87
+
88
+ def show(self, is_img2img):
89
+ return is_img2img
90
+
91
+ # How the script's is displayed in the UI. See https://gradio.app/docs/#components
92
+ # for the different UI components you can use and how to create them.
93
+ # Most UI components can return a value, such as a boolean for a checkbox.
94
+ # The returned values are passed to the run method as parameters.
95
+
96
+ def ui(self, is_img2img):
97
+ with gr.Column(variant='panel'):
98
+ with gr.Column():
99
+ project_dir = gr.Textbox(label='Project directory', lines=1)
100
+ generation_test = gr.Checkbox(False, label="Generation TEST!!(Ignore Project directory and use the image and mask specified in the main UI)")
101
+
102
+ with gr.Accordion("Mask option"):
103
+ mask_mode = gr.Dropdown(choices=["Normal","Invert","None","Don't Override"], value="Normal" ,label="Mask Mode(Override img2img Mask mode)")
104
+ inpaint_area = gr.Dropdown(choices=["Whole picture","Only masked","Don't Override"], type = "index", value="Only masked" ,label="Inpaint Area(Override img2img Inpaint area)")
105
+ use_depth = gr.Checkbox(True, label="Use Depth Map If exists in /video_key_depth")
106
+ gr.HTML(value="<p style='margin-bottom: 0.7em'>\
107
+ See \
108
+ <font color=\"blue\"><a href=\"https://github.com/thygate/stable-diffusion-webui-depthmap-script\">[here]</a></font> for depth map.\
109
+ </p>")
110
+
111
+ with gr.Accordion("ControlNet option"):
112
+ controlnet_weight = gr.Slider(minimum=0.0, maximum=2.0, step=0.01, value=0.5, label="Control Net Weight")
113
+ controlnet_weight_for_face = gr.Slider(minimum=0.0, maximum=2.0, step=0.01, value=0.5, label="Control Net Weight For Face")
114
+ use_preprocess_img = gr.Checkbox(True, label="Use Preprocess image If exists in /controlnet_preprocess")
115
+ gr.HTML(value="<p style='margin-bottom: 0.7em'>\
116
+ Please enable the following settings to use controlnet from this script.<br>\
117
+ <font color=\"red\">\
118
+ Settings->ControlNet->Allow other script to control this extension\
119
+ </font>\
120
+ </p>")
121
+
122
+ with gr.Accordion("Loopback option"):
123
+ img2img_repeat_count = gr.Slider(minimum=1, maximum=30, step=1, value=1, label="Img2Img Repeat Count (Loop Back)")
124
+ inc_seed = gr.Slider(minimum=0, maximum=9999999, step=1, value=1, label="Add N to seed when repeating ")
125
+
126
+ with gr.Accordion("Auto Tagging option"):
127
+ auto_tag_mode = gr.Dropdown(choices=["None","DeepDanbooru","CLIP"], value="None" ,label="Auto Tagging")
128
+ add_tag_to_head = gr.Checkbox(False, label="Add additional prompts to the head")
129
+ add_tag_replace_underscore = gr.Checkbox(False, label="Replace '_' with ' '(Does not affect the function to add tokens using add_token.txt.)")
130
+ gr.HTML(value="<p style='margin-bottom: 0.7em'>\
131
+ The results are stored in timestamp_prompts.txt.<br>\
132
+ If you want to use the same tagging results the next time you run img2img, rename the file to prompts.txt<br>\
133
+ Recommend enabling the following settings.<br>\
134
+ <font color=\"red\">\
135
+ Settings->Interrogate Option->Interrogate: include ranks of model tags matches in results\
136
+ </font>\
137
+ </p>")
138
+
139
+ with gr.Accordion("Face Crop option"):
140
+ is_facecrop = gr.Checkbox(False, label="use Face Crop img2img")
141
+
142
+ with gr.Row():
143
+ face_detection_method = gr.Dropdown(choices=["YuNet","Yolov5_anime"], value="YuNet" ,label="Face Detection Method")
144
+ gr.HTML(value="<p style='margin-bottom: 0.7em'>\
145
+ If loading of the Yolov5_anime model fails, check\
146
+ <font color=\"blue\"><a href=\"https://github.com/AUTOMATIC1111/stable-diffusion-webui/issues/2235\">[this]</a></font> solution.\
147
+ </p>")
148
+ face_crop_resolution = gr.Slider(minimum=128, maximum=2048, step=1, value=512, label="Face Crop Resolution")
149
+ max_crop_size = gr.Slider(minimum=0, maximum=2048, step=1, value=1024, label="Max Crop Size")
150
+ face_denoising_strength = gr.Slider(minimum=0.00, maximum=1.00, step=0.01, value=0.5, label="Face Denoising Strength")
151
+ face_area_magnification = gr.Slider(minimum=1.00, maximum=10.00, step=0.01, value=1.5, label="Face Area Magnification ")
152
+ disable_facecrop_lpbk_last_time = gr.Checkbox(False, label="Disable at the last loopback time")
153
+
154
+ with gr.Column():
155
+ enable_face_prompt = gr.Checkbox(False, label="Enable Face Prompt")
156
+ face_prompt = gr.Textbox(label="Face Prompt", show_label=False, lines=2,
157
+ placeholder="Prompt for Face",
158
+ value = "face close up,"
159
+ )
160
+
161
+ return [project_dir, generation_test, mask_mode, inpaint_area, use_depth, img2img_repeat_count, inc_seed, auto_tag_mode, add_tag_to_head, add_tag_replace_underscore, is_facecrop, face_detection_method, face_crop_resolution, max_crop_size, face_denoising_strength, face_area_magnification, enable_face_prompt, face_prompt, controlnet_weight, controlnet_weight_for_face, disable_facecrop_lpbk_last_time,use_preprocess_img]
162
+
163
+
164
+ def detect_face_from_img(self, img_array):
165
+ if not self.face_detector:
166
+ dnn_model_path = autocrop.download_and_cache_models(os.path.join(models_path, "opencv"))
167
+ self.face_detector = cv2.FaceDetectorYN.create(dnn_model_path, "", (0, 0))
168
+
169
+ self.face_detector.setInputSize((img_array.shape[1], img_array.shape[0]))
170
+ _, result = self.face_detector.detect(img_array)
171
+ return result
172
+
173
+ def detect_anime_face_from_img(self, img_array):
174
+ import sys
175
+
176
+ if not self.anime_face_detector:
177
+ if 'models' in sys.modules:
178
+ del sys.modules['models']
179
+
180
+ anime_model_path = download_and_cache_models(os.path.join(models_path, "yolov5_anime"))
181
+
182
+ if not os.path.isfile(anime_model_path):
183
+ print( "WARNING!! " + anime_model_path + " not found.")
184
+ print( "use YuNet instead.")
185
+ return self.detect_face_from_img(img_array)
186
+
187
+ self.anime_face_detector = torch.hub.load('ultralytics/yolov5', 'custom', path=anime_model_path)
188
+
189
+ # warmup
190
+ test = np.zeros([512,512,3],dtype=np.uint8)
191
+ _ = self.anime_face_detector(test)
192
+
193
+ result = self.anime_face_detector(img_array)
194
+ #models.common.Detections
195
+ faces = []
196
+ for x_c, y_c, w, h, _, _ in result.xywh[0].tolist():
197
+ faces.append( [ x_c - w/2 , y_c - h/2, w, h ] )
198
+
199
+ return faces
200
+
201
+ def detect_face(self, img, mask, face_detection_method, max_crop_size):
202
+ img_array = np.array(img)
203
+
204
+ # image without alpha
205
+ if img_array.shape[2] == 4:
206
+ img_array = img_array[:,:,:3]
207
+
208
+ if mask is not None:
209
+ if self.is_invert_mask:
210
+ mask = ImageOps.invert(mask)
211
+ mask_array = np.array(mask)/255
212
+ if mask_array.ndim == 2:
213
+ mask_array = mask_array[:, :, np.newaxis]
214
+
215
+ if mask_array.shape[2] == 4:
216
+ mask_array = mask_array[:,:,:3]
217
+
218
+ img_array = mask_array * img_array
219
+ img_array = img_array.astype(np.uint8)
220
+
221
+ if face_detection_method == "YuNet":
222
+ faces = self.detect_face_from_img(img_array)
223
+ elif face_detection_method == "Yolov5_anime":
224
+ faces = self.detect_anime_face_from_img(img_array)
225
+ else:
226
+ faces = self.detect_face_from_img(img_array)
227
+
228
+ if faces is None or len(faces) == 0:
229
+ return []
230
+
231
+ face_coords = []
232
+ for face in faces:
233
+ x = int(face[0])
234
+ y = int(face[1])
235
+ w = int(face[2])
236
+ h = int(face[3])
237
+ if max(w,h) > max_crop_size:
238
+ print("ignore big face")
239
+ continue
240
+ if w == 0 or h == 0:
241
+ print("ignore w,h = 0 face")
242
+ continue
243
+
244
+ face_coords.append( [ x/img_array.shape[1],y/img_array.shape[0],w/img_array.shape[1],h/img_array.shape[0]] )
245
+
246
+ return face_coords
247
+
248
+ def get_mask(self):
249
+ def create_mask( output, x_rate, y_rate, k_size ):
250
+ img = np.zeros((512, 512, 3))
251
+ img = cv2.ellipse(img, ((256, 256), (int(512 * x_rate), int(512 * y_rate)), 0), (255, 255, 255), thickness=-1)
252
+ img = cv2.GaussianBlur(img, (k_size, k_size), 0)
253
+ cv2.imwrite(output, img)
254
+
255
+ if self.face_merge_mask_image is None:
256
+ mask_file_path = os.path.join( get_my_dir() , self.face_merge_mask_filename)
257
+ if not os.path.isfile(mask_file_path):
258
+ create_mask( mask_file_path, 0.9, 0.9, 91)
259
+
260
+ m = cv2.imread( mask_file_path )[:,:,0]
261
+ m = m[:, :, np.newaxis]
262
+ self.face_merge_mask_image = m / 255
263
+
264
+ return self.face_merge_mask_image
265
+
266
+ def face_img_crop(self, img, face_coords,face_area_magnification):
267
+ img_array = np.array(img)
268
+ face_imgs =[]
269
+ new_coords = []
270
+
271
+ for face in face_coords:
272
+ x = int(face[0] * img_array.shape[1])
273
+ y = int(face[1] * img_array.shape[0])
274
+ w = int(face[2] * img_array.shape[1])
275
+ h = int(face[3] * img_array.shape[0])
276
+ print([x,y,w,h])
277
+
278
+ cx = x + int(w/2)
279
+ cy = y + int(h/2)
280
+
281
+ x = cx - int(w*face_area_magnification / 2)
282
+ x = x if x > 0 else 0
283
+ w = cx + int(w*face_area_magnification / 2) - x
284
+ w = w if x+w < img.width else img.width - x
285
+
286
+ y = cy - int(h*face_area_magnification / 2)
287
+ y = y if y > 0 else 0
288
+ h = cy + int(h*face_area_magnification / 2) - y
289
+ h = h if y+h < img.height else img.height - y
290
+
291
+ print([x,y,w,h])
292
+
293
+ face_imgs.append( img_array[y: y+h, x: x+w] )
294
+ new_coords.append( [x,y,w,h] )
295
+
296
+ resized = []
297
+ for face_img in face_imgs:
298
+ if face_img.shape[1] < face_img.shape[0]:
299
+ re_w = self.face_crop_resolution
300
+ re_h = int(x_ceiling( (self.face_crop_resolution / face_img.shape[1]) * face_img.shape[0] , 64))
301
+ else:
302
+ re_w = int(x_ceiling( (self.face_crop_resolution / face_img.shape[0]) * face_img.shape[1] , 64))
303
+ re_h = self.face_crop_resolution
304
+
305
+ face_img = resize_img(face_img, re_w, re_h)
306
+ resized.append( Image.fromarray(face_img))
307
+
308
+ return resized, new_coords
309
+
310
+ def face_crop_img2img(self, p, face_coords, face_denoising_strength, face_area_magnification, enable_face_prompt, face_prompt, controlnet_input_img, controlnet_input_face_imgs, preprocess_img_exist):
311
+
312
+ def merge_face(img, face_img, face_coord, base_img_size, mask):
313
+ x_rate = img.width / base_img_size[0]
314
+ y_rate = img.height / base_img_size[1]
315
+
316
+ img_array = np.array(img)
317
+ x = int(face_coord[0] * x_rate)
318
+ y = int(face_coord[1] * y_rate)
319
+ w = int(face_coord[2] * x_rate)
320
+ h = int(face_coord[3] * y_rate)
321
+
322
+ face_array = np.array(face_img)
323
+ face_array = resize_img(face_array, w, h)
324
+ mask = resize_img(mask, w, h)
325
+ if mask.ndim == 2:
326
+ mask = mask[:, :, np.newaxis]
327
+
328
+ bg = img_array[y: y+h, x: x+w]
329
+ img_array[y: y+h, x: x+w] = mask * face_array + (1-mask)*bg
330
+
331
+ return Image.fromarray(img_array)
332
+
333
+ base_img = p.init_images[0]
334
+
335
+ base_img_size = (base_img.width, base_img.height)
336
+
337
+ if face_coords is None or len(face_coords) == 0:
338
+ print("no face detected")
339
+ return process_images(p)
340
+
341
+ print(face_coords)
342
+ face_imgs, new_coords = self.face_img_crop(base_img, face_coords, face_area_magnification)
343
+
344
+ if not face_imgs:
345
+ return process_images(p)
346
+
347
+ face_p = copy.copy(p)
348
+
349
+ ### img2img base img
