|
import cv2 |
|
import numpy as np |
|
|
|
from annotator.util import HWC3 |
|
from typing import Callable, Tuple |
|
|
|
|
|
def pad64(x): |
|
return int(np.ceil(float(x) / 64.0) * 64 - x) |
|
|
|
|
|
def safer_memory(x): |
|
|
|
return np.ascontiguousarray(x.copy()).copy() |
|
|
|
|
|
def resize_image_with_pad(input_image, resolution): |
|
img = HWC3(input_image) |
|
H_raw, W_raw, _ = img.shape |
|
k = float(resolution) / float(min(H_raw, W_raw)) |
|
interpolation = cv2.INTER_CUBIC if k > 1 else cv2.INTER_AREA |
|
H_target = int(np.round(float(H_raw) * k)) |
|
W_target = int(np.round(float(W_raw) * k)) |
|
img = cv2.resize(img, (W_target, H_target), interpolation=interpolation) |
|
H_pad, W_pad = pad64(H_target), pad64(W_target) |
|
img_padded = np.pad(img, [[0, H_pad], [0, W_pad], [0, 0]], mode='edge') |
|
|
|
def remove_pad(x): |
|
return safer_memory(x[:H_target, :W_target]) |
|
|
|
return safer_memory(img_padded), remove_pad |
|
|
|
|
|
model_canny = None |
|
|
|
|
|
def canny(img, res=512, thr_a=100, thr_b=200, **kwargs): |
|
l, h = thr_a, thr_b |
|
img, remove_pad = resize_image_with_pad(img, res) |
|
global model_canny |
|
if model_canny is None: |
|
from annotator.canny import apply_canny |
|
model_canny = apply_canny |
|
result = model_canny(img, l, h) |
|
return remove_pad(result), True |
|
|
|
|
|
def scribble_thr(img, res=512, **kwargs): |
|
img, remove_pad = resize_image_with_pad(img, res) |
|
result = np.zeros_like(img, dtype=np.uint8) |
|
result[np.min(img, axis=2) < 127] = 255 |
|
return remove_pad(result), True |
|
|
|
|
|
def scribble_xdog(img, res=512, thr_a=32, **kwargs): |
|
img, remove_pad = resize_image_with_pad(img, res) |
|
g1 = cv2.GaussianBlur(img.astype(np.float32), (0, 0), 0.5) |
|
g2 = cv2.GaussianBlur(img.astype(np.float32), (0, 0), 5.0) |
|
dog = (255 - np.min(g2 - g1, axis=2)).clip(0, 255).astype(np.uint8) |
|
result = np.zeros_like(img, dtype=np.uint8) |
|
result[2 * (255 - dog) > thr_a] = 255 |
|
return remove_pad(result), True |
|
|
|
|
|
def tile_resample(img, res=512, thr_a=1.0, **kwargs): |
|
img = HWC3(img) |
|
if thr_a < 1.1: |
|
return img, True |
|
H, W, C = img.shape |
|
H = int(float(H) / float(thr_a)) |
|
W = int(float(W) / float(thr_a)) |
|
img = cv2.resize(img, (W, H), interpolation=cv2.INTER_AREA) |
|
return img, True |
|
|
|
|
|
def threshold(img, res=512, thr_a=127, **kwargs): |
|
img, remove_pad = resize_image_with_pad(img, res) |
|
result = np.zeros_like(img, dtype=np.uint8) |
|
result[np.min(img, axis=2) > thr_a] = 255 |
|
return remove_pad(result), True |
|
|
|
|
|
def identity(img, **kwargs): |
|
return img, True |
|
|
|
|
|
def invert(img, res=512, **kwargs): |
|
return 255 - HWC3(img), True |
|
|
|
|
|
model_hed = None |
|
|
|
|
|
def hed(img, res=512, **kwargs): |
|
img, remove_pad = resize_image_with_pad(img, res) |
|
global model_hed |
|
if model_hed is None: |
|
from annotator.hed import apply_hed |
