|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE" |
|
|
|
import json |
|
import torch |
|
import numpy as np |
|
from . import util |
|
from .body import Body, BodyResult, Keypoint |
|
from .hand import Hand |
|
from .face import Face |
|
from modules import devices |
|
from annotator.annotator_path import models_path |
|
|
|
from typing import NamedTuple, Tuple, List, Callable, Union |
|
|
|
body_model_path = "https://huggingface.co/lllyasviel/Annotators/resolve/main/body_pose_model.pth" |
|
hand_model_path = "https://huggingface.co/lllyasviel/Annotators/resolve/main/hand_pose_model.pth" |
|
face_model_path = "https://huggingface.co/lllyasviel/Annotators/resolve/main/facenet.pth" |
|
|
|
HandResult = List[Keypoint] |
|
FaceResult = List[Keypoint] |
|
|
|
class PoseResult(NamedTuple): |
|
body: BodyResult |
|
left_hand: Union[HandResult, None] |
|
right_hand: Union[HandResult, None] |
|
face: Union[FaceResult, None] |
|
|
|
def draw_poses(poses: List[PoseResult], H, W, draw_body=True, draw_hand=True, draw_face=True): |
|
""" |
|
Draw the detected poses on an empty canvas. |
|
|
|
Args: |
|
poses (List[PoseResult]): A list of PoseResult objects containing the detected poses. |
|
H (int): The height of the canvas. |
|
W (int): The width of the canvas. |
|
draw_body (bool, optional): Whether to draw body keypoints. Defaults to True. |
|
draw_hand (bool, optional): Whether to draw hand keypoints. Defaults to True. |
|
draw_face (bool, optional): Whether to draw face keypoints. Defaults to True. |
|
|
|
Returns: |
|
numpy.ndarray: A 3D numpy array representing the canvas with the drawn poses. |
|
""" |
|
canvas = np.zeros(shape=(H, W, 3), dtype=np.uint8) |
|
|
|
for pose in poses: |
|
if draw_body: |
|
canvas = util.draw_bodypose(canvas, pose.body.keypoints) |
|
|
|
if draw_hand: |
|
canvas = util.draw_handpose(canvas, pose.left_hand) |
|
canvas = util.draw_handpose(canvas, pose.right_hand) |
|
|
|
if draw_face: |
|
canvas = util.draw_facepose(canvas, pose.face) |
|
|
|
return canvas |
|
|
|
def encode_poses_as_json(poses: List[PoseResult], canvas_height: int, canvas_width: int) -> str: |
|
""" Encode the pose as a JSON string following openpose JSON output format: |
|
https://github.com/CMU-Perceptual-Computing-Lab/openpose/blob/master/doc/02_output.md |
|
""" |
|
def compress_keypoints(keypoints: Union[List[Keypoint], None]) -> Union[List[float], None]: |
|
if not keypoints: |
|
return None |
|
|
|
return [ |
|
value |
|
for keypoint in keypoints |
|
for value in ( |
|
[float(keypoint.x), float(keypoint.y), 1.0] |
|
if keypoint is not None |
|
else [0.0, 0.0, 0.0] |
|
) |
|
] |
|
|
|
return json.dumps({ |
|
'people': [ |
|
{ |
|
'pose_keypoints_2d': compress_keypoints(pose.body.keypoints), |
|
"face_keypoints_2d": compress_keypoints(pose.face), |
|
"hand_left_keypoints_2d": compress_keypoints(pose.left_hand), |
|
"hand_right_keypoints_2d":compress_keypoints(pose.right_hand), |
|
} |
|
for pose in poses |
|
], |
|
'canvas_height': canvas_height, |
|
'canvas_width': canvas_width, |
|
}, indent=4) |
|
|
|
|
|
class OpenposeDetector: |
|
""" |
|
A class for detecting human poses in images using the Openpose model. |
|
|
|
Attributes: |
|
model_dir (str): Path to the directory where the pose models are stored. |
|
""" |
|
model_dir = os.path.join(models_path, "openpose") |
|
|
|
def __init__(self): |
|
self.device = devices.get_device_for("controlnet") |
|
self.body_estimation = None |
|
self.hand_estimation = None |
|
self.face_estimation = None |
|
|
|
def load_model(self): |
|
""" |
|
Load the Openpose body, hand, and face models. |
|
""" |
|
body_modelpath = os.path.join(self.model_dir, "body_pose_model.pth") |
|
hand_modelpath = os.path.join(self.model_dir, "hand_pose_model.pth") |
|
face_modelpath = os.path.join(self.model_dir, "facenet.pth") |
|
|
|
if not os.path.exists(body_modelpath): |
|
from basicsr.utils.download_util import load_file_from_url |
|
load_file_from_url(body_model_path, model_dir=self.model_dir) |
|
|
|
if not os.path.exists(hand_modelpath): |
|
from basicsr.utils.download_util import load_file_from_url |
|
load_file_from_url(hand_model_path, model_dir=self.model_dir) |
|
|
|
if not os.path.exists(face_modelpath): |
|
from basicsr.utils.download_util import load_file_from_url |
|
load_file_from_url(face_model_path, model_dir=self.model_dir) |
|
|
|
self.body_estimation = Body(body_modelpath) |
|
self.hand_estimation = Hand(hand_modelpath) |