350
+ proc = self.process_images(p, controlnet_input_img, self.controlnet_weight, preprocess_img_exist)
351
+ print(proc.seed)
352
+
353
+ ### img2img for each face
354
+ face_img2img_results = []
355
+
356
+ for face, coord, controlnet_input_face in zip(face_imgs, new_coords, controlnet_input_face_imgs):
357
+ # cv2.imwrite("scripts/face.png", np.array(face)[:, :, ::-1])
358
+ face_p.init_images = [face]
359
+ face_p.width = face.width
360
+ face_p.height = face.height
361
+ face_p.denoising_strength = face_denoising_strength
362
+
363
+ if enable_face_prompt:
364
+ face_p.prompt = face_prompt
365
+ else:
366
+ face_p.prompt = "close-up face ," + face_p.prompt
367
+
368
+ if p.image_mask is not None:
369
+ x,y,w,h = coord
370
+ cropped_face_mask = Image.fromarray(np.array(p.image_mask)[y: y+h, x: x+w])
371
+ face_p.image_mask = modules.images.resize_image(0, cropped_face_mask, face.width, face.height)
372
+
373
+ face_proc = self.process_images(face_p, controlnet_input_face, self.controlnet_weight_for_face, preprocess_img_exist)
374
+ print(face_proc.seed)
375
+
376
+ face_img2img_results.append((face_proc.images[0], coord))
377
+
378
+ ### merge faces
379
+ bg = proc.images[0]
380
+ mask = self.get_mask()
381
+
382
+ for face_img, coord in face_img2img_results:
383
+ bg = merge_face(bg, face_img, coord, base_img_size, mask)
384
+
385
+ proc.images[0] = bg
386
+
387
+ return proc
388
+
389
+ def get_depth_map(self, mask, depth_path ,img_basename, is_invert_mask):
390
+ depth_img_path = os.path.join( depth_path , img_basename )
391
+
392
+ depth = None
393
+
394
+ if os.path.isfile( depth_img_path ):
395
+ depth = Image.open(depth_img_path)
396
+ else:
397
+ # try 00001-0000.png
398
+ os.path.splitext(img_basename)[0]
399
+ depth_img_path = os.path.join( depth_path , os.path.splitext(img_basename)[0] + "-0000.png" )
400
+ if os.path.isfile( depth_img_path ):
401
+ depth = Image.open(depth_img_path)
402
+
403
+ if depth:
404
+ if mask:
405
+ mask_array = np.array(mask)
406
+ depth_array = np.array(depth)
407
+
408
+ if is_invert_mask == False:
409
+ depth_array[mask_array[:,:,0] == 0] = 0
410
+ else:
411
+ depth_array[mask_array[:,:,0] != 0] = 0
412
+
413
+ depth = Image.fromarray(depth_array)
414
+
415
+ tmp_path = os.path.join( depth_path , "tmp" )
416
+ os.makedirs(tmp_path, exist_ok=True)
417
+ tmp_path = os.path.join( tmp_path , img_basename )
418
+ depth_array = depth_array.astype(np.uint16)
419
+ cv2.imwrite(tmp_path, depth_array)
420
+
421
+ mask = depth
422
+
423
+ return depth!=None, mask
424
+
425
+ ### auto tagging
426
+ debug_count = 0
427
+
428
+ def get_masked_image(self, image, mask_image):
429
+
430
+ if mask_image == None:
431
+ return image.convert("RGB")
432
+
433
+ mask = mask_image.convert('L')
434
+ if self.is_invert_mask:
435
+ mask = ImageOps.invert(mask)
436
+ crop_region = masking.get_crop_region(np.array(mask), 0)
437
+ # crop_region = masking.expand_crop_region(crop_region, self.width, self.height, mask.width, mask.height)
438
+ # x1, y1, x2, y2 = crop_region
439
+ image = image.crop(crop_region).convert("RGB")
440
+ mask = mask.crop(crop_region)
441
+
442
+ base_img = Image.new("RGB", image.size, (255, 190, 200))
443
+
444
+ image = Image.composite( image, base_img, mask )
445
+
446
+ # image.save("scripts/get_masked_image_test_"+ str(self.debug_count) + ".png")
447
+ # self.debug_count += 1
448
+
449
+ return image
450
+
451
+ def interrogate_deepdanbooru(self, imgs, masks):
452
+ prompts_dict = {}
453
+ cause_err = False
454
+
455
+ try:
456
+ deepbooru.model.start()
457
+
458
+ for img,mask in zip(imgs,masks):
459
+ key = os.path.basename(img)
460
+ print(key + " interrogate deepdanbooru")
461
+
462
+ image = Image.open(img)
463
+ mask_image = Image.open(mask) if mask else None
464
+ image = self.get_masked_image(image, mask_image)
465
+
466
+ prompt = deepbooru.model.tag_multi(image)
467
+
468
+ prompts_dict[key] = prompt
469
+ except Exception as e:
470
+ import traceback
471
+ traceback.print_exc()
472
+ print(e)
473
+ cause_err = True
474
+ finally:
475
+ deepbooru.model.stop()
476
+ if cause_err:
477
+ print("Exception occurred during auto-tagging(deepdanbooru)")
478
+ return Processed()
479
+
480
+ return prompts_dict
481
+
482
+
483
+ def interrogate_clip(self, imgs, masks):
484
+ from modules import devices, shared, lowvram, paths
485
+ import importlib
486
+ import models
487
+
488
+ caption_list = []
489
+ prompts_dict = {}
490
+ cause_err = False
491
+
492
+ try:
493
+ if shared.cmd_opts.lowvram or shared.cmd_opts.medvram:
494
+ lowvram.send_everything_to_cpu()
495
+ devices.torch_gc()
496
+
497
+ with paths.Prioritize("BLIP"):
498
+ importlib.reload(models)
499
+ shared.interrogator.load()
500
+
501
+ for img,mask in zip(imgs,masks):
502
+ key = os.path.basename(img)
503
+ print(key + " generate caption")
504
+
505
+ image = Image.open(img)
506
+ mask_image = Image.open(mask) if mask else None
507
+ image = self.get_masked_image(image, mask_image)
508
+
509
+ caption = shared.interrogator.generate_caption(image)
510
+ caption_list.append(caption)
511
+
512
+ shared.interrogator.send_blip_to_ram()
513
+ devices.torch_gc()
514
+
515
+ for img,mask,caption in zip(imgs,masks,caption_list):
516
+ key = os.path.basename(img)
517
+ print(key + " interrogate clip")
518
+
519
+ image = Image.open(img)
520
+ mask_image = Image.open(mask) if mask else None
521
+ image = self.get_masked_image(image, mask_image)
522
+
523
+ clip_image = shared.interrogator.clip_preprocess(image).unsqueeze(0).type(shared.interrogator.dtype).to(devices.device_interrogate)
524
+
525
+ res = ""
526
+
527
+ with torch.no_grad(), devices.autocast():
528
+ image_features = shared.interrogator.clip_model.encode_image(clip_image).type(shared.interrogator.dtype)
529
+ image_features /= image_features.norm(dim=-1, keepdim=True)
530
+
531
+ for name, topn, items in shared.interrogator.categories():
532
+ matches = shared.interrogator.rank(image_features, items, top_count=topn)
533
+ for match, score in matches:
534
+ if shared.opts.interrogate_return_ranks:
535
+ res += f", ({match}:{score/100:.3f})"
536
+ else:
537
+ res += ", " + match
538
+
539
+ prompts_dict[key] = (caption + res)
540
+
541
+ except Exception as e:
542
+ import traceback
543
+ traceback.print_exc()
544
+ print(e)
545
+ cause_err = True
546
+ finally:
547
+ shared.interrogator.unload()
548
+ if cause_err:
549
+ print("Exception occurred during auto-tagging(blip/clip)")
550
+ return Processed()
551
+
552
+ return prompts_dict
553
+
554
+
555
+ def remove_reserved_token(self, token_list):
556
+ reserved_list = ["pink_background","simple_background","pink","pink_theme"]
557
+
558
+ result_list = []
559
+
560
+ head_token = token_list[0]
561
+
562
+ if head_token[2] == "normal":
563
+ head_token_str = head_token[0].replace('pink background', '')
564
+ token_list[0] = (head_token_str, head_token[1], head_token[2])
565
+
566
+ for token in token_list:
567
+ if token[0] in reserved_list:
568
+ continue
569
+ result_list.append(token)
570
+
571
+ return result_list
572
+
573
+ def remove_blacklisted_token(self, token_list):
574
+ black_list_path = os.path.join(self.prompts_dir, "blacklist.txt")
575
+ if not os.path.isfile(black_list_path):
576
+ print(black_list_path + " not found.")
577
+ return token_list
578
+
579
+ with open(black_list_path) as f:
580
+ black_list = [s.strip() for s in f.readlines()]
581
+
582
+ result_list = []
583
+
584
+ for token in token_list:
585
+ if token[0] in black_list:
586
+ continue
587
+ result_list.append(token)
588
+
589
+ token_list = result_list
590
+
591
+ return token_list
592
+
593
+ def add_token(self, token_list):
594
+ add_list_path = os.path.join(self.prompts_dir, "add_token.txt")
595
+ if not os.path.isfile(add_list_path):
596
+ print(add_list_path + " not found.")
597
+
598
+ if self.add_tag_replace_underscore:
599
+ token_list = [ (x[0].replace("_"," "), x[1], x[2]) for x in token_list ]
600
+
601
+ return token_list
602
+
603
+ if not self.calc_parser:
604
+ self.calc_parser = CalcParser()
605
+
606
+ with open(add_list_path) as f:
607
+ add_list = json.load(f)
608
+ '''
609
+ [
610
+ {
611
+ "target":"test_token",
612
+ "min_score":0.8,
613
+ "token": ["lora_name_A", "0.5"],
614
+ "type":"lora"
615
+ },
616
+ {
617
+ "target":"test_token",
618
+ "min_score":0.5,
619
+ "token": ["bbbb", "score - 0.1"],
620
+ "type":"normal"
621
+ },
622
+ {
623
+ "target":"test_token2",
624
+ "min_score":0.8,
625
+ "token": ["hypernet_name_A", "score"],
626
+ "type":"hypernet"
627
+ },
628
+ {
629
+ "target":"test_token3",
630
+ "min_score":0.0,
631
+ "token": ["dddd", "score"],
632
+ "type":"normal"
633
+ }
634
+ ]
635
+ '''
636
+ result_list = []
637
+
638
+ for token in token_list:
639
+ for add_item in add_list:
640
+ if token[0] == add_item["target"]:
641
+ if token[1] > add_item["min_score"]:
642
+ # hit
643
+ formula = str(add_item["token"][1])
644
+ formula = formula.replace("score",str(token[1]))
645
+ print('Input: %s' % str(add_item["token"][1]))
646
+
647
+ try:
648
+ score = self.calc_parser.parse(formula)
649
+ score = round(score, 3)
650
+ except (ParseError, ZeroDivisionError) as e:
651
+ print('Input: %s' % str(add_item["token"][1]))
652
+ print('Error: %s' % e)
653
+ print("ignore this token")
654
+ continue
655
+
656
+ print("score = " + str(score))
657
+ result_list.append( ( add_item["token"][0], score, add_item["type"] ) )
658
+
659
+ if self.add_tag_replace_underscore:
660
+ token_list = [ (x[0].replace("_"," "), x[1], x[2]) for x in token_list ]
661
+
662
+ token_list = token_list + result_list
663
+
664
+ return token_list
665
+
666
+ def create_prompts_dict(self, imgs, masks, auto_tag_mode):
667
+ prompts_dict = {}
668
+
669
+ if auto_tag_mode == "DeepDanbooru":
670
+ raw_dict = self.interrogate_deepdanbooru(imgs, masks)
671
+ elif auto_tag_mode == "CLIP":
672
+ raw_dict = self.interrogate_clip(imgs, masks)
673
+
674
+ repatter = re.compile(r'\((.+)\:([0-9\.]+)\)')
675
+
676
+ for key, value_str in raw_dict.items():
677
+ value_list = [x.strip() for x in value_str.split(',')]
678
+
679
+ value = []
680
+ for v in value_list:
681
+ m = repatter.fullmatch(v)
682
+ if m:
683
+ value.append((m.group(1), float(m.group(2)), "normal"))
684
+ else:
685
+ value.append((v, 1, "no_score"))
686
+
687
+ # print(value)
688
+ value = self.remove_reserved_token(value)
689
+ # print(value)
690
+ value = self.remove_blacklisted_token(value)
691
+ # print(value)
692
+ value = self.add_token(value)
693
+ # print(value)
694
+
695
+ def create_token_str(x):
696
+ print(x)
697
+ if x[2] == "no_score":
698
+ return x[0]
699
+ elif x[2] == "lora":
700
+ return "<lora:" + x[0] + ":" + str(x[1]) + ">"
701
+ elif x[2] == "hypernet":
702
+ return "<hypernet:" + x[0] + ":" + str(x[1]) + ">"
703
+ else:
704
+ return "(" + x[0] + ":" + str(x[1]) + ")"
705
+
706
+ value_list = [create_token_str(x) for x in value]
707
+ value = ",".join(value_list)
708
+
709
+ prompts_dict[key] = value
710
+
711
+ return prompts_dict
712
+
713
+ def load_prompts_dict(self, imgs, default_token):
714
+ prompts_path = os.path.join(self.prompts_dir, "prompts.txt")
715
+ if not os.path.isfile(prompts_path):
716
+ print(prompts_path + " not found.")
717
+ return {}
718
+
719
+ prompts_dict = {}
720
+
721
+ print(prompts_path + " found!!")
722
+ print("skip auto tagging.")