|
model_hed = apply_hed |
|
result = model_hed(img) |
|
return remove_pad(result), True |
|
|
|
|
|
def hed_safe(img, res=512, **kwargs): |
|
img, remove_pad = resize_image_with_pad(img, res) |
|
global model_hed |
|
if model_hed is None: |
|
from annotator.hed import apply_hed |
|
model_hed = apply_hed |
|
result = model_hed(img, is_safe=True) |
|
return remove_pad(result), True |
|
|
|
|
|
def unload_hed(): |
|
global model_hed |
|
if model_hed is not None: |
|
from annotator.hed import unload_hed_model |
|
unload_hed_model() |
|
|
|
|
|
def scribble_hed(img, res=512, **kwargs): |
|
result, _ = hed(img, res) |
|
import cv2 |
|
from annotator.util import nms |
|
result = nms(result, 127, 3.0) |
|
result = cv2.GaussianBlur(result, (0, 0), 3.0) |
|
result[result > 4] = 255 |
|
result[result < 255] = 0 |
|
return result, True |
|
|
|
|
|
model_mediapipe_face = None |
|
|
|
|
|
def mediapipe_face(img, res=512, thr_a: int = 10, thr_b: float = 0.5, **kwargs): |
|
max_faces = int(thr_a) |
|
min_confidence = thr_b |
|
img, remove_pad = resize_image_with_pad(img, res) |
|
global model_mediapipe_face |
|
if model_mediapipe_face is None: |
|
from annotator.mediapipe_face import apply_mediapipe_face |
|
model_mediapipe_face = apply_mediapipe_face |
|
result = model_mediapipe_face(img, max_faces=max_faces, min_confidence=min_confidence) |
|
return remove_pad(result), True |
|
|
|
|
|
model_mlsd = None |
|
|
|
|
|
def mlsd(img, res=512, thr_a=0.1, thr_b=0.1, **kwargs): |
|
thr_v, thr_d = thr_a, thr_b |
|
img, remove_pad = resize_image_with_pad(img, res) |
|
global model_mlsd |
|
if model_mlsd is None: |
|
from annotator.mlsd import apply_mlsd |
|
model_mlsd = apply_mlsd |
|
result = model_mlsd(img, thr_v, thr_d) |
|
return remove_pad(result), True |
|
|
|
|
|
def unload_mlsd(): |
|
global model_mlsd |
|
if model_mlsd is not None: |
|
from annotator.mlsd import unload_mlsd_model |
|
unload_mlsd_model() |
|
|
|
|
|
model_midas = None |
|
|
|
|
|
def midas(img, res=512, a=np.pi * 2.0, **kwargs): |
|
img, remove_pad = resize_image_with_pad(img, res) |
|
global model_midas |
|
if model_midas is None: |
|
from annotator.midas import apply_midas |
|
model_midas = apply_midas |
|
result, _ = model_midas(img, a) |
|
return remove_pad(result), True |
|
|
|
|
|
def midas_normal(img, res=512, a=np.pi * 2.0, thr_a=0.4, **kwargs): |
|
bg_th = thr_a |
|
img, remove_pad = resize_image_with_pad(img, res) |
|
global model_midas |
|
if model_midas is None: |
|
from annotator.midas import apply_midas |
|
model_midas = apply_midas |
|
_, result = model_midas(img, a, bg_th) |
|
return remove_pad(result), True |
|
|
|
|
|
def unload_midas(): |
|
global model_midas |
|
if model_midas is not None: |
|
from annotator.midas import unload_midas_model |
|
unload_midas_model() |
|
|
|
|
|
model_leres = None |
|
|
|
|
|
def leres(img, res=512, a=np.pi * 2.0, thr_a=0, thr_b=0, boost=False, **kwargs): |
