extensions
/
microsoftexcel-controlnet
/annotator
/normalbae
/models
/submodules
/efficientnet_repo
/validate.py
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
import argparse | |
import time | |
import torch | |
import torch.nn as nn | |
import torch.nn.parallel | |
from contextlib import suppress | |
import geffnet | |
from data import Dataset, create_loader, resolve_data_config | |
from utils import accuracy, AverageMeter | |
has_native_amp = False | |
try: | |
if getattr(torch.cuda.amp, 'autocast') is not None: | |
has_native_amp = True | |
except AttributeError: | |
pass | |
torch.backends.cudnn.benchmark = True | |
parser = argparse.ArgumentParser(description='PyTorch ImageNet Validation') | |
parser.add_argument('data', metavar='DIR', | |
help='path to dataset') | |
parser.add_argument('--model', '-m', metavar='MODEL', default='spnasnet1_00', | |
help='model architecture (default: dpn92)') | |
parser.add_argument('-j', '--workers', default=4, type=int, metavar='N', | |
help='number of data loading workers (default: 2)') | |
parser.add_argument('-b', '--batch-size', default=256, type=int, | |
metavar='N', help='mini-batch size (default: 256)') | |
parser.add_argument('--img-size', default=None, type=int, | |
metavar='N', help='Input image dimension, uses model default if empty') | |
parser.add_argument('--mean', type=float, nargs='+', default=None, metavar='MEAN', | |
help='Override mean pixel value of dataset') | |
parser.add_argument('--std', type=float, nargs='+', default=None, metavar='STD', | |
help='Override std deviation of of dataset') | |
parser.add_argument('--crop-pct', type=float, default=None, metavar='PCT', | |
help='Override default crop pct of 0.875') | |
parser.add_argument('--interpolation', default='', type=str, metavar='NAME', | |
help='Image resize interpolation type (overrides model)') | |
parser.add_argument('--num-classes', type=int, default=1000, | |
help='Number classes in dataset') | |
parser.add_argument('--print-freq', '-p', default=10, type=int, | |
metavar='N', help='print frequency (default: 10)') | |
parser.add_argument('--checkpoint', default='', type=str, metavar='PATH', | |
help='path to latest checkpoint (default: none)') | |
parser.add_argument('--pretrained', dest='pretrained', action='store_true', | |
help='use pre-trained model') | |
parser.add_argument('--torchscript', dest='torchscript', action='store_true', | |
help='convert model torchscript for inference') | |
parser.add_argument('--num-gpu', type=int, default=1, | |
help='Number of GPUS to use') | |
parser.add_argument('--tf-preprocessing', dest='tf_preprocessing', action='store_true', | |
help='use tensorflow mnasnet preporcessing') | |
parser.add_argument('--no-cuda', dest='no_cuda', action='store_true', | |
help='') | |
parser.add_argument('--channels-last', action='store_true', default=False, | |
help='Use channels_last memory layout') | |
parser.add_argument('--amp', action='store_true', default=False, | |
help='Use native Torch AMP mixed precision.') | |
def main(): | |
args = parser.parse_args() | |
if not args.checkpoint and not args.pretrained: | |
args.pretrained = True | |
amp_autocast = suppress # do nothing | |
if args.amp: | |
if not has_native_amp: | |
print("Native Torch AMP is not available (requires torch >= 1.6), using FP32.") | |
else: | |
amp_autocast = torch.cuda.amp.autocast | |
# create model | |
model = geffnet.create_model( | |
args.model, | |
num_classes=args.num_classes, | |
in_chans=3, | |
pretrained=args.pretrained, | |
checkpoint_path=args.checkpoint, | |
scriptable=args.torchscript) | |
if args.channels_last: | |
model = model.to(memory_format=torch.channels_last) | |
if args.torchscript: | |
torch.jit.optimized_execution(True) | |
model = torch.jit.script(model) | |
print('Model %s created, param count: %d' % | |
(args.model, sum([m.numel() for m in model.parameters()]))) | |
data_config = resolve_data_config(model, args) | |
criterion = nn.CrossEntropyLoss() | |
if not args.no_cuda: | |
if args.num_gpu > 1: | |
model = torch.nn.DataParallel(model, device_ids=list(range(args.num_gpu))).cuda() | |
else: | |
model = model.cuda() | |
criterion = criterion.cuda() | |
loader = create_loader( | |
Dataset(args.data, load_bytes=args.tf_preprocessing), | |
input_size=data_config['input_size'], | |
batch_size=args.batch_size, | |
use_prefetcher=not args.no_cuda, | |
interpolation=data_config['interpolation'], | |
mean=data_config['mean'], | |
std=data_config['std'], | |
num_workers=args.workers, | |
crop_pct=data_config['crop_pct'], | |
tensorflow_preprocessing=args.tf_preprocessing) | |
batch_time = AverageMeter() | |
losses = AverageMeter() | |
top1 = AverageMeter() | |
top5 = AverageMeter() | |
model.eval() | |
end = time.time() | |
with torch.no_grad(): | |
for i, (input, target) in enumerate(loader): | |
if not args.no_cuda: | |
target = target.cuda() | |
input = input.cuda() | |
if args.channels_last: | |
input = input.contiguous(memory_format=torch.channels_last) | |
# compute output | |
with amp_autocast(): | |
output = model(input) | |
loss = criterion(output, target) | |
# measure accuracy and record loss | |
prec1, prec5 = accuracy(output.data, target, topk=(1, 5)) | |
losses.update(loss.item(), input.size(0)) | |
top1.update(prec1.item(), input.size(0)) | |
top5.update(prec5.item(), input.size(0)) | |
# measure elapsed time | |
batch_time.update(time.time() - end) | |
end = time.time() | |
if i % args.print_freq == 0: | |
print('Test: [{0}/{1}]\t' | |
'Time {batch_time.val:.3f} ({batch_time.avg:.3f}, {rate_avg:.3f}/s) \t' | |
'Loss {loss.val:.4f} ({loss.avg:.4f})\t' | |
'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t' | |
'Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format( | |
i, len(loader), batch_time=batch_time, | |
rate_avg=input.size(0) / batch_time.avg, | |
loss=losses, top1=top1, top5=top5)) | |
print(' * Prec@1 {top1.avg:.3f} ({top1a:.3f}) Prec@5 {top5.avg:.3f} ({top5a:.3f})'.format( | |
top1=top1, top1a=100-top1.avg, top5=top5, top5a=100.-top5.avg)) | |
if __name__ == '__main__': | |
main() | |