723
+
724
+ with open(prompts_path) as f:
725
+ raw_dict = json.load(f)
726
+ prev_value = default_token
727
+ for img in imgs:
728
+ key = os.path.basename(img)
729
+
730
+ if key in raw_dict:
731
+ prompts_dict[key] = raw_dict[key]
732
+ prev_value = raw_dict[key]
733
+ else:
734
+ prompts_dict[key] = prev_value
735
+
736
+ return prompts_dict
737
+
738
+ def process_images(self, p, input_img, controlnet_weight, input_img_is_preprocessed):
739
+ p.control_net_input_image = input_img
740
+ p.control_net_weight = controlnet_weight
741
+ if input_img_is_preprocessed:
742
+ p.control_net_module = "none"
743
+ return process_images(p)
744
+
745
+ # This is where the additional processing is implemented. The parameters include
746
+ # self, the model object "p" (a StableDiffusionProcessing class, see
747
+ # processing.py), and the parameters returned by the ui method.
748
+ # Custom functions can be defined here, and additional libraries can be imported
749
+ # to be used in processing. The return value should be a Processed object, which is
750
+ # what is returned by the process_images method.
751
+ def run(self, p, project_dir, generation_test, mask_mode, inpaint_area, use_depth, img2img_repeat_count, inc_seed, auto_tag_mode, add_tag_to_head, add_tag_replace_underscore, is_facecrop, face_detection_method, face_crop_resolution, max_crop_size, face_denoising_strength, face_area_magnification, enable_face_prompt, face_prompt, controlnet_weight, controlnet_weight_for_face, disable_facecrop_lpbk_last_time, use_preprocess_img):
752
+ args = locals()
753
+
754
+ if generation_test:
755
+ print("generation_test")
756
+ test_proj_dir = os.path.join( get_my_dir() , "generation_test_proj")
757
+ os.makedirs(test_proj_dir, exist_ok=True)
758
+ test_video_key_path = os.path.join( test_proj_dir , "video_key")
759
+ os.makedirs(test_video_key_path, exist_ok=True)
760
+ test_video_mask_path = os.path.join( test_proj_dir , "video_mask")
761
+ os.makedirs(test_video_mask_path, exist_ok=True)
762
+
763
+ controlnet_input_path = os.path.join(test_proj_dir, "controlnet_input")
764
+ if os.path.isdir(controlnet_input_path):
765
+ shutil.rmtree(controlnet_input_path)
766
+
767
+ remove_pngs_in_dir(test_video_key_path)
768
+ remove_pngs_in_dir(test_video_mask_path)
769
+
770
+ test_base_img = p.init_images[0]
771
+ test_mask = p.image_mask
772
+
773
+ if test_base_img:
774
+ test_base_img.save( os.path.join( test_video_key_path , "00001.png") )
775
+ if test_mask:
776
+ test_mask.save( os.path.join( test_video_mask_path , "00001.png") )
777
+
778
+ project_dir = test_proj_dir
779
+ else:
780
+ if not os.path.isdir(project_dir):
781
+ print("project_dir not found")
782
+ return Processed()
783
+
784
+ self.controlnet_weight = controlnet_weight
785
+ self.controlnet_weight_for_face = controlnet_weight_for_face
786
+
787
+ self.add_tag_replace_underscore = add_tag_replace_underscore
788
+ self.face_crop_resolution = face_crop_resolution
789
+
790
+ if p.seed == -1:
791
+ p.seed = int(random.randrange(4294967294))
792
+
793
+ if mask_mode == "Normal":
794
+ p.inpainting_mask_invert = 0
795
+ elif mask_mode == "Invert":
796
+ p.inpainting_mask_invert = 1
797
+
798
+ if inpaint_area in (0,1): #"Whole picture","Only masked"
799
+ p.inpaint_full_res = inpaint_area
800
+
801
+ is_invert_mask = False
802
+ if mask_mode == "Invert":
803
+ is_invert_mask = True
804
+
805
+ inv_path = os.path.join(project_dir, "inv")
806
+ if not os.path.isdir(inv_path):
807
+ print("project_dir/inv not found")
808
+ return Processed()
809
+
810
+ org_key_path = os.path.join(inv_path, "video_key")
811
+ img2img_key_path = os.path.join(inv_path, "img2img_key")
812
+ depth_path = os.path.join(inv_path, "video_key_depth")
813
+
814
+ preprocess_path = os.path.join(inv_path, "controlnet_preprocess")
815
+
816
+ controlnet_input_path = os.path.join(inv_path, "controlnet_input")
817
+
818
+ self.prompts_dir = inv_path
819
+ self.is_invert_mask = True
820
+ else:
821
+ org_key_path = os.path.join(project_dir, "video_key")
822
+ img2img_key_path = os.path.join(project_dir, "img2img_key")
823
+ depth_path = os.path.join(project_dir, "video_key_depth")
824
+
825
+ preprocess_path = os.path.join(project_dir, "controlnet_preprocess")
826
+
827
+ controlnet_input_path = os.path.join(project_dir, "controlnet_input")
828
+
829
+ self.prompts_dir = project_dir
830
+ self.is_invert_mask = False
831
+
832
+ frame_mask_path = os.path.join(project_dir, "video_mask")
833
+
834
+ if not use_depth:
835
+ depth_path = None
836
+
837
+ if not os.path.isdir(org_key_path):
838
+ print(org_key_path + " not found")
839
+ print("Generate key frames first." if is_invert_mask == False else \
840
+ "Generate key frames first.(with [Ebsynth Utility] Tab -> [configuration] -> [etc]-> [Mask Mode] = Invert setting)")
841
+ return Processed()
842
+
843
+ if not os.path.isdir(controlnet_input_path):
844
+ print(controlnet_input_path + " not found")
845
+ print("copy {0} -> {1}".format(org_key_path,controlnet_input_path))
846
+
847
+ os.makedirs(controlnet_input_path, exist_ok=True)
848
+
849
+ imgs = glob.glob( os.path.join(org_key_path ,"*.png") )
850
+ for img in imgs:
851
+ img_basename = os.path.basename(img)
852
+ shutil.copy( img , os.path.join(controlnet_input_path, img_basename) )
853
+
854
+ remove_pngs_in_dir(img2img_key_path)
855
+ os.makedirs(img2img_key_path, exist_ok=True)
856
+
857
+
858
+ def get_mask_of_img(img):
859
+ img_basename = os.path.basename(img)
860
+
861
+ if mask_mode != "None":
862
+ mask_path = os.path.join( frame_mask_path , img_basename )
863
+ if os.path.isfile( mask_path ):
864
+ return mask_path
865
+ return ""
866
+
867
+ def get_pair_of_img(img, target_dir):
868
+ img_basename = os.path.basename(img)
869
+
870
+ pair_path = os.path.join( target_dir , img_basename )
871
+ if os.path.isfile( pair_path ):
872
+ return pair_path
873
+ print("!!! pair of "+ img + " not in " + target_dir)
874
+ return ""
875
+
876
+ def get_controlnet_input_img(img):
877
+ pair_img = get_pair_of_img(img, controlnet_input_path)
878
+ if not pair_img:
879
+ pair_img = get_pair_of_img(img, org_key_path)
880
+ return pair_img
881
+
882
+ imgs = glob.glob( os.path.join(org_key_path ,"*.png") )
883
+ masks = [ get_mask_of_img(i) for i in imgs ]
884
+ controlnet_input_imgs = [ get_controlnet_input_img(i) for i in imgs ]
885
+
886
+ for mask in masks:
887
+ m = cv2.imread(mask) if mask else None
888
+ if m is not None:
889
+ if m.max() == 0:
890
+ print("{0} blank mask found".format(mask))
891
+ if m.ndim == 2:
892
+ m[0,0] = 255
893
+ else:
894
+ m = m[:,:,:3]
895
+ m[0,0,0:3] = 255
896
+ cv2.imwrite(mask, m)
897
+
898
+ ######################
899
+ # face crop
900
+ face_coords_dict={}
901
+ for img,mask in zip(imgs,masks):
902
+ face_detected = False
903
+ if is_facecrop:
904
+ image = Image.open(img)
905
+ mask_image = Image.open(mask) if mask else None
906
+ face_coords = self.detect_face(image, mask_image, face_detection_method, max_crop_size)
907
+ if face_coords is None or len(face_coords) == 0:
908
+ print("no face detected")
909
+ else:
910
+ print("face detected")
911
+ face_detected = True
912
+
913
+ key = os.path.basename(img)
914
+ face_coords_dict[key] = face_coords if face_detected else []
915
+
916
+ with open( os.path.join( project_dir if is_invert_mask == False else inv_path,"faces.txt" ), "w") as f:
917
+ f.write(json.dumps(face_coords_dict,indent=4))
918
+
919
+ ######################
920
+ # prompts
921
+ prompts_dict = self.load_prompts_dict(imgs, p.prompt)
922
+
923
+ if not prompts_dict:
924
+ if auto_tag_mode != "None":
925
+ prompts_dict = self.create_prompts_dict(imgs, masks, auto_tag_mode)
926
+
927
+ for key, value in prompts_dict.items():
928
+ prompts_dict[key] = (value + "," + p.prompt) if add_tag_to_head else (p.prompt + "," + value)
929
+
930
+ else:
931
+ for img in imgs:
932
+ key = os.path.basename(img)
933
+ prompts_dict[key] = p.prompt
934
+
935
+ with open( os.path.join( project_dir if is_invert_mask == False else inv_path, time.strftime("%Y%m%d-%H%M%S_") + "prompts.txt" ), "w") as f:
936
+ f.write(json.dumps(prompts_dict,indent=4))
937
+
938
+
939
+ ######################
940
+ # img2img
941
+ for img, mask, controlnet_input_img, face_coords, prompts in zip(imgs, masks, controlnet_input_imgs, face_coords_dict.values(), prompts_dict.values()):
942
+
943
+ # Generation cancelled.
944
+ if shared.state.interrupted:
945
+ print("Generation cancelled.")