|
img, remove_pad = resize_image_with_pad(img, res) |
|
global model_leres |
|
if model_leres is None: |
|
from annotator.leres import apply_leres |
|
model_leres = apply_leres |
|
result = model_leres(img, thr_a, thr_b, boost=boost) |
|
return remove_pad(result), True |
|
|
|
|
|
def unload_leres(): |
|
global model_leres |
|
if model_leres is not None: |
|
from annotator.leres import unload_leres_model |
|
unload_leres_model() |
|
|
|
|
|
class OpenposeModel(object): |
|
def __init__(self) -> None: |
|
self.model_openpose = None |
|
|
|
def run_model( |
|
self, |
|
img: np.ndarray, |
|
include_body: bool, |
|
include_hand: bool, |
|
include_face: bool, |
|
json_pose_callback: Callable[[str], None] = None, |
|
res: int = 512, |
|
**kwargs |
|
) -> Tuple[np.ndarray, bool]: |
|
"""Run the openpose model. Returns a tuple of |
|
- result image |
|
- is_image flag |
|
|
|
The JSON format pose string is passed to `json_pose_callback`. |
|
""" |
|
if json_pose_callback is None: |
|
json_pose_callback = lambda x: None |
|
|
|
img, remove_pad = resize_image_with_pad(img, res) |
|
|
|
if self.model_openpose is None: |
|
from annotator.openpose import OpenposeDetector |
|
self.model_openpose = OpenposeDetector() |
|
|
|
return remove_pad(self.model_openpose( |
|
img, |
|
include_body=include_body, |
|
include_hand=include_hand, |
|
include_face=include_face, |
|
json_pose_callback=json_pose_callback |
|
)), True |
|
|
|
def unload(self): |
|
if self.model_openpose is not None: |
|
self.model_openpose.unload_model() |
|
|
|
|
|
g_openpose_model = OpenposeModel() |
|
|
|
model_uniformer = None |
|
|
|
|
|
def uniformer(img, res=512, **kwargs): |
|
img, remove_pad = resize_image_with_pad(img, res) |
|
global model_uniformer |
|
if model_uniformer is None: |
|
from annotator.uniformer import apply_uniformer |
|
model_uniformer = apply_uniformer |
|
result = model_uniformer(img) |
|
return remove_pad(result), True |
|
|
|
|
|
def unload_uniformer(): |
|
global model_uniformer |
|
if model_uniformer is not None: |
|
from annotator.uniformer import unload_uniformer_model |
|
unload_uniformer_model() |
|
|
|
|
|
model_pidinet = None |
|
|
|
|
|
def pidinet(img, res=512, **kwargs): |
|
img, remove_pad = resize_image_with_pad(img, res) |
|
global model_pidinet |
|
if model_pidinet is None: |
|
from annotator.pidinet import apply_pidinet |
|
model_pidinet = apply_pidinet |
|
result = model_pidinet(img) |
|
return remove_pad(result), True |
|
|
|
|
|
def pidinet_ts(img, res=512, **kwargs): |
|
img, remove_pad = resize_image_with_pad(img, res) |
|
global model_pidinet |
|
if model_pidinet is None: |
|
from annotator.pidinet import apply_pidinet |
|
model_pidinet = apply_pidinet |
|
result = model_pidinet(img, apply_fliter=True) |
|
return remove_pad(result), True |
|
|
|
|
|
def pidinet_safe(img, res=512, **kwargs): |
|
img, remove_pad = resize_image_with_pad(img, res) |