|
self.face_estimation = Face(face_modelpath) |
|
|
|
def unload_model(self): |
|
""" |
|
Unload the Openpose models by moving them to the CPU. |
|
""" |
|
if self.body_estimation is not None: |
|
self.body_estimation.model.to("cpu") |
|
self.hand_estimation.model.to("cpu") |
|
self.face_estimation.model.to("cpu") |
|
|
|
def detect_hands(self, body: BodyResult, oriImg) -> Tuple[Union[HandResult, None], Union[HandResult, None]]: |
|
left_hand = None |
|
right_hand = None |
|
H, W, _ = oriImg.shape |
|
for x, y, w, is_left in util.handDetect(body, oriImg): |
|
peaks = self.hand_estimation(oriImg[y:y+w, x:x+w, :]).astype(np.float32) |
|
if peaks.ndim == 2 and peaks.shape[1] == 2: |
|
peaks[:, 0] = np.where(peaks[:, 0] < 1e-6, -1, peaks[:, 0] + x) / float(W) |
|
peaks[:, 1] = np.where(peaks[:, 1] < 1e-6, -1, peaks[:, 1] + y) / float(H) |
|
|
|
hand_result = [ |
|
Keypoint(x=peak[0], y=peak[1]) |
|
for peak in peaks |
|
] |
|
|
|
if is_left: |
|
left_hand = hand_result |
|
else: |
|
right_hand = hand_result |
|
|
|
return left_hand, right_hand |
|
|
|
def detect_face(self, body: BodyResult, oriImg) -> Union[FaceResult, None]: |
|
face = util.faceDetect(body, oriImg) |
|
if face is None: |
|
return None |
|
|
|
x, y, w = face |
|
H, W, _ = oriImg.shape |
|
heatmaps = self.face_estimation(oriImg[y:y+w, x:x+w, :]) |
|
peaks = self.face_estimation.compute_peaks_from_heatmaps(heatmaps).astype(np.float32) |
|
if peaks.ndim == 2 and peaks.shape[1] == 2: |
|
peaks[:, 0] = np.where(peaks[:, 0] < 1e-6, -1, peaks[:, 0] + x) / float(W) |
|
peaks[:, 1] = np.where(peaks[:, 1] < 1e-6, -1, peaks[:, 1] + y) / float(H) |
|
return [ |
|
Keypoint(x=peak[0], y=peak[1]) |
|
for peak in peaks |
|
] |
|
|
|
return None |
|
|
|
def detect_poses(self, oriImg, include_hand=False, include_face=False) -> List[PoseResult]: |
|
""" |
|
Detect poses in the given image. |
|
Args: |
|
oriImg (numpy.ndarray): The input image for pose detection. |
|
include_hand (bool, optional): Whether to include hand detection. Defaults to False. |
|
include_face (bool, optional): Whether to include face detection. Defaults to False. |
|
|
|
Returns: |
|
List[PoseResult]: A list of PoseResult objects containing the detected poses. |
|
""" |
|
if self.body_estimation is None: |
|
self.load_model() |
|
|
|
self.body_estimation.model.to(self.device) |
|
self.hand_estimation.model.to(self.device) |
|
self.face_estimation.model.to(self.device) |
|
|
|
self.body_estimation.cn_device = self.device |
|
self.hand_estimation.cn_device = self.device |
|
self.face_estimation.cn_device = self.device |
|
|
|
oriImg = oriImg[:, :, ::-1].copy() |
|
H, W, C = oriImg.shape |
|
with torch.no_grad(): |
|
candidate, subset = self.body_estimation(oriImg) |
|
bodies = self.body_estimation.format_body_result(candidate, subset) |
|
|
|
results = [] |
|
for body in bodies: |
|
left_hand, right_hand, face = (None,) * 3 |
|
if include_hand: |
|
left_hand, right_hand = self.detect_hands(body, oriImg) |
|
if include_face: |
|
face = self.detect_face(body, oriImg) |
|
|
|
results.append(PoseResult(BodyResult( |
|
keypoints=[ |
|
Keypoint( |
|
x=keypoint.x / float(W), |
|
y=keypoint.y / float(H) |
|
) if keypoint is not None else None |
|
for keypoint in body.keypoints |
|
], |
|
total_score=body.total_score, |
|
total_parts=body.total_parts |
|
), left_hand, right_hand, face)) |
|
|
|
return results |
|
|
|
def __call__( |
|
self, oriImg, include_body=True, include_hand=False, include_face=False, |
|
json_pose_callback: Callable[[str], None] = None, |
|
): |
|
""" |
|
Detect and draw poses in the given image. |
|
|
|
Args: |
|
oriImg (numpy.ndarray): The input image for pose detection and drawing. |
|
include_body (bool, optional): Whether to include body keypoints. Defaults to True. |
|
include_hand (bool, optional): Whether to include hand keypoints. Defaults to False. |
|
include_face (bool, optional): Whether to include face keypoints. Defaults to False. |
|
json_pose_callback (Callable, optional): A callback that accepts the pose JSON string. |
|
|
|
Returns: |
|
numpy.ndarray: The image with detected and drawn poses. |
|
""" |
|
H, W, _ = oriImg.shape |
|
poses = self.detect_poses(oriImg, include_hand, include_face) |
|
if json_pose_callback: |
|
json_pose_callback(encode_poses_as_json(poses, H, W)) |
|
return draw_poses(poses, H, W, draw_body=include_body, draw_hand=include_hand, draw_face=include_face) |
|
|