946
+ break
947
+
948
+ image = Image.open(img)
949
+ mask_image = Image.open(mask) if mask else None
950
+
951
+ img_basename = os.path.basename(img)
952
+
953
+ _p = copy.copy(p)
954
+
955
+ _p.init_images=[image]
956
+ _p.image_mask = mask_image
957
+ _p.prompt = prompts
958
+ resized_mask = None
959
+
960
+ repeat_count = img2img_repeat_count
961
+
962
+ if mask_mode != "None" or use_depth:
963
+ if use_depth:
964
+ depth_found, _p.image_mask = self.get_depth_map( mask_image, depth_path ,img_basename, is_invert_mask )
965
+ mask_image = _p.image_mask
966
+ if depth_found:
967
+ _p.inpainting_mask_invert = 0
968
+
969
+ preprocess_img_exist = False
970
+ controlnet_input_base_img = Image.open(controlnet_input_img) if controlnet_input_img else None
971
+
972
+ if use_preprocess_img:
973
+ preprocess_img = os.path.join(preprocess_path, img_basename)
974
+ if os.path.isfile( preprocess_img ):
975
+ controlnet_input_base_img = Image.open(preprocess_img)
976
+ preprocess_img_exist = True
977
+
978
+ if face_coords:
979
+ controlnet_input_face_imgs, _ = self.face_img_crop(controlnet_input_base_img, face_coords, face_area_magnification)
980
+
981
+ while repeat_count > 0:
982
+
983
+ if disable_facecrop_lpbk_last_time:
984
+ if img2img_repeat_count > 1:
985
+ if repeat_count == 1:
986
+ face_coords = None
987
+
988
+ if face_coords:
989
+ proc = self.face_crop_img2img(_p, face_coords, face_denoising_strength, face_area_magnification, enable_face_prompt, face_prompt, controlnet_input_base_img, controlnet_input_face_imgs, preprocess_img_exist)
990
+ else:
991
+ proc = self.process_images(_p, controlnet_input_base_img, self.controlnet_weight, preprocess_img_exist)
992
+ print(proc.seed)
993
+
994
+ repeat_count -= 1
995
+
996
+ if repeat_count > 0:
997
+ _p.init_images=[proc.images[0]]
998
+
999
+ if mask_image is not None and resized_mask is None:
1000
+ resized_mask = resize_img(np.array(mask_image) , proc.images[0].width, proc.images[0].height)
1001
+ resized_mask = Image.fromarray(resized_mask)
1002
+ _p.image_mask = resized_mask
1003
+ _p.seed += inc_seed
1004
+
1005
+ proc.images[0].save( os.path.join( img2img_key_path , img_basename ) )
1006
+
1007
+ with open( os.path.join( project_dir if is_invert_mask == False else inv_path,"param.txt" ), "w") as f:
1008
+ f.write(pprint.pformat(proc.info))
1009
+ with open( os.path.join( project_dir if is_invert_mask == False else inv_path ,"args.txt" ), "w") as f:
1010
+ f.write(pprint.pformat(args))
1011
+
1012
+ return proc
ebsynth_utility/scripts/ui.py ADDED
@@ -0,0 +1,199 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ import gradio as gr
3
+
4
+ from ebsynth_utility import ebsynth_utility_process
5
+ from modules import script_callbacks
6
+ from modules.call_queue import wrap_gradio_gpu_call
7
+
8
+ def on_ui_tabs():
9
+
10
+ with gr.Blocks(analytics_enabled=False) as ebs_interface:
11
+ with gr.Row().style(equal_height=False):
12
+ with gr.Column(variant='panel'):
13
+
14
+ with gr.Row():
15
+ with gr.Tabs(elem_id="ebs_settings"):
16
+ with gr.TabItem('project setting', elem_id='ebs_project_setting'):
17
+ project_dir = gr.Textbox(label='Project directory', lines=1)
18
+ original_movie_path = gr.Textbox(label='Original Movie Path', lines=1)
19
+
20
+ org_video = gr.Video(interactive=True, mirror_webcam=False)
21
+ def fn_upload_org_video(video):
22
+ return video
23
+ org_video.upload(fn_upload_org_video, org_video, original_movie_path)
24
+ gr.HTML(value="<p style='margin-bottom: 1.2em'>\
25
+ If you have trouble entering the video path manually, you can also use drag and drop.For large videos, please enter the path manually. \
26
+ </p>")
27
+
28
+ with gr.TabItem('configuration', elem_id='ebs_configuration'):
29
+ with gr.Tabs(elem_id="ebs_configuration_tab"):
30
+ with gr.TabItem(label="stage 1",elem_id='ebs_configuration_tab1'):
31
+ with gr.Row():
32
+ frame_width = gr.Number(value=-1, label="Frame Width", precision=0, interactive=True)
33
+ frame_height = gr.Number(value=-1, label="Frame Height", precision=0, interactive=True)
34
+ gr.HTML(value="<p style='margin-bottom: 1.2em'>\
35
+ -1 means that it is calculated automatically. If both are -1, the size will be the same as the source size. \
36
+ </p>")
37
+
38
+ st1_masking_method_index = gr.Radio(label='Masking Method', choices=["transparent-background","clipseg","transparent-background AND clipseg"], value="transparent-background", type="index")
39
+
40
+ with gr.Accordion(label="transparent-background options"):
41
+ st1_mask_threshold = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label='Mask Threshold', value=0.0)
42
+
43
+ # https://pypi.org/project/transparent-background/
44
+ gr.HTML(value="<p style='margin-bottom: 0.7em'>\
45
+ configuration for \
46
+ <font color=\"blue\"><a href=\"https://pypi.org/project/transparent-background\">[transparent-background]</a></font>\
47
+ </p>")
48
+ tb_use_fast_mode = gr.Checkbox(label="Use Fast Mode(It will be faster, but the quality of the mask will be lower.)", value=False)
49
+ tb_use_jit = gr.Checkbox(label="Use Jit", value=False)
50
+
51
+ with gr.Accordion(label="clipseg options"):
52
+ clipseg_mask_prompt = gr.Textbox(label='Mask Target (e.g., girl, cats)', lines=1)
53
+ clipseg_exclude_prompt = gr.Textbox(label='Exclude Target (e.g., finger, book)', lines=1)
54
+ clipseg_mask_threshold = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label='Mask Threshold', value=0.4)
55
+ clipseg_mask_blur_size = gr.Slider(minimum=0, maximum=150, step=1, label='Mask Blur Kernel Size(MedianBlur)', value=11)
56
+ clipseg_mask_blur_size2 = gr.Slider(minimum=0, maximum=150, step=1, label='Mask Blur Kernel Size(GaussianBlur)', value=11)
57
+
58
+ with gr.TabItem(label="stage 2", elem_id='ebs_configuration_tab2'):
59
+ key_min_gap = gr.Slider(minimum=0, maximum=500, step=1, label='Minimum keyframe gap', value=10)
60
+ key_max_gap = gr.Slider(minimum=0, maximum=1000, step=1, label='Maximum keyframe gap', value=300)
61
+ key_th = gr.Slider(minimum=0.0, maximum=100.0, step=0.1, label='Threshold of delta frame edge', value=8.5)
62
+ key_add_last_frame = gr.Checkbox(label="Add last frame to keyframes", value=True)
63
+
64
+ with gr.TabItem(label="stage 3.5", elem_id='ebs_configuration_tab3_5'):
65
+ gr.HTML(value="<p style='margin-bottom: 0.7em'>\
66
+ <font color=\"blue\"><a href=\"https://github.com/hahnec/color-matcher\">[color-matcher]</a></font>\
67
+ </p>")
68
+
69
+ color_matcher_method = gr.Radio(label='Color Transfer Method', choices=['default', 'hm', 'reinhard', 'mvgd', 'mkl', 'hm-mvgd-hm', 'hm-mkl-hm'], value="hm-mkl-hm", type="value")
70
+ color_matcher_ref_type = gr.Radio(label='Color Matcher Ref Image Type', choices=['original video frame', 'first frame of img2img result'], value="original video frame", type="index")
71
+ gr.HTML(value="<p style='margin-bottom: 0.7em'>\
72
+ <font color=\"red\">If an image is specified below, it will be used with highest priority.</font>\
73
+ </p>")
74
+ color_matcher_ref_image = gr.Image(label="Color Matcher Ref Image", source='upload', mirror_webcam=False, type='pil')
75
+ st3_5_use_mask = gr.Checkbox(label="Apply mask to the result", value=True)
76
+ st3_5_use_mask_ref = gr.Checkbox(label="Apply mask to the Ref Image", value=False)
77
+ st3_5_use_mask_org = gr.Checkbox(label="Apply mask to original image", value=False)
78
+ #st3_5_number_of_itr = gr.Slider(minimum=1, maximum=10, step=1, label='Number of iterations', value=1)
79
+
80
+ with gr.TabItem(label="stage 7", elem_id='ebs_configuration_tab7'):
81
+ blend_rate = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label='Crossfade blend rate', value=1.0)
82
+ export_type = gr.Dropdown(choices=["mp4","webm","gif","rawvideo"], value="mp4" ,label="Export type")
83
+
84
+ with gr.TabItem(label="stage 8", elem_id='ebs_configuration_tab8'):
85
+ bg_src = gr.Textbox(label='Background source(mp4 or directory containing images)', lines=1)
86
+ bg_type = gr.Dropdown(choices=["Fit video length","Loop"], value="Fit video length" ,label="Background type")
87
+ mask_blur_size = gr.Slider(minimum=0, maximum=150, step=1, label='Mask Blur Kernel Size', value=5)
88
+ mask_threshold = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label='Mask Threshold', value=0.0)
89
+ #is_transparent = gr.Checkbox(label="Is Transparent", value=True, visible = False)
90
+ fg_transparency = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label='Foreground Transparency', value=0.0)
91
+
92
+ with gr.TabItem(label="etc", elem_id='ebs_configuration_tab_etc'):
93
+ mask_mode = gr.Dropdown(choices=["Normal","Invert","None"], value="Normal" ,label="Mask Mode")
94
+
95
+ with gr.Column(variant='panel'):
96
+ with gr.Column(scale=1):
97
+ with gr.Group():
98
+ debug_info = gr.HTML(elem_id="ebs_info_area", value=".")
99
+
100
+ with gr.Column(scale=2):
101
+ stage_index = gr.Radio(label='Process Stage', choices=["stage 1","stage 2","stage 3","stage 3.5","stage 4","stage 5","stage 6","stage 7","stage 8"], value="stage 1", type="index")
102
+ gr.HTML(value="<p style='margin-bottom: 0.7em'>\
103
+ The process of creating a video can be divided into the following stages.<br>\
104
+ (Stage 3, 4, and 6 only show a guide and do nothing actual processing.)<br><br>\
105
+ <b>stage 1</b> <br>\
106
+ Extract frames from the original video. <br>\
107
+ Generate a mask image. <br><br>\
108
+ <b>stage 2</b> <br>\
109
+ Select keyframes to be given to ebsynth.<br><br>\
110
+ <b>stage 3</b> <br>\
111
+ img2img keyframes.<br><br>\
112
+ <b>stage 3.5</b> <br>\
113
+ (this is optional. Perform color correction on the img2img results and expect flickering to decrease. Or, you can simply change the color tone from the generated result.)<br><br>\
114
+ <b>stage 4</b> <br>\
115
+ and upscale to the size of the original video.<br><br>\
116
+ <b>stage 5</b> <br>\
117
+ Rename keyframes.<br>\
118
+ Generate .ebs file.(ebsynth project file)<br><br>\
119
+ <b>stage 6</b> <br>\
120
+ Running ebsynth.(on your self)<br>\
121
+ Open the generated .ebs under project directory and press [Run All] button. <br>\
122
+ If ""out-*"" directory already exists in the Project directory, delete it manually before executing.<br>\
123
+ If multiple .ebs files are generated, run them all.<br><br>\
124
+ <b>stage 7</b> <br>\
125
+ Concatenate each frame while crossfading.<br>\
126
+ Composite audio files extracted from the original video onto the concatenated video.<br><br>\
127
+ <b>stage 8</b> <br>\
128
+ This is an extra stage.<br>\
129
+ You can put any image or images or video you like in the background.<br>\
130
+ You can specify in this field -> [Ebsynth Utility]->[configuration]->[stage 8]->[Background source]<br>\
131
+ If you have already created a background video in Invert Mask Mode([Ebsynth Utility]->[configuration]->[etc]->[Mask Mode]),<br>\
132
+ You can specify \"path_to_project_dir/inv/crossfade_tmp\".<br>\
133
+ </p>")
134
+
135
+ with gr.Row():
136
+ generate_btn = gr.Button('Generate', elem_id="ebs_generate_btn", variant='primary')
137
+
138
+ with gr.Group():
139
+ html_info = gr.HTML()
140
+
141
+
142
+ ebs_args = dict(
143
+ fn=wrap_gradio_gpu_call(ebsynth_utility_process),
144
+ inputs=[
145
+ stage_index,
146
+
147
+ project_dir,
148
+ original_movie_path,
149
+
150
+ frame_width,
151
+ frame_height,
152
+ st1_masking_method_index,
153
+ st1_mask_threshold,
154
+ tb_use_fast_mode,
155
+ tb_use_jit,
156
+ clipseg_mask_prompt,
157
+ clipseg_exclude_prompt,
158
+ clipseg_mask_threshold,
159
+ clipseg_mask_blur_size,
160
+ clipseg_mask_blur_size2,
161
+
162
+ key_min_gap,
163
+ key_max_gap,
164
+ key_th,
165
+ key_add_last_frame,
166
+
167
+ color_matcher_method,
168
+ st3_5_use_mask,
169
+ st3_5_use_mask_ref,
170
+ st3_5_use_mask_org,
171
+ color_matcher_ref_type,
172
+ color_matcher_ref_image,
173
+
174
+ blend_rate,
175
+ export_type,