|
global model_pidinet |
|
if model_pidinet is None: |
|
from annotator.pidinet import apply_pidinet |
|
model_pidinet = apply_pidinet |
|
result = model_pidinet(img, is_safe=True) |
|
return remove_pad(result), True |
|
|
|
|
|
def scribble_pidinet(img, res=512, **kwargs): |
|
result, _ = pidinet(img, res) |
|
import cv2 |
|
from annotator.util import nms |
|
result = nms(result, 127, 3.0) |
|
result = cv2.GaussianBlur(result, (0, 0), 3.0) |
|
result[result > 4] = 255 |
|
result[result < 255] = 0 |
|
return result, True |
|
|
|
|
|
def unload_pidinet(): |
|
global model_pidinet |
|
if model_pidinet is not None: |
|
from annotator.pidinet import unload_pid_model |
|
unload_pid_model() |
|
|
|
|
|
clip_encoder = None |
|
|
|
|
|
def clip(img, res=512, **kwargs): |
|
img = HWC3(img) |
|
global clip_encoder |
|
if clip_encoder is None: |
|
from annotator.clip import apply_clip |
|
clip_encoder = apply_clip |
|
result = clip_encoder(img) |
|
return result, False |
|
|
|
|
|
def clip_vision_visualization(x): |
|
x = x.detach().cpu().numpy()[0] |
|
x = np.ascontiguousarray(x).copy() |
|
return np.ndarray((x.shape[0] * 4, x.shape[1]), dtype="uint8", buffer=x.tobytes()) |
|
|
|
|
|
def unload_clip(): |
|
global clip_encoder |
|
if clip_encoder is not None: |
|
from annotator.clip import unload_clip_model |
|
unload_clip_model() |
|
|
|
|
|
model_color = None |
|
|
|
|
|
def color(img, res=512, **kwargs): |
|
img = HWC3(img) |
|
global model_color |
|
if model_color is None: |
|
from annotator.color import apply_color |
|
model_color = apply_color |
|
result = model_color(img, res=res) |
|
return result, True |
|
|
|
|
|
def lineart_standard(img, res=512, **kwargs): |
|
img, remove_pad = resize_image_with_pad(img, res) |
|
x = img.astype(np.float32) |
|
g = cv2.GaussianBlur(x, (0, 0), 6.0) |
|
intensity = np.min(g - x, axis=2).clip(0, 255) |
|
intensity /= max(16, np.median(intensity[intensity > 8])) |
|
intensity *= 127 |
|
result = intensity.clip(0, 255).astype(np.uint8) |
|
return remove_pad(result), True |
|
|
|
|
|
model_lineart = None |
|
|
|
|
|
def lineart(img, res=512, **kwargs): |
|
img, remove_pad = resize_image_with_pad(img, res) |
|
global model_lineart |
|
if model_lineart is None: |
|
from annotator.lineart import LineartDetector |
|
model_lineart = LineartDetector(LineartDetector.model_default) |
|
|
|
|
|
result = 255 - model_lineart(img) |
|
return remove_pad(result), True |
|
|
|
|
|
def unload_lineart(): |
|
global model_lineart |
|
if model_lineart is not None: |
|
model_lineart.unload_model() |
|
|
|
|
|
model_lineart_coarse = None |
|
|
|
|
|
def lineart_coarse(img, res=512, **kwargs): |
|
img, remove_pad = resize_image_with_pad(img, res) |
|
global model_lineart_coarse |
|
if model_lineart_coarse is None: |
|
from annotator.lineart import LineartDetector |
|
model_lineart_coarse = LineartDetector(LineartDetector.model_coarse) |
|
|
|
|
