|
|
|
from torch import nn |
|
from torch.autograd import Function |
|
from torch.autograd.function import once_differentiable |
|
from torch.nn.modules.utils import _pair |
|
|
|
from ..utils import ext_loader |
|
|
|
ext_module = ext_loader.load_ext( |
|
'_ext', ['deform_roi_pool_forward', 'deform_roi_pool_backward']) |
|
|
|
|
|
class DeformRoIPoolFunction(Function): |
|
|
|
@staticmethod |
|
def symbolic(g, input, rois, offset, output_size, spatial_scale, |
|
sampling_ratio, gamma): |
|
return g.op( |
|
'mmcv::MMCVDeformRoIPool', |
|
input, |
|
rois, |
|
offset, |
|
pooled_height_i=output_size[0], |
|
pooled_width_i=output_size[1], |
|
spatial_scale_f=spatial_scale, |
|
sampling_ratio_f=sampling_ratio, |
|
gamma_f=gamma) |
|
|
|
@staticmethod |
|
def forward(ctx, |
|
input, |
|
rois, |
|
offset, |
|
output_size, |
|
spatial_scale=1.0, |
|
sampling_ratio=0, |
|
gamma=0.1): |
|
if offset is None: |
|
offset = input.new_zeros(0) |
|
ctx.output_size = _pair(output_size) |
|
ctx.spatial_scale = float(spatial_scale) |
|
ctx.sampling_ratio = int(sampling_ratio) |
|
ctx.gamma = float(gamma) |
|
|
|
assert rois.size(1) == 5, 'RoI must be (idx, x1, y1, x2, y2)!' |
|
|
|
output_shape = (rois.size(0), input.size(1), ctx.output_size[0], |
|
ctx.output_size[1]) |
|
output = input.new_zeros(output_shape) |
|
|
|
ext_module.deform_roi_pool_forward( |
|
input, |
|
rois, |
|
offset, |
|
output, |
|
pooled_height=ctx.output_size[0], |
|
pooled_width=ctx.output_size[1], |
|
spatial_scale=ctx.spatial_scale, |
|
sampling_ratio=ctx.sampling_ratio, |
|
gamma=ctx.gamma) |
|
|
|
ctx.save_for_backward(input, rois, offset) |
|
return output |
|
|
|
@staticmethod |
|
@once_differentiable |
|
def backward(ctx, grad_output): |
|
input, rois, offset = ctx.saved_tensors |
|
grad_input = grad_output.new_zeros(input.shape) |
|
grad_offset = grad_output.new_zeros(offset.shape) |
|
|
|
ext_module.deform_roi_pool_backward( |
|
grad_output, |
|
input, |
|
rois, |
|
offset, |
|
grad_input, |
|
grad_offset, |
|
pooled_height=ctx.output_size[0], |
|
pooled_width=ctx.output_size[1], |
|
spatial_scale=ctx.spatial_scale, |
|
sampling_ratio=ctx.sampling_ratio, |
|
gamma=ctx.gamma) |
|
if grad_offset.numel() == 0: |
|
grad_offset = None |
|
return grad_input, None, grad_offset, None, None, None, None |
|
|
|
|
|
deform_roi_pool = DeformRoIPoolFunction.apply |
|
|
|
|
|
class DeformRoIPool(nn.Module): |
|
|
|
def __init__(self, |
|
output_size, |
|
spatial_scale=1.0, |
|
sampling_ratio=0, |
|
gamma=0.1): |
|
super(DeformRoIPool, self).__init__() |
|
self.output_size = _pair(output_size) |
|
self.spatial_scale = float(spatial_scale) |
|
self.sampling_ratio = int(sampling_ratio) |
|
self.gamma = float(gamma) |
|
|
|
def forward(self, input, rois, offset=None): |
|
return deform_roi_pool(input, rois, offset, self.output_size, |
|
self.spatial_scale, self.sampling_ratio, |
|
self.gamma) |
|
|
|
|
|
class DeformRoIPoolPack(DeformRoIPool): |
|
|
|
def __init__(self, |
|
output_size, |
|
output_channels, |
|
deform_fc_channels=1024, |
|
spatial_scale=1.0, |