176
+
177
+ bg_src,
178
+ bg_type,
179
+ mask_blur_size,
180
+ mask_threshold,
181
+ fg_transparency,
182
+
183
+ mask_mode,
184
+
185
+ ],
186
+ outputs=[
187
+ debug_info,
188
+ html_info,
189
+ ],
190
+ show_progress=False,
191
+ )
192
+ generate_btn.click(**ebs_args)
193
+
194
+ return (ebs_interface, "Ebsynth Utility", "ebs_interface"),
195
+
196
+
197
+
198
+ script_callbacks.on_ui_tabs(on_ui_tabs)
199
+
ebsynth_utility/stage1.py ADDED
@@ -0,0 +1,258 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import subprocess
3
+ import glob
4
+ import cv2
5
+ import re
6
+
7
+ from transformers import AutoProcessor, CLIPSegForImageSegmentation
8
+ from PIL import Image
9
+ import torch
10
+ import numpy as np
11
+
12
+
13
+ def resize_img(img, w, h):
14
+ if img.shape[0] + img.shape[1] < h + w:
15
+ interpolation = interpolation=cv2.INTER_CUBIC
16
+ else:
17
+ interpolation = interpolation=cv2.INTER_AREA
18
+
19
+ return cv2.resize(img, (w, h), interpolation=interpolation)
20
+
21
+ def resize_all_img(path, frame_width, frame_height):
22
+ if not os.path.isdir(path):
23
+ return
24
+
25
+ pngs = glob.glob( os.path.join(path, "*.png") )
26
+ img = cv2.imread(pngs[0])
27
+ org_h,org_w = img.shape[0],img.shape[1]
28
+
29
+ if frame_width == -1 and frame_height == -1:
30
+ return
31
+ elif frame_width == -1 and frame_height != -1:
32
+ frame_width = int(frame_height * org_w / org_h)
33
+ elif frame_width != -1 and frame_height == -1:
34
+ frame_height = int(frame_width * org_h / org_w)
35
+ else:
36
+ pass
37
+ print("({0},{1}) resize to ({2},{3})".format(org_w, org_h, frame_width, frame_height))
38
+
39
+ for png in pngs:
40
+ img = cv2.imread(png)
41
+ img = resize_img(img, frame_width, frame_height)
42
+ cv2.imwrite(png, img)
43
+
44
+ def remove_pngs_in_dir(path):
45
+ if not os.path.isdir(path):
46
+ return
47
+
48
+ pngs = glob.glob( os.path.join(path, "*.png") )
49
+ for png in pngs:
50
+ os.remove(png)
51
+
52
+ def create_and_mask(mask_dir1, mask_dir2, output_dir):
53
+ masks = glob.glob( os.path.join(mask_dir1, "*.png") )
54
+
55
+ for mask1 in masks:
56
+ base_name = os.path.basename(mask1)
57
+ print("combine {0}".format(base_name))
58
+
59
+ mask2 = os.path.join(mask_dir2, base_name)
60
+ if not os.path.isfile(mask2):
61
+ print("{0} not found!!! -> skip".format(mask2))
62
+ continue
63
+
64
+ img_1 = cv2.imread(mask1)
65
+ img_2 = cv2.imread(mask2)
66
+ img_1 = np.minimum(img_1,img_2)
67
+
68
+ out_path = os.path.join(output_dir, base_name)
69
+ cv2.imwrite(out_path, img_1)
70
+
71
+
72
+ def create_mask_clipseg(input_dir, output_dir, clipseg_mask_prompt, clipseg_exclude_prompt, clipseg_mask_threshold, mask_blur_size, mask_blur_size2):
73
+ from modules import devices
74
+
75
+ devices.torch_gc()
76
+
77
+ device = devices.get_optimal_device_name()
78
+
79
+ processor = AutoProcessor.from_pretrained("CIDAS/clipseg-rd64-refined")
80
+ model = CLIPSegForImageSegmentation.from_pretrained("CIDAS/clipseg-rd64-refined")
81
+ model.to(device)
82
+
83
+ imgs = glob.glob( os.path.join(input_dir, "*.png") )
84
+ texts = [x.strip() for x in clipseg_mask_prompt.split(',')]
85
+ exclude_texts = [x.strip() for x in clipseg_exclude_prompt.split(',')] if clipseg_exclude_prompt else None
86
+
87
+ if exclude_texts:
88
+ all_texts = texts + exclude_texts
89
+ else:
90
+ all_texts = texts
91
+
92
+
93
+ for img_count,img in enumerate(imgs):
94
+ image = Image.open(img)
95
+ base_name = os.path.basename(img)
96
+
97
+ inputs = processor(text=all_texts, images=[image] * len(all_texts), padding="max_length", return_tensors="pt")
98
+ inputs = inputs.to(device)
99
+
100
+ with torch.no_grad(), devices.autocast():
101
+ outputs = model(**inputs)
102
+
103
+ if len(all_texts) == 1:
104
+ preds = outputs.logits.unsqueeze(0)
105
+ else:
106
+ preds = outputs.logits
107
+
108
+ mask_img = None
109
+
110
+ for i in range(len(all_texts)):
111
+ x = torch.sigmoid(preds[i])
112
+ x = x.to('cpu').detach().numpy()
113
+
114
+ # x[x < clipseg_mask_threshold] = 0
115
+ x = x > clipseg_mask_threshold
116
+
117
+ if i < len(texts):
118
+ if mask_img is None:
119
+ mask_img = x
120
+ else:
121
+ mask_img = np.maximum(mask_img,x)
122
+ else:
123
+ mask_img[x > 0] = 0
124
+
125
+ mask_img = mask_img*255
126
+ mask_img = mask_img.astype(np.uint8)
127
+
128
+ if mask_blur_size > 0:
129
+ mask_blur_size = mask_blur_size//2 * 2 + 1
130
+ mask_img = cv2.medianBlur(mask_img, mask_blur_size)
131
+
132
+ if mask_blur_size2 > 0:
133
+ mask_blur_size2 = mask_blur_size2//2 * 2 + 1
134
+ mask_img = cv2.GaussianBlur(mask_img, (mask_blur_size2, mask_blur_size2), 0)
135
+
136
+ mask_img = resize_img(mask_img, image.width, image.height)
137
+
138
+ mask_img = cv2.cvtColor(mask_img, cv2.COLOR_GRAY2RGB)
139
+ save_path = os.path.join(output_dir, base_name)
140
+ cv2.imwrite(save_path, mask_img)
141
+
142
+ print("{0} / {1}".format( img_count+1,len(imgs) ))
143
+
144
+ devices.torch_gc()
145
+
146
+
147
+ def create_mask_transparent_background(input_dir, output_dir, tb_use_fast_mode, tb_use_jit, st1_mask_threshold):
148
+ fast_str = " --fast" if tb_use_fast_mode else ""
149
+ jit_str = " --jit" if tb_use_jit else ""
150
+ venv = "venv"
151
+ if 'VIRTUAL_ENV' in os.environ:
152
+ venv = os.environ['VIRTUAL_ENV']
153
+ bin_path = os.path.join(venv, "Scripts")
154
+ bin_path = os.path.join(bin_path, "transparent-background")
155
+
156
+ if os.path.isfile(bin_path) or os.path.isfile(bin_path + ".exe"):
157
+ subprocess.call(bin_path + " --source " + input_dir + " --dest " + output_dir + " --type map" + fast_str + jit_str, shell=True)
158
+ else:
159
+ subprocess.call("transparent-background --source " + input_dir + " --dest " + output_dir + " --type map" + fast_str + jit_str, shell=True)
160
+
161
+ mask_imgs = glob.glob( os.path.join(output_dir, "*.png") )
162
+
163
+ for m in mask_imgs:
164
+ img = cv2.imread(m)
165
+ img[img < int( 255 * st1_mask_threshold )] = 0
166
+ cv2.imwrite(m, img)
167
+
168
+ p = re.compile(r'([0-9]+)_[a-z]*\.png')
169
+
170
+ for mask in mask_imgs:
171
+ base_name = os.path.basename(mask)
172
+ m = p.fullmatch(base_name)
173
+ if m:
174
+ os.rename(mask, os.path.join(output_dir, m.group(1) + ".png"))
175
+
176
+ def ebsynth_utility_stage1(dbg, project_args, frame_width, frame_height, st1_masking_method_index, st1_mask_threshold, tb_use_fast_mode, tb_use_jit, clipseg_mask_prompt, clipseg_exclude_prompt, clipseg_mask_threshold, clipseg_mask_blur_size, clipseg_mask_blur_size2, is_invert_mask):
177
+ dbg.print("stage1")
178
+ dbg.print("")
179
+
180
+ if st1_masking_method_index == 1 and (not clipseg_mask_prompt):
181
+ dbg.print("Error: clipseg_mask_prompt is Empty")
182
+ return
183
+
184
+ project_dir, original_movie_path, frame_path, frame_mask_path, _, _, _ = project_args
185
+
186
+ if is_invert_mask:
187
+ if os.path.isdir( frame_path ) and os.path.isdir( frame_mask_path ):
188
+ dbg.print("Skip as it appears that the frame and normal masks have already been generated.")
189
+ return
190
+
191
+ # remove_pngs_in_dir(frame_path)
192
+
193
+ if frame_mask_path:
194
+ remove_pngs_in_dir(frame_mask_path)
195
+
196
+ if frame_mask_path:
197
+ os.makedirs(frame_mask_path, exist_ok=True)
198
+
199
+ if os.path.isdir( frame_path ):
200
+ dbg.print("Skip frame extraction")
201
+ else:
202
+ os.makedirs(frame_path, exist_ok=True)
203
+
204
+ png_path = os.path.join(frame_path , "%05d.png")
205
+ # ffmpeg.exe -ss 00:00:00 -y -i %1 -qscale 0 -f image2 -c:v png "%05d.png"
206
+ subprocess.call("ffmpeg -ss 00:00:00 -y -i " + original_movie_path + " -qscale 0 -f image2 -c:v png " + png_path, shell=True)
207
+
208
+ dbg.print("frame extracted")
209
+
210
+ frame_width = max(frame_width,-1)
211
+ frame_height = max(frame_height,-1)
212
+
213
+ if frame_width != -1 or frame_height != -1:
214
+ resize_all_img(frame_path, frame_width, frame_height)
215
+
216
+ if frame_mask_path:
217
+ if st1_masking_method_index == 0:
218
+ create_mask_transparent_background(frame_path, frame_mask_path, tb_use_fast_mode, tb_use_jit, st1_mask_threshold)
219
+ elif st1_masking_method_index == 1:
220
+ create_mask_clipseg(frame_path, frame_mask_path, clipseg_mask_prompt, clipseg_exclude_prompt, clipseg_mask_threshold, clipseg_mask_blur_size, clipseg_mask_blur_size2)
221
+ elif st1_masking_method_index == 2:
222
+ tb_tmp_path = os.path.join(project_dir , "tb_mask_tmp")
223
+ if not os.path.isdir( tb_tmp_path ):
224
+ os.makedirs(tb_tmp_path, exist_ok=True)
225
+ create_mask_transparent_background(frame_path, tb_tmp_path, tb_use_fast_mode, tb_use_jit, st1_mask_threshold)
226
+ create_mask_clipseg(frame_path, frame_mask_path, clipseg_mask_prompt, clipseg_exclude_prompt, clipseg_mask_threshold, clipseg_mask_blur_size, clipseg_mask_blur_size2)
227
+ create_and_mask(tb_tmp_path,frame_mask_path,frame_mask_path)
228
+
229
+
230
+ dbg.print("mask created")
231
+
232
+ dbg.print("")
233
+ dbg.print("completed.")
234
+
235
+
236
+ def ebsynth_utility_stage1_invert(dbg, frame_mask_path, inv_mask_path):
237
+ dbg.print("stage 1 create_invert_mask")
238
+ dbg.print("")
239
+
240
+ if not os.path.isdir( frame_mask_path ):
241
+ dbg.print( frame_mask_path + " not found")
242
+ dbg.print("Normal masks must be generated previously.")
243
+ dbg.print("Do stage 1 with [Ebsynth Utility] Tab -> [configuration] -> [etc]-> [Mask Mode] = Normal setting first")
244
+ return
245
+
246
+ os.makedirs(inv_mask_path, exist_ok=True)
247
+
248
+ mask_imgs = glob.glob( os.path.join(frame_mask_path, "*.png") )
249
+
250
+ for m in mask_imgs:
251
+ img = cv2.imread(m)
252
+ inv = cv2.bitwise_not(img)
253
+
254
+ base_name = os.path.basename(m)
255
+ cv2.imwrite(os.path.join(inv_mask_path,base_name), inv)
256
+
257
+ dbg.print("")
258
+ dbg.print("completed.")
ebsynth_utility/stage2.py ADDED
@@ -0,0 +1,173 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import cv2
2
+ import os
3
+ import glob
4
+ import shutil
5
+ import numpy as np
6
+ import math
7
+
8
+ #---------------------------------
9
+ # Copied from PySceneDetect
10
+ def mean_pixel_distance(left: np.ndarray, right: np.ndarray) -> float:
11
+ """Return the mean average distance in pixel values between `left` and `right`.
12
+ Both `left and `right` should be 2 dimensional 8-bit images of the same shape.
13
+ """
14
+ assert len(left.shape) == 2 and len(right.shape) == 2
15
+ assert left.shape == right.shape
16
+ num_pixels: float = float(left.shape[0] * left.shape[1])
17
+ return (np.sum(np.abs(left.astype(np.int32) - right.astype(np.int32))) / num_pixels)
18
+
19
+
20
+ def estimated_kernel_size(frame_width: int, frame_height: int) -> int:
21
+ """Estimate kernel size based on video resolution."""
22
+ size: int = 4 + round(math.sqrt(frame_width * frame_height) / 192)
23
+ if size % 2 == 0:
24
+ size += 1
25
+ return size
26
+
27
+ _kernel = None
28
+
29
+ def _detect_edges(lum: np.ndarray) -> np.ndarray:
30
+ global _kernel
31
+ """Detect edges using the luma channel of a frame.
32
+ Arguments:
33
+ lum: 2D 8-bit image representing the luma channel of a frame.
34
+ Returns:
35
+ 2D 8-bit image of the same size as the input, where pixels with values of 255
36
+ represent edges, and all other pixels are 0.
37
+ """
38
+ # Initialize kernel.
39
+ if _kernel is None:
40
+ kernel_size = estimated_kernel_size(lum.shape[1], lum.shape[0])
41
+ _kernel = np.ones((kernel_size, kernel_size), np.uint8)
42
+
43
+ # Estimate levels for thresholding.
44
+ sigma: float = 1.0 / 3.0
45
+ median = np.median(lum)
46
+ low = int(max(0, (1.0 - sigma) * median))
47
+ high = int(min(255, (1.0 + sigma) * median))
48
+
49
+ # Calculate edges using Canny algorithm, and reduce noise by dilating the edges.
50
+ # This increases edge overlap leading to improved robustness against noise and slow
51
+ # camera movement. Note that very large kernel sizes can negatively affect accuracy.