|
result = 255 - model_lineart_coarse(img) |
|
return remove_pad(result), True |
|
|
|
|
|
def unload_lineart_coarse(): |
|
global model_lineart_coarse |
|
if model_lineart_coarse is not None: |
|
model_lineart_coarse.unload_model() |
|
|
|
|
|
model_lineart_anime = None |
|
|
|
|
|
def lineart_anime(img, res=512, **kwargs): |
|
img, remove_pad = resize_image_with_pad(img, res) |
|
global model_lineart_anime |
|
if model_lineart_anime is None: |
|
from annotator.lineart_anime import LineartAnimeDetector |
|
model_lineart_anime = LineartAnimeDetector() |
|
|
|
|
|
result = 255 - model_lineart_anime(img) |
|
return remove_pad(result), True |
|
|
|
|
|
def unload_lineart_anime(): |
|
global model_lineart_anime |
|
if model_lineart_anime is not None: |
|
model_lineart_anime.unload_model() |
|
|
|
|
|
model_manga_line = None |
|
|
|
|
|
def lineart_anime_denoise(img, res=512, **kwargs): |
|
img, remove_pad = resize_image_with_pad(img, res) |
|
global model_manga_line |
|
if model_manga_line is None: |
|
from annotator.manga_line import MangaLineExtration |
|
model_manga_line = MangaLineExtration() |
|
|
|
|
|
result = model_manga_line(img) |
|
return remove_pad(result), True |
|
|
|
|
|
def unload_lineart_anime_denoise(): |
|
global model_manga_line |
|
if model_manga_line is not None: |
|
model_manga_line.unload_model() |
|
|
|
|
|
model_zoe_depth = None |
|
|
|
|
|
def zoe_depth(img, res=512, **kwargs): |
|
img, remove_pad = resize_image_with_pad(img, res) |
|
global model_zoe_depth |
|
if model_zoe_depth is None: |
|
from annotator.zoe import ZoeDetector |
|
model_zoe_depth = ZoeDetector() |
|
result = model_zoe_depth(img) |
|
return remove_pad(result), True |
|
|
|
|
|
def unload_zoe_depth(): |
|
global model_zoe_depth |
|
if model_zoe_depth is not None: |
|
model_zoe_depth.unload_model() |
|
|
|
|
|
model_normal_bae = None |
|
|
|
|
|
def normal_bae(img, res=512, **kwargs): |
|
img, remove_pad = resize_image_with_pad(img, res) |
|
global model_normal_bae |
|
if model_normal_bae is None: |
|
from annotator.normalbae import NormalBaeDetector |
|
model_normal_bae = NormalBaeDetector() |
|
result = model_normal_bae(img) |
|
return remove_pad(result), True |
|
|
|
|
|
def unload_normal_bae(): |
|
global model_normal_bae |
|
if model_normal_bae is not None: |
|
model_normal_bae.unload_model() |
|
|
|
|
|
model_oneformer_coco = None |
|
|
|
|
|
def oneformer_coco(img, res=512, **kwargs): |
|
img, remove_pad = resize_image_with_pad(img, res) |
|
global model_oneformer_coco |
|
if model_oneformer_coco is None: |
|
from annotator.oneformer import OneformerDetector |
|
model_oneformer_coco = OneformerDetector(OneformerDetector.configs["coco"]) |
|
result = model_oneformer_coco(img) |
|
return remove_pad(result), True |
|
|
|
|
|
def unload_oneformer_coco(): |
|
global model_oneformer_coco |
|
if model_oneformer_coco is not None: |
|
model_oneformer_coco.unload_model() |