|
sampling_ratio=0, |
|
gamma=0.1): |
|
super(DeformRoIPoolPack, self).__init__(output_size, spatial_scale, |
|
sampling_ratio, gamma) |
|
|
|
self.output_channels = output_channels |
|
self.deform_fc_channels = deform_fc_channels |
|
|
|
self.offset_fc = nn.Sequential( |
|
nn.Linear( |
|
self.output_size[0] * self.output_size[1] * |
|
self.output_channels, self.deform_fc_channels), |
|
nn.ReLU(inplace=True), |
|
nn.Linear(self.deform_fc_channels, self.deform_fc_channels), |
|
nn.ReLU(inplace=True), |
|
nn.Linear(self.deform_fc_channels, |
|
self.output_size[0] * self.output_size[1] * 2)) |
|
self.offset_fc[-1].weight.data.zero_() |
|
self.offset_fc[-1].bias.data.zero_() |
|
|
|
def forward(self, input, rois): |
|
assert input.size(1) == self.output_channels |
|
x = deform_roi_pool(input, rois, None, self.output_size, |
|
self.spatial_scale, self.sampling_ratio, |
|
self.gamma) |
|
rois_num = rois.size(0) |
|
offset = self.offset_fc(x.view(rois_num, -1)) |
|
offset = offset.view(rois_num, 2, self.output_size[0], |
|
self.output_size[1]) |
|
return deform_roi_pool(input, rois, offset, self.output_size, |
|
self.spatial_scale, self.sampling_ratio, |
|
self.gamma) |
|
|
|
|
|
class ModulatedDeformRoIPoolPack(DeformRoIPool): |
|
|
|
def __init__(self, |
|
output_size, |
|
output_channels, |
|
deform_fc_channels=1024, |
|
spatial_scale=1.0, |
|
sampling_ratio=0, |
|
gamma=0.1): |
|
super(ModulatedDeformRoIPoolPack, |
|
self).__init__(output_size, spatial_scale, sampling_ratio, gamma) |
|
|
|
self.output_channels = output_channels |
|
self.deform_fc_channels = deform_fc_channels |
|
|
|
self.offset_fc = nn.Sequential( |
|
nn.Linear( |
|
self.output_size[0] * self.output_size[1] * |
|
self.output_channels, self.deform_fc_channels), |
|
nn.ReLU(inplace=True), |
|
nn.Linear(self.deform_fc_channels, self.deform_fc_channels), |
|
nn.ReLU(inplace=True), |
|
nn.Linear(self.deform_fc_channels, |
|
self.output_size[0] * self.output_size[1] * 2)) |
|
self.offset_fc[-1].weight.data.zero_() |
|
self.offset_fc[-1].bias.data.zero_() |
|
|
|
self.mask_fc = nn.Sequential( |
|
nn.Linear( |
|
self.output_size[0] * self.output_size[1] * |
|
self.output_channels, self.deform_fc_channels), |
|
nn.ReLU(inplace=True), |
|
nn.Linear(self.deform_fc_channels, |
|
self.output_size[0] * self.output_size[1] * 1), |
|
nn.Sigmoid()) |
|
self.mask_fc[2].weight.data.zero_() |
|
self.mask_fc[2].bias.data.zero_() |
|
|
|
def forward(self, input, rois): |
|
assert input.size(1) == self.output_channels |
|
x = deform_roi_pool(input, rois, None, self.output_size, |
|
self.spatial_scale, self.sampling_ratio, |
|
self.gamma) |
|
rois_num = rois.size(0) |
|
offset = self.offset_fc(x.view(rois_num, -1)) |
|
offset = offset.view(rois_num, 2, self.output_size[0], |
|
self.output_size[1]) |
|
mask = self.mask_fc(x.view(rois_num, -1)) |
|
mask = mask.view(rois_num, 1, self.output_size[0], self.output_size[1]) |
|
d = deform_roi_pool(input, rois, offset, self.output_size, |
|
self.spatial_scale, self.sampling_ratio, |
|
self.gamma) |
|
return d * mask |
|
|