52
+ edges = cv2.Canny(lum, low, high)
53
+ return cv2.dilate(edges, _kernel)
54
+
55
+ #---------------------------------
56
+
57
+ def detect_edges(img_path, mask_path, is_invert_mask):
58
+ im = cv2.imread(img_path)
59
+ if mask_path:
60
+ mask = cv2.imread(mask_path)[:,:,0]
61
+ mask = mask[:, :, np.newaxis]
62
+ im = im * ( (mask == 0) if is_invert_mask else (mask > 0) )
63
+ # im = im * (mask/255)
64
+ # im = im.astype(np.uint8)
65
+ # cv2.imwrite( os.path.join( os.path.dirname(mask_path) , "tmp.png" ) , im)
66
+
67
+ hue, sat, lum = cv2.split(cv2.cvtColor( im , cv2.COLOR_BGR2HSV))
68
+ return _detect_edges(lum)
69
+
70
+ def get_mask_path_of_img(img_path, mask_dir):
71
+ img_basename = os.path.basename(img_path)
72
+ mask_path = os.path.join( mask_dir , img_basename )
73
+ return mask_path if os.path.isfile( mask_path ) else None
74
+
75
+ def analyze_key_frames(png_dir, mask_dir, th, min_gap, max_gap, add_last_frame, is_invert_mask):
76
+ keys = []
77
+
78
+ frames = sorted(glob.glob( os.path.join(png_dir, "[0-9]*.png") ))
79
+
80
+ key_frame = frames[0]
81
+ keys.append( int(os.path.splitext(os.path.basename(key_frame))[0]) )
82
+ key_edges = detect_edges( key_frame, get_mask_path_of_img( key_frame, mask_dir ), is_invert_mask )
83
+ gap = 0
84
+
85
+ for frame in frames:
86
+ gap += 1
87
+ if gap < min_gap:
88
+ continue
89
+
90
+ edges = detect_edges( frame, get_mask_path_of_img( frame, mask_dir ), is_invert_mask )
91
+
92
+ delta = mean_pixel_distance( edges, key_edges )
93
+
94
+ _th = th * (max_gap - gap)/max_gap
95
+
96
+ if _th < delta:
97
+ basename_without_ext = os.path.splitext(os.path.basename(frame))[0]
98
+ keys.append( int(basename_without_ext) )
99
+ key_frame = frame
100
+ key_edges = edges
101
+ gap = 0
102
+
103
+ if add_last_frame:
104
+ basename_without_ext = os.path.splitext(os.path.basename(frames[-1]))[0]
105
+ last_frame = int(basename_without_ext)
106
+ if not last_frame in keys:
107
+ keys.append( last_frame )
108
+
109
+ return keys
110
+
111
+ def remove_pngs_in_dir(path):
112
+ if not os.path.isdir(path):
113
+ return
114
+
115
+ pngs = glob.glob( os.path.join(path, "*.png") )
116
+ for png in pngs:
117
+ os.remove(png)
118
+
119
+ def ebsynth_utility_stage2(dbg, project_args, key_min_gap, key_max_gap, key_th, key_add_last_frame, is_invert_mask):
120
+ dbg.print("stage2")
121
+ dbg.print("")
122
+
123
+ _, original_movie_path, frame_path, frame_mask_path, org_key_path, _, _ = project_args
124
+
125
+ remove_pngs_in_dir(org_key_path)
126
+ os.makedirs(org_key_path, exist_ok=True)
127
+
128
+ fps = 30
129
+ clip = cv2.VideoCapture(original_movie_path)
130
+ if clip:
131
+ fps = clip.get(cv2.CAP_PROP_FPS)
132
+ clip.release()
133
+
134
+ if key_min_gap == -1:
135
+ key_min_gap = int(10 * fps/30)
136
+ else:
137
+ key_min_gap = max(1, key_min_gap)
138
+ key_min_gap = int(key_min_gap * fps/30)
139
+
140
+ if key_max_gap == -1:
141
+ key_max_gap = int(300 * fps/30)
142
+ else:
143
+ key_max_gap = max(10, key_max_gap)
144
+ key_max_gap = int(key_max_gap * fps/30)
145
+
146
+ key_min_gap,key_max_gap = (key_min_gap,key_max_gap) if key_min_gap < key_max_gap else (key_max_gap,key_min_gap)
147
+
148
+ dbg.print("fps: {}".format(fps))
149
+ dbg.print("key_min_gap: {}".format(key_min_gap))
150
+ dbg.print("key_max_gap: {}".format(key_max_gap))
151
+ dbg.print("key_th: {}".format(key_th))
152
+
153
+ keys = analyze_key_frames(frame_path, frame_mask_path, key_th, key_min_gap, key_max_gap, key_add_last_frame, is_invert_mask)
154
+
155
+ dbg.print("keys : " + str(keys))
156
+
157
+ for k in keys:
158
+ filename = str(k).zfill(5) + ".png"
159
+ shutil.copy( os.path.join( frame_path , filename) , os.path.join(org_key_path, filename) )
160
+
161
+
162
+ dbg.print("")
163
+ dbg.print("Keyframes are output to [" + org_key_path + "]")
164
+ dbg.print("")
165
+ dbg.print("[Ebsynth Utility]->[configuration]->[stage 2]->[Threshold of delta frame edge]")
166
+ dbg.print("The smaller this value, the narrower the keyframe spacing, and if set to 0, the keyframes will be equally spaced at the value of [Minimum keyframe gap].")
167
+ dbg.print("")
168
+ dbg.print("If you do not like the selection, you can modify it manually.")
169
+ dbg.print("(Delete keyframe, or Add keyframe from ["+frame_path+"])")
170
+
171
+ dbg.print("")
172
+ dbg.print("completed.")
173
+
ebsynth_utility/stage3_5.py ADDED
@@ -0,0 +1,178 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import cv2
2
+ import os
3
+ import glob
4
+ import shutil
5
+ import numpy as np
6
+ from PIL import Image
7
+
8
+ from color_matcher import ColorMatcher
9
+ from color_matcher.normalizer import Normalizer
10
+
11
+ def resize_img(img, w, h):
12
+ if img.shape[0] + img.shape[1] < h + w:
13
+ interpolation = interpolation=cv2.INTER_CUBIC
14
+ else:
15
+ interpolation = interpolation=cv2.INTER_AREA
16
+
17
+ return cv2.resize(img, (w, h), interpolation=interpolation)
18
+
19
+ def get_pair_of_img(img_path, target_dir):
20
+ img_basename = os.path.basename(img_path)
21
+ target_path = os.path.join( target_dir , img_basename )
22
+ return target_path if os.path.isfile( target_path ) else None
23
+
24
+ def remove_pngs_in_dir(path):
25
+ if not os.path.isdir(path):
26
+ return
27
+
28
+ pngs = glob.glob( os.path.join(path, "*.png") )
29
+ for png in pngs:
30
+ os.remove(png)
31
+
32
+ def get_pair_of_img(img, target_dir):
33
+ img_basename = os.path.basename(img)
34
+
35
+ pair_path = os.path.join( target_dir , img_basename )
36
+ if os.path.isfile( pair_path ):
37
+ return pair_path
38
+ print("!!! pair of "+ img + " not in " + target_dir)
39
+ return ""
40
+
41
+ def get_mask_array(mask_path):
42
+ if not mask_path:
43
+ return None
44
+ mask_array = np.asarray(Image.open( mask_path ))
45
+ if mask_array.ndim == 2:
46
+ mask_array = mask_array[:, :, np.newaxis]
47
+ mask_array = mask_array[:,:,:1]
48
+ mask_array = mask_array/255
49
+ return mask_array
50
+
51
+ def color_match(imgs, ref_image, color_matcher_method, dst_path):
52
+ cm = ColorMatcher(method=color_matcher_method)
53
+
54
+ i = 0
55
+ total = len(imgs)
56
+
57
+ for fname in imgs:
58
+
59
+ img_src = Image.open(fname)
60
+ img_src = Normalizer(np.asarray(img_src)).type_norm()
61
+
62
+ img_src = cm.transfer(src=img_src, ref=ref_image, method=color_matcher_method)
63
+
64
+ img_src = Normalizer(img_src).uint8_norm()
65
+ Image.fromarray(img_src).save(os.path.join(dst_path, os.path.basename(fname)))
66
+
67
+ i += 1
68
+ print("{0}/{1}".format(i, total))
69
+
70
+ imgs = sorted( glob.glob( os.path.join(dst_path, "*.png") ) )
71
+
72
+
73
+ def ebsynth_utility_stage3_5(dbg, project_args, color_matcher_method, st3_5_use_mask, st3_5_use_mask_ref, st3_5_use_mask_org, color_matcher_ref_type, color_matcher_ref_image):
74
+ dbg.print("stage3.5")
75
+ dbg.print("")
76
+
77
+ _, _, frame_path, frame_mask_path, org_key_path, img2img_key_path, _ = project_args
78
+
79
+ backup_path = os.path.join( os.path.join( img2img_key_path, "..") , "st3_5_backup_img2img_key")
80
+ backup_path = os.path.normpath(backup_path)
81
+
82
+ if not os.path.isdir( backup_path ):
83
+ dbg.print("{0} not found -> create backup.".format(backup_path))
84
+ os.makedirs(backup_path, exist_ok=True)
85
+
86
+ imgs = glob.glob( os.path.join(img2img_key_path, "*.png") )
87
+
88
+ for img in imgs:
89
+ img_basename = os.path.basename(img)
90
+ pair_path = os.path.join( backup_path , img_basename )
91
+ shutil.copy( img , pair_path)
92
+
93
+ else:
94
+ dbg.print("{0} found -> Treat the images here as originals.".format(backup_path))
95
+
96
+ org_imgs = sorted( glob.glob( os.path.join(backup_path, "*.png") ) )
97
+ head_of_keyframe = org_imgs[0]
98
+
99
+ # open ref img
100
+ ref_image = color_matcher_ref_image
101
+ if not ref_image:
102
+ dbg.print("color_matcher_ref_image not set")
103
+
104
+ if color_matcher_ref_type == 0:
105
+ #'original video frame'
106
+ dbg.print("select -> original video frame")
107
+ ref_image = Image.open( get_pair_of_img(head_of_keyframe, frame_path) )
108
+ else:
109
+ #'first frame of img2img result'
110
+ dbg.print("select -> first frame of img2img result")
111
+ ref_image = Image.open( get_pair_of_img(head_of_keyframe, backup_path) )
112
+
113
+ ref_image = np.asarray(ref_image)
114
+
115
+ if st3_5_use_mask_ref:
116
+ mask = get_pair_of_img(head_of_keyframe, frame_mask_path)
117
+ if mask:
118
+ mask_array = get_mask_array( mask )
119
+ ref_image = ref_image * mask_array
120
+ ref_image = ref_image.astype(np.uint8)
121
+
122
+ else:
123
+ dbg.print("select -> color_matcher_ref_image")
124
+ ref_image = np.asarray(ref_image)
125
+
126
+
127
+ if color_matcher_method in ('mvgd', 'hm-mvgd-hm'):
128
+ sample_img = Image.open(head_of_keyframe)
129
+ ref_image = resize_img( ref_image, sample_img.width, sample_img.height )
130
+
131
+ ref_image = Normalizer(ref_image).type_norm()
132
+
133
+
134
+ if st3_5_use_mask_org:
135
+ tmp_path = os.path.join( os.path.join( img2img_key_path, "..") , "st3_5_tmp")
136
+ tmp_path = os.path.normpath(tmp_path)
137
+ dbg.print("create {0} for masked original image".format(tmp_path))
138
+
139
+ remove_pngs_in_dir(tmp_path)
140
+ os.makedirs(tmp_path, exist_ok=True)
141
+
142
+ for org_img in org_imgs:
143
+ image_basename = os.path.basename(org_img)
144
+
145
+ org_image = np.asarray(Image.open(org_img))
146
+
147
+ mask = get_pair_of_img(org_img, frame_mask_path)
148
+ if mask:
149
+ mask_array = get_mask_array( mask )
150
+ org_image = org_image * mask_array
151
+ org_image = org_image.astype(np.uint8)
152
+
153
+ Image.fromarray(org_image).save( os.path.join( tmp_path, image_basename ) )
154
+
155
+ org_imgs = sorted( glob.glob( os.path.join(tmp_path, "*.png") ) )
156
+
157
+
158
+ color_match(org_imgs, ref_image, color_matcher_method, img2img_key_path)
159
+
160
+
161
+ if st3_5_use_mask or st3_5_use_mask_org:
162
+ imgs = sorted( glob.glob( os.path.join(img2img_key_path, "*.png") ) )
163
+ for img in imgs:
164
+ mask = get_pair_of_img(img, frame_mask_path)
165
+ if mask:
166
+ mask_array = get_mask_array( mask )
167
+ bg = get_pair_of_img(img, frame_path)
168
+ bg_image = np.asarray(Image.open( bg ))
169
+ fg_image = np.asarray(Image.open( img ))
170
+
171
+ final_img = fg_image * mask_array + bg_image * (1-mask_array)
172
+ final_img = final_img.astype(np.uint8)
173
+
174
+ Image.fromarray(final_img).save(img)
175
+
176
+ dbg.print("")
177
+ dbg.print("completed.")
178
+
ebsynth_utility/stage5.py ADDED
@@ -0,0 +1,279 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import cv2
2
+ import re
3
+ import os
4
+ import glob
5
+ import time
6
+
7
+ from sys import byteorder
8
+ import binascii
9
+ import numpy as np
10
+
11
+ SYNTHS_PER_PROJECT = 15
12
+
13
+ def to_float_bytes(f):
14
+ if byteorder == 'little':
15
+ return np.array([ float(f) ], dtype='<f4').tobytes()
16
+ else:
17
+ return np.array([ float(f) ], dtype='>f4').tobytes()
18
+
19
+ def path2framenum(path):
20
+ return int( os.path.splitext(os.path.basename( path ))[0] )
21
+
22
+ def search_key_dir(key_dir):
23
+ frames = glob.glob( os.path.join(key_dir ,"[0-9]*.png"), recursive=False)
24
+
25
+ frames = sorted(frames)
26
+
27
+ basename = os.path.splitext(os.path.basename( frames[0] ))[0]
28
+
29
+ key_list = [ path2framenum(key) for key in frames ]
30
+
31
+ print("digits = " + str(len(basename)))
32
+ print("keys = " + str(key_list))
33
+
34
+ return len(basename), key_list
35
+
36
+
37
+ def search_video_dir(video_dir):
38
+ frames = glob.glob( os.path.join(video_dir, "[0-9]*.png"), recursive=False)
39
+
40
+ frames = sorted(frames)
41
+
42
+ first = path2framenum( frames[0] )
43
+ last = path2framenum( frames[-1] )
44
+
45
+ return first, last
46
+
47
+ def export_project( project, proj_filename ):
48
+
49
+ proj_path = os.path.join( project["proj_dir"] , proj_filename + ".ebs")
50
+
51
+ with open(proj_path, 'wb') as f:
52
+ # header
53
+ f.write( binascii.unhexlify('45') )
54
+ f.write( binascii.unhexlify('42') )
55
+ f.write( binascii.unhexlify('53') )
56
+ f.write( binascii.unhexlify('30') )
57
+ f.write( binascii.unhexlify('35') )
58
+ f.write( binascii.unhexlify('00') )
59
+
60
+ # video
61
+ f.write( len( project["video_dir"] + project["file_name"]).to_bytes(4, byteorder) )
62
+ f.write( (project["video_dir"] + project["file_name"]).encode() )
63
+
64
+ # mask
65
+ if project["mask_dir"]:
66
+ f.write( len( project["mask_dir"] + project["file_name"]).to_bytes(4, byteorder) )
67
+ f.write( (project["mask_dir"] + project["file_name"]).encode() )
68
+ else:
69
+ f.write( int(0).to_bytes(4, byteorder) )
70
+
71
+ # key
72
+ f.write( len( project["key_dir"] + project["file_name"]).to_bytes(4, byteorder) )
73
+ f.write( (project["key_dir"] + project["file_name"]).encode() )
74
+
75
+ # mask on flag
76
+ if project["mask_dir"]:
77
+ f.write( int(1).to_bytes(1, byteorder) )
78
+ else:
79
+ f.write( int(0).to_bytes(1, byteorder) )
80
+
81
+
82
+ # keyframe weight
83
+ f.write( to_float_bytes( project["key_weight"] ) )
84
+
85
+ # video weight
86
+ f.write( to_float_bytes( project["video_weight"] ) )
87
+
88
+ # mask weight
89
+ f.write( to_float_bytes( project["mask_weight"] ) )
90
+
91
+ # mapping
92
+ f.write( to_float_bytes( project["adv_mapping"] ) )
93
+
94
+ # de-flicker
95
+ f.write( to_float_bytes( project["adv_de-flicker"] ) )
96
+
97
+ # diversity
98
+ f.write( to_float_bytes( project["adv_diversity"] ) )
99
+
100
+
101
+ # num of synths
102
+ f.write( len( project["synth_list"] ).to_bytes(4, byteorder) )
103
+
104
+ # synth
105
+ for synth in project["synth_list"]:
106
+ # key frame
107
+ f.write( int( synth["key"] ).to_bytes(4, byteorder) )
108
+ # is start frame exist
109
+ f.write( int(1).to_bytes(1, byteorder) )
110
+ # is end frame exist
111
+ f.write( int(1).to_bytes(1, byteorder) )
112
+ # start frame
113
+ f.write( int( synth["prev_key"] ).to_bytes(4, byteorder) )
114
+ # end frame
115
+ f.write( int( synth["next_key"] ).to_bytes(4, byteorder) )
116
+
117
+ # out path
118
+ path = "out-" + str(synth["key"]).zfill( project["number_of_digits"] ) + project["file_name"]
119
+ f.write( len(path).to_bytes(4, byteorder) )
120
+ f.write( path.encode() )
121
+
122
+ # ?