|
|
|
|
|
model_oneformer_ade20k = None |
|
|
|
|
|
def oneformer_ade20k(img, res=512, **kwargs): |
|
img, remove_pad = resize_image_with_pad(img, res) |
|
global model_oneformer_ade20k |
|
if model_oneformer_ade20k is None: |
|
from annotator.oneformer import OneformerDetector |
|
model_oneformer_ade20k = OneformerDetector(OneformerDetector.configs["ade20k"]) |
|
result = model_oneformer_ade20k(img) |
|
return remove_pad(result), True |
|
|
|
|
|
def unload_oneformer_ade20k(): |
|
global model_oneformer_ade20k |
|
if model_oneformer_ade20k is not None: |
|
model_oneformer_ade20k.unload_model() |
|
|
|
|
|
model_shuffle = None |
|
|
|
|
|
def shuffle(img, res=512, **kwargs): |
|
img, remove_pad = resize_image_with_pad(img, res) |
|
img = remove_pad(img) |
|
global model_shuffle |
|
if model_shuffle is None: |
|
from annotator.shuffle import ContentShuffleDetector |
|
model_shuffle = ContentShuffleDetector() |
|
result = model_shuffle(img) |
|
return result, True |
|
|
|
|
|
model_free_preprocessors = [ |
|
"reference_only", |
|
"reference_adain", |
|
"reference_adain+attn" |
|
] |
|
|
|
flag_preprocessor_resolution = "Preprocessor Resolution" |
|
preprocessor_sliders_config = { |
|
"none": [], |
|
"inpaint": [], |
|
"inpaint_only": [], |
|
"canny": [ |
|
{ |
|
"name": flag_preprocessor_resolution, |
|
"value": 512, |
|
"min": 64, |
|
"max": 2048 |
|
}, |
|
{ |
|
"name": "Canny Low Threshold", |
|
"value": 100, |
|
"min": 1, |
|
"max": 255 |
|
}, |
|
{ |
|
"name": "Canny High Threshold", |
|
"value": 200, |
|
"min": 1, |
|
"max": 255 |
|
}, |
|
], |
|
"mlsd": [ |
|
{ |
|
"name": flag_preprocessor_resolution, |
|
"min": 64, |
|
"max": 2048, |
|
"value": 512 |
|
}, |
|
{ |
|
"name": "MLSD Value Threshold", |
|
"min": 0.01, |
|
"max": 2.0, |
|
"value": 0.1, |
|
"step": 0.01 |
|
}, |
|
{ |
|
"name": "MLSD Distance Threshold", |
|
"min": 0.01, |
|
"max": 20.0, |
|
"value": 0.1, |
|
"step": 0.01 |
|
} |
|
], |
|
"hed": [ |
|
{ |
|
"name": flag_preprocessor_resolution, |
|
"min": 64, |
|
"max": 2048, |
|
"value": 512 |
|
} |
|
], |
|
"scribble_hed": [ |
|
{ |
|
"name": flag_preprocessor_resolution, |
|
"min": 64, |
|
"max": 2048, |
|
"value": 512 |
|
} |
|
], |
|
"hed_safe": [ |
|
{ |
|
"name": flag_preprocessor_resolution, |
|
"min": 64, |
|
"max": 2048, |
|
"value": 512 |
|
} |
|
], |
|
"openpose": [ |
|
{ |
|
"name": flag_preprocessor_resolution, |
|
"min": 64, |
|
"max": 2048, |
|
"value": 512 |
|
} |
|
], |
|
"openpose_full": [ |
|
{ |
|
"name": flag_preprocessor_resolution, |
|
"min": 64, |
|
"max": 2048, |
|
"value": 512 |
|
} |
|
], |
|
"segmentation": [ |
|
{ |
|
"name": flag_preprocessor_resolution, |
|
"min": 64, |
|
"max": 2048, |
|
"value": 512 |
|
} |
|
], |
|
"depth": [ |
|
{ |
|
"name": flag_preprocessor_resolution, |
|
"min": 64, |
|
"max": 2048, |
|
"value": 512 |
|
} |
|
], |
|
"depth_leres": [ |
|
{ |
|
"name": flag_preprocessor_resolution, |