123
+ f.write( binascii.unhexlify('56') )
124
+ f.write( binascii.unhexlify('30') )
125
+ f.write( binascii.unhexlify('32') )
126
+ f.write( binascii.unhexlify('00') )
127
+
128
+ # synthesis detail
129
+ f.write( int( project["adv_detail"] ).to_bytes(1, byteorder) )
130
+
131
+ # padding
132
+ f.write( binascii.unhexlify('00') )
133
+ f.write( binascii.unhexlify('00') )
134
+ f.write( binascii.unhexlify('00') )
135
+
136
+ # use gpu
137
+ f.write( int( project["adv_gpu"] ).to_bytes(1, byteorder) )
138
+
139
+ # ?
140
+ f.write( binascii.unhexlify('00') )
141
+ f.write( binascii.unhexlify('00') )
142
+ f.write( binascii.unhexlify('F0') )
143
+ f.write( binascii.unhexlify('41') )
144
+ f.write( binascii.unhexlify('C0') )
145
+ f.write( binascii.unhexlify('02') )
146
+ f.write( binascii.unhexlify('00') )
147
+ f.write( binascii.unhexlify('00') )
148
+
149
+
150
+ def rename_keys(key_dir):
151
+ imgs = glob.glob(os.path.join(key_dir, "*.png"), recursive=False)
152
+
153
+ if not imgs:
154
+ print('no files in %s' % key_dir)
155
+ return
156
+
157
+ p = re.compile(r'([0-9]+).*\.png')
158
+
159
+ for img in imgs:
160
+
161
+ filename = os.path.basename(img)
162
+
163
+ m = p.fullmatch(filename)
164
+
165
+ if m:
166
+ f = m.group(1) + ".png"
167
+ dirname = os.path.dirname(img)
168
+ os.rename(img, os.path.join(dirname, f))
169
+
170
+ def ebsynth_utility_stage5(dbg, project_args, is_invert_mask):
171
+ dbg.print("stage5")
172
+ dbg.print("")
173
+
174
+ project_dir, _, frame_path, frame_mask_path, _, img2img_key_path, img2img_upscale_key_path = project_args
175
+
176
+ if not os.path.isdir(project_dir):
177
+ dbg.print('project_dir : no such dir %s' % project_dir)
178
+ return
179
+ if not os.path.isdir(frame_path):
180
+ dbg.print('frame_path : no such dir %s' % frame_path)
181
+ return
182
+
183
+ no_upscale = False
184
+
185
+ if not os.path.isdir(img2img_upscale_key_path):
186
+ dbg.print('img2img_upscale_key_path : no such dir %s' % img2img_upscale_key_path)
187
+ if not os.path.isdir(img2img_key_path):
188
+ return
189
+
190
+ sample_img2img_key = glob.glob( os.path.join(img2img_key_path , "*.png" ) )[0]
191
+ img_height1, img_width1, _ = cv2.imread(sample_img2img_key).shape
192
+ sample_frame = glob.glob( os.path.join(frame_path , "*.png" ) )[0]
193
+ img_height2, img_width2, _ = cv2.imread(sample_frame).shape
194
+
195
+ if img_height1 != img_height2 or img_width1 != img_width2:
196
+ return
197
+
198
+ dbg.print('The size of frame and img2img_key matched. use %s instead' % img2img_key_path)
199
+ img2img_upscale_key_path = img2img_key_path
200
+ no_upscale = True
201
+
202
+ else:
203
+ rename_keys(img2img_upscale_key_path)
204
+
205
+ number_of_digits, keys = search_key_dir( img2img_upscale_key_path )
206
+
207
+ if number_of_digits == -1:
208
+ dbg.print('no key frame')
209
+ return
210
+
211
+ first_frame, last_frame = search_video_dir( frame_path )
212
+
213
+ ### add next key
214
+ synth_list = []
215
+ next_key = last_frame
216
+
217
+ for key in keys[::-1]:
218
+ synth_list.append( { "next_key": next_key })
219
+ next_key = key
220
+
221
+ synth_list = synth_list[::-1]
222
+ prev_key = first_frame
223
+
224
+ ### add key / prev key
225
+ for i, key in enumerate(keys):
226
+ synth_list[i]["key"] = key
227
+ synth_list[i]["prev_key"] = prev_key
228
+ prev_key = key
229
+
230
+ project = {
231
+ "proj_dir" : project_dir if is_invert_mask == False else os.path.join(project_dir, "inv"),
232
+ "file_name" : "/[" + "#" * number_of_digits + "].png",
233
+ "number_of_digits" : number_of_digits,
234
+
235
+ "key_dir" : "img2img_upscale_key" if no_upscale == False else "img2img_key",
236
+ "video_dir" : "video_frame" if is_invert_mask == False else "../video_frame",
237
+ "mask_dir" : "video_mask" if is_invert_mask == False else "inv_video_mask",
238
+ "key_weight" : 1.0,
239
+ "video_weight" : 4.0,
240
+ "mask_weight" : 1.0,
241
+ "adv_mapping" : 10.0,
242
+ "adv_de-flicker" : 1.0,
243
+ "adv_diversity" : 3500.0,
244
+ "adv_detail" : 1, # high
245
+ "adv_gpu" : 1, # use gpu
246
+ }
247
+
248
+ if not frame_mask_path:
249
+ # no mask
250
+ project["mask_dir"] = ""
251
+
252
+ proj_base_name = time.strftime("%Y%m%d-%H%M%S")
253
+ if is_invert_mask:
254
+ proj_base_name = "inv_" + proj_base_name
255
+
256
+ tmp=[]
257
+ proj_index = 0
258
+ for i, synth in enumerate(synth_list):
259
+ tmp.append(synth)
260
+ if (i % SYNTHS_PER_PROJECT == SYNTHS_PER_PROJECT-1):
261
+ project["synth_list"] = tmp
262
+ proj_file_name = proj_base_name + "_" + str(proj_index).zfill(5)
263
+ export_project( project, proj_file_name )
264
+ proj_index += 1
265
+ tmp = []
266
+ dbg.print("exported : " + proj_file_name + ".ebs" )
267
+
268
+ if tmp:
269
+ project["synth_list"] = tmp
270
+ proj_file_name = proj_base_name + "_" + str(proj_index).zfill(5)
271
+ export_project( project, proj_file_name )
272
+ proj_index += 1
273
+ dbg.print("exported : " + proj_file_name + ".ebs" )
274
+
275
+ dbg.print("")
276
+ dbg.print("completed.")
277
+
278
+
279
+
ebsynth_utility/stage7.py ADDED
@@ -0,0 +1,234 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import re
3
+ import subprocess
4
+ import glob
5
+ import shutil
6
+ import time
7
+ import cv2
8
+ import numpy as np
9
+
10
+
11
+ def clamp(n, smallest, largest):
12
+ return sorted([smallest, n, largest])[1]
13
+
14
+
15
+ def create_movie_from_frames( dir, start, end, number_of_digits, fps, output_path, export_type):
16
+ def get_export_str(export_type):
17
+ if export_type == "mp4":
18
+ return " -vcodec libx264 -pix_fmt yuv420p "
19
+ elif export_type == "webm":
20
+ # return " -vcodec vp9 -crf 10 -b:v 0 "
21
+ return " -crf 40 -b:v 0 -threads 4 "
22
+ elif export_type == "gif":
23
+ return " "
24
+ elif export_type == "rawvideo":
25
+ return " -vcodec rawvideo -pix_fmt bgr24 "
26
+
27
+ vframes = end - start + 1
28
+ path = os.path.join(dir , '%0' + str(number_of_digits) + 'd.png')
29
+
30
+ # ffmpeg -r 10 -start_number n -i snapshot_%03d.png -vframes 50 example.gif
31
+ subprocess.call("ffmpeg -framerate " + str(fps) + " -r " + str(fps) +
32
+ " -start_number " + str(start) +
33
+ " -i " + path +
34
+ " -vframes " + str( vframes ) +
35
+ get_export_str(export_type) +
36
+ output_path, shell=True)
37
+
38
+
39
+ def search_out_dirs(proj_dir, blend_rate):
40
+ ### create out_dirs
41
+ p = re.compile(r'.*[\\\/]out\-([0-9]+)[\\\/]')
42
+
43
+ number_of_digits = -1
44
+
45
+ out_dirs=[]
46
+ for d in glob.glob( os.path.join(proj_dir ,"out-*/"), recursive=False):
47
+ m = p.fullmatch(d)
48
+ if m:
49
+ if number_of_digits == -1:
50
+ number_of_digits = len(m.group(1))
51
+ out_dirs.append({ 'keyframe':int(m.group(1)), 'path':d })
52
+
53
+ out_dirs = sorted(out_dirs, key=lambda x: x['keyframe'], reverse=True)
54
+
55
+ print(number_of_digits)
56
+
57
+ prev_key = -1
58
+ for out_d in out_dirs:
59
+ out_d['next_keyframe'] = prev_key
60
+ prev_key = out_d['keyframe']
61
+
62
+ out_dirs = sorted(out_dirs, key=lambda x: x['keyframe'])
63
+
64
+
65
+ ### search start/end frame
66
+ prev_key = 0
67
+ for out_d in out_dirs:
68
+ imgs = sorted(glob.glob( os.path.join( out_d['path'], '[0-9]'*number_of_digits + '.png') ))
69
+
70
+ first_img = imgs[0]
71
+ print(first_img)
72
+ basename_without_ext = os.path.splitext(os.path.basename(first_img))[0]
73
+ blend_timing = (prev_key - out_d['keyframe'])*blend_rate + out_d['keyframe']
74
+ blend_timing = round(blend_timing)
75
+ start_frame = max( blend_timing, int(basename_without_ext) )
76
+ out_d['startframe'] = start_frame
77
+
78
+ last_img = imgs[-1]
79
+ print(last_img)
80
+ basename_without_ext = os.path.splitext(os.path.basename(last_img))[0]
81
+ end_frame = min( out_d['next_keyframe'], int(basename_without_ext) )
82
+ if end_frame == -1:
83
+ end_frame = int(basename_without_ext)
84
+ out_d['endframe'] = end_frame
85
+ prev_key = out_d['keyframe']
86
+
87
+ return number_of_digits, out_dirs
88
+
89
+ def get_ext(export_type):
90
+ if export_type in ("mp4","webm","gif"):
91
+ return "." + export_type
92
+ else:
93
+ return ".avi"
94
+
95
+ def trying_to_add_audio(original_movie_path, no_snd_movie_path, output_path, tmp_dir ):
96
+ if os.path.isfile(original_movie_path):
97
+ sound_path = os.path.join(tmp_dir , 'sound.mp4')
98
+ subprocess.call("ffmpeg -i " + original_movie_path + " -vn -acodec copy " + sound_path, shell=True)
99
+
100
+ if os.path.isfile(sound_path):
101
+ # ffmpeg -i video.mp4 -i audio.wav -c:v copy -c:a aac -map 0:v:0 -map 1:a:0 output.mp4
102
+
103
+ subprocess.call("ffmpeg -i " + no_snd_movie_path + " -i " + sound_path + " -c:v copy -c:a aac -map 0:v:0 -map 1:a:0 " + output_path, shell=True)
104
+ return True
105
+
106
+ return False
107
+
108
+ def ebsynth_utility_stage7(dbg, project_args, blend_rate,export_type,is_invert_mask):
109
+ dbg.print("stage7")
110
+ dbg.print("")
111
+
112
+ project_dir, original_movie_path, _, _, _, _, _ = project_args
113
+
114
+ fps = 30
115
+ clip = cv2.VideoCapture(original_movie_path)
116
+ if clip:
117
+ fps = clip.get(cv2.CAP_PROP_FPS)
118
+ clip.release()
119
+
120
+ blend_rate = clamp(blend_rate, 0.0, 1.0)
121
+
122
+ dbg.print("blend_rate: {}".format(blend_rate))
123
+ dbg.print("export_type: {}".format(export_type))
124
+ dbg.print("fps: {}".format(fps))
125
+
126
+ if is_invert_mask:
127
+ project_dir = os.path.join( project_dir , "inv")
128
+
129
+ tmp_dir = os.path.join( project_dir , "crossfade_tmp")
130
+
131
+
132
+ if os.path.isdir(tmp_dir):
133
+ shutil.rmtree(tmp_dir)
134
+ os.mkdir(tmp_dir)
135
+
136
+ number_of_digits, out_dirs = search_out_dirs( project_dir, blend_rate )
137
+
138
+ if number_of_digits == -1:
139
+ dbg.print('no out dir')
140
+ return
141
+
142
+ ### create frame imgs
143
+
144
+ start = out_dirs[0]['startframe']
145
+ end = out_dirs[-1]['endframe']
146
+
147
+ cur_clip = 0
148
+ next_clip = cur_clip+1 if len(out_dirs) > cur_clip+1 else -1
149
+
150
+ current_frame = 0
151
+
152
+ print(str(start) + " -> " + str(end+1))
153
+
154
+ black_img = np.zeros_like( cv2.imread( os.path.join(out_dirs[cur_clip]['path'], str(start).zfill(number_of_digits) + ".png") ) )
155
+
156
+ for i in range(start, end+1):
157
+
158
+ print(str(i) + " / " + str(end))
159
+
160
+ if next_clip == -1:
161
+ break
162
+
163
+ if i in range( out_dirs[cur_clip]['startframe'], out_dirs[cur_clip]['endframe'] +1):
164
+ pass
165
+ elif i in range( out_dirs[next_clip]['startframe'], out_dirs[next_clip]['endframe'] +1):
166
+ cur_clip = next_clip
167
+ next_clip = cur_clip+1 if len(out_dirs) > cur_clip+1 else -1
168
+ if next_clip == -1:
169
+ break
170
+ else:
171
+ ### black
172
+ # front ... none
173
+ # back ... none
174
+ cv2.imwrite( os.path.join(tmp_dir, filename) , black_img)
175
+ current_frame = i
176
+ continue
177
+
178
+ filename = str(i).zfill(number_of_digits) + ".png"
179
+
180
+ # front ... cur_clip
181
+ # back ... next_clip or none
182
+
183
+ if i in range( out_dirs[next_clip]['startframe'], out_dirs[next_clip]['endframe'] +1):
184
+ # front ... cur_clip
185
+ # back ... next_clip
186
+ img_f = cv2.imread( os.path.join(out_dirs[cur_clip]['path'] , filename) )
187
+ img_b = cv2.imread( os.path.join(out_dirs[next_clip]['path'] , filename) )
188
+
189
+ back_rate = (i - out_dirs[next_clip]['startframe'])/ max( 1 , (out_dirs[cur_clip]['endframe'] - out_dirs[next_clip]['startframe']) )
190
+
191
+ img = cv2.addWeighted(img_f, 1.0 - back_rate, img_b, back_rate, 0)
192
+
193
+ cv2.imwrite( os.path.join(tmp_dir , filename) , img)
194
+ else:
195
+ # front ... cur_clip
196
+ # back ... none
197
+ filename = str(i).zfill(number_of_digits) + ".png"
198
+ shutil.copy( os.path.join(out_dirs[cur_clip]['path'] , filename) , os.path.join(tmp_dir , filename) )
199
+
200
+ current_frame = i
201
+
202
+
203
+ start2 = current_frame+1
204
+
205
+ print(str(start2) + " -> " + str(end+1))
206
+
207
+ for i in range(start2, end+1):
208
+ filename = str(i).zfill(number_of_digits) + ".png"
209
+ shutil.copy( os.path.join(out_dirs[cur_clip]['path'] , filename) , os.path.join(tmp_dir , filename) )
210
+
211
+ ### create movie
212
+ movie_base_name = time.strftime("%Y%m%d-%H%M%S")
213
+ if is_invert_mask:
214
+ movie_base_name = "inv_" + movie_base_name
215
+
216
+ nosnd_path = os.path.join(project_dir , movie_base_name + get_ext(export_type))
217
+
218
+ start = out_dirs[0]['startframe']
219
+ end = out_dirs[-1]['endframe']
220
+
221
+ create_movie_from_frames( tmp_dir, start, end, number_of_digits, fps, nosnd_path, export_type)
222
+
223
+ dbg.print("exported : " + nosnd_path)
224
+
225
+ if export_type == "mp4":
226
+
227
+ with_snd_path = os.path.join(project_dir , movie_base_name + '_with_snd.mp4')
228
+
229
+ if trying_to_add_audio(original_movie_path, nosnd_path, with_snd_path, tmp_dir):
230
+ dbg.print("exported : " + with_snd_path)
231
+
232
+ dbg.print("")
233
+ dbg.print("completed.")
234
+
ebsynth_utility/stage8.py ADDED
@@ -0,0 +1,146 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import re
3
+ import subprocess
4
+ import glob
5
+ import shutil
6
+ import time
7
+ import cv2
8
+ import numpy as np
9
+ import itertools
10
+ from extensions.ebsynth_utility.stage7 import create_movie_from_frames, get_ext, trying_to_add_audio
11
+
12
+ def clamp(n, smallest, largest):
13
+ return sorted([smallest, n, largest])[1]
14
+
15
+ def resize_img(img, w, h):
16
+ if img.shape[0] + img.shape[1] < h + w:
17
+ interpolation = interpolation=cv2.INTER_CUBIC
18
+ else:
19
+ interpolation = interpolation=cv2.INTER_AREA
20
+
21
+ return cv2.resize(img, (w, h), interpolation=interpolation)
22
+
23
+ def merge_bg_src(base_frame_dir, bg_dir, frame_mask_path, tmp_dir, bg_type, mask_blur_size, mask_threshold, fg_transparency):
24
+
25
+ base_frames = sorted(glob.glob( os.path.join(base_frame_dir, "[0-9]*.png"), recursive=False) )
26
+
27
+ bg_frames = sorted(glob.glob( os.path.join(bg_dir, "*.png"), recursive=False) )
28
+
29
+ def bg_frame(total_frames):
30
+ bg_len = len(bg_frames)
31
+
32
+ if bg_type == "Loop":
33
+ itr = itertools.cycle(bg_frames)
34
+ while True:
35
+ yield next(itr)
36
+ else:
37
+ for i in range(total_frames):
38
+ yield bg_frames[ int(bg_len * (i/total_frames))]
39
+
40
+ bg_itr = bg_frame(len(base_frames))
41
+
42
+ for base_frame in base_frames:
43
+ im = cv2.imread(base_frame)
44
+ bg = cv2.imread( next(bg_itr) )
45
+ bg = resize_img(bg, im.shape[1], im.shape[0] )
46
+
47
+ basename = os.path.basename(base_frame)
48
+ mask_path = os.path.join(frame_mask_path, basename)
49
+ mask = cv2.imread(mask_path)[:,:,0]
50
+
51
+ mask[mask < int( 255 * mask_threshold )] = 0
52
+
53
+ if mask_blur_size > 0:
54
+ mask_blur_size = mask_blur_size//2 * 2 + 1
55
+ mask = cv2.GaussianBlur(mask, (mask_blur_size, mask_blur_size), 0)
56
+ mask = mask[:, :, np.newaxis]
57
+
58
+ fore_rate = (mask/255) * (1 - fg_transparency)
59
+
60
+ im = im * fore_rate + bg * (1- fore_rate)
61
+ im = im.astype(np.uint8)
62
+ cv2.imwrite( os.path.join( tmp_dir , basename ) , im)
63
+
64
+ def extract_frames(movie_path , output_dir, fps):
65
+ png_path = os.path.join(output_dir , "%05d.png")
66
+ # ffmpeg.exe -ss 00:00:00 -y -i %1 -qscale 0 -f image2 -c:v png "%05d.png"
67
+ subprocess.call("ffmpeg -ss 00:00:00 -y -i " + movie_path + " -vf fps=" + str( round(fps, 2)) + " -qscale 0 -f image2 -c:v png " + png_path, shell=True)
68
+
69
+ def ebsynth_utility_stage8(dbg, project_args, bg_src, bg_type, mask_blur_size, mask_threshold, fg_transparency, export_type):
70
+ dbg.print("stage8")
71
+ dbg.print("")
72
+
73
+ if not bg_src:
74
+ dbg.print("Fill [configuration] -> [stage 8] -> [Background source]")
75
+ return
76
+
77
+ project_dir, original_movie_path, _, frame_mask_path, _, _, _ = project_args
78
+
79
+ fps = 30
80
+ clip = cv2.VideoCapture(original_movie_path)
81
+ if clip:
82
+ fps = clip.get(cv2.CAP_PROP_FPS)
83
+ clip.release()
84
+
85
+ dbg.print("bg_src: {}".format(bg_src))
86
+ dbg.print("bg_type: {}".format(bg_type))
87
+ dbg.print("mask_blur_size: {}".format(mask_blur_size))
88
+ dbg.print("export_type: {}".format(export_type))
89
+ dbg.print("fps: {}".format(fps))
90
+
91
+ base_frame_dir = os.path.join( project_dir , "crossfade_tmp")
92
+
93
+ if not os.path.isdir(base_frame_dir):
94
+ dbg.print(base_frame_dir + " base frame not found")
95
+ return
96
+
97
+ tmp_dir = os.path.join( project_dir , "bg_merge_tmp")
98
+ if os.path.isdir(tmp_dir):
99
+ shutil.rmtree(tmp_dir)
100
+ os.mkdir(tmp_dir)
101
+
102
+ ### create frame imgs
103
+ if os.path.isfile(bg_src):
104
+ bg_ext = os.path.splitext(os.path.basename(bg_src))[1]
105
+ if bg_ext == ".mp4":
106
+ bg_tmp_dir = os.path.join( project_dir , "bg_extract_tmp")
107
+ if os.path.isdir(bg_tmp_dir):
108
+ shutil.rmtree(bg_tmp_dir)
109
+ os.mkdir(bg_tmp_dir)
110
+
111
+ extract_frames(bg_src, bg_tmp_dir, fps)
112
+
113
+ bg_src = bg_tmp_dir
114
+ else:
115
+ dbg.print(bg_src + " must be mp4 or directory")
116
+ return
117
+ elif not os.path.isdir(bg_src):
118
+ dbg.print(bg_src + " must be mp4 or directory")
119
+ return
120
+
121
+ merge_bg_src(base_frame_dir, bg_src, frame_mask_path, tmp_dir, bg_type, mask_blur_size, mask_threshold, fg_transparency)
122
+
123
+ ### create movie
124
+ movie_base_name = time.strftime("%Y%m%d-%H%M%S")
125
+ movie_base_name = "merge_" + movie_base_name
126
+
127
+ nosnd_path = os.path.join(project_dir , movie_base_name + get_ext(export_type))
128
+
129
+ merged_frames = sorted(glob.glob( os.path.join(tmp_dir, "[0-9]*.png"), recursive=False) )
130
+ start = int(os.path.splitext(os.path.basename(merged_frames[0]))[0])
131
+ end = int(os.path.splitext(os.path.basename(merged_frames[-1]))[0])
132
+
133
+ create_movie_from_frames(tmp_dir,start,end,5,fps,nosnd_path,export_type)
134
+
135
+ dbg.print("exported : " + nosnd_path)
136
+
137
+ if export_type == "mp4":
138
+
139
+ with_snd_path = os.path.join(project_dir , movie_base_name + '_with_snd.mp4')
140
+
141
+ if trying_to_add_audio(original_movie_path, nosnd_path, with_snd_path, tmp_dir):
142
+ dbg.print("exported : " + with_snd_path)
143
+
144
+ dbg.print("")
145
+ dbg.print("completed.")
146
+
ebsynth_utility/style.css ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #ebs_info_area {
2
+ border: black 2px solid;
3
+ border-radius: 5px;
4
+ font-size: 15px;
5
+ margin: 10px;
6
+ padding: 10px;
7
+ }
8
+
9
+ #ebs_configuration_tab1>div{
10
+ margin: 5px;
11
+ padding: 5px;
12
+ }
13
+
14
+ #ebs_configuration_tab2>div{
15
+ margin: 5px;
16
+ padding: 5px;
17
+ }
18
+
19
+ #ebs_configuration_tab3_5>div{
20
+ margin: 5px;
21
+ padding: 5px;
22
+ }
23
+
24
+ #ebs_configuration_tab7>div{
25
+ margin: 5px;
26
+ padding: 5px;
27
+ }
28
+
29
+ #ebs_configuration_tab8>div{
30
+ margin: 5px;
31
+ padding: 5px;
32
+ }
33
+
34
+ #ebs_configuration_tab_etc>div{
35
+ margin: 5px;
36
+ padding: 5px;
37
+ }
38
+
39
+
microsoftexcel-controlnet/__pycache__/preload.cpython-310.pyc CHANGED
Binary files a/microsoftexcel-controlnet/__pycache__/preload.cpython-310.pyc and b/microsoftexcel-controlnet/__pycache__/preload.cpython-310.pyc differ
 
microsoftexcel-controlnet/annotator/__pycache__/util.cpython-310.pyc CHANGED
Binary files a/microsoftexcel-controlnet/annotator/__pycache__/util.cpython-310.pyc and b/microsoftexcel-controlnet/annotator/__pycache__/util.cpython-310.pyc differ