|
"min": 64, |
|
"max": 2048, |
|
"value": 512 |
|
}, |
|
{ |
|
"name": "Remove Near %", |
|
"min": 0, |
|
"max": 100, |
|
"value": 0, |
|
"step": 0.1, |
|
}, |
|
{ |
|
"name": "Remove Background %", |
|
"min": 0, |
|
"max": 100, |
|
"value": 0, |
|
"step": 0.1, |
|
} |
|
], |
|
"depth_leres++": [ |
|
{ |
|
"name": flag_preprocessor_resolution, |
|
"min": 64, |
|
"max": 2048, |
|
"value": 512 |
|
}, |
|
{ |
|
"name": "Remove Near %", |
|
"min": 0, |
|
"max": 100, |
|
"value": 0, |
|
"step": 0.1, |
|
}, |
|
{ |
|
"name": "Remove Background %", |
|
"min": 0, |
|
"max": 100, |
|
"value": 0, |
|
"step": 0.1, |
|
} |
|
], |
|
"normal_map": [ |
|
{ |
|
"name": flag_preprocessor_resolution, |
|
"min": 64, |
|
"max": 2048, |
|
"value": 512 |
|
}, |
|
{ |
|
"name": "Normal Background Threshold", |
|
"min": 0.0, |
|
"max": 1.0, |
|
"value": 0.4, |
|
"step": 0.01 |
|
} |
|
], |
|
"threshold": [ |
|
{ |
|
"name": flag_preprocessor_resolution, |
|
"value": 512, |
|
"min": 64, |
|
"max": 2048 |
|
}, |
|
{ |
|
"name": "Binarization Threshold", |
|
"min": 0, |
|
"max": 255, |
|
"value": 127 |
|
} |
|
], |
|
|
|
"scribble_xdog": [ |
|
{ |
|
"name": flag_preprocessor_resolution, |
|
"value": 512, |
|
"min": 64, |
|
"max": 2048 |
|
}, |
|
{ |
|
"name": "XDoG Threshold", |
|
"min": 1, |
|
"max": 64, |
|
"value": 32, |
|
} |
|
], |
|
"tile_resample": [ |
|
None, |
|
{ |
|
"name": "Down Sampling Rate", |
|
"value": 1.0, |
|
"min": 1.0, |
|
"max": 8.0, |
|
"step": 0.01 |
|
} |
|
], |
|
"tile_colorfix": [ |
|
None, |
|
{ |
|
"name": "Variation", |
|
"value": 8.0, |
|
"min": 3.0, |
|
"max": 32.0, |
|
"step": 1.0 |
|
} |
|
], |
|
"tile_colorfix+sharp": [ |
|
None, |
|
{ |
|
"name": "Variation", |
|
"value": 8.0, |
|
"min": 3.0, |
|
"max": 32.0, |
|
"step": 1.0 |
|
}, |
|
{ |
|
"name": "Sharpness", |
|
"value": 1.0, |
|
"min": 0.0, |
|
"max": 2.0, |
|
"step": 0.01 |
|
} |
|
], |
|
"reference_only": [ |
|
None, |
|
{ |
|
"name": r'Style Fidelity (only for "Balanced" mode)', |
|
"value": 0.5, |
|
"min": 0.0, |
|
"max": 1.0, |
|
"step": 0.01 |
|
} |
|
], |
|
"reference_adain": [ |
|
None, |
|
{ |
|
"name": r'Style Fidelity (only for "Balanced" mode)', |
|
"value": 0.5, |
|
"min": 0.0, |
|
"max": 1.0, |
|
"step": 0.01 |
|
} |
|
], |
|
"reference_adain+attn": [ |
|
None, |
|
{ |
|
"name": r'Style Fidelity (only for "Balanced" mode)', |
|
"value": 0.5, |
|
"min": 0.0, |
|
"max": 1.0, |
|
"step": 0.01 |
|
} |
|
], |
|
"color": [ |
|
{ |
|
"name": flag_preprocessor_resolution, |
|
"value": 512, |
|
"min": 64, |
|
"max": 2048, |
|
} |
|
], |
|
"mediapipe_face": [ |
|
{ |
|
"name": flag_preprocessor_resolution, |
|
"value": 512, |
|
"min": 64, |
|
"max": 2048, |
|
}, |
|
{ |
|
"name": "Max Faces", |
|
"value": 1, |
|
"min": 1, |
|
"max": 10, |
|
"step": 1 |
|
}, |
|
{ |
|
"name": "Min Face Confidence", |
|
"value": 0.5, |
|
"min": 0.01, |
|
"max": 1.0, |
|
"step": 0.01 |
|
} |
|
], |
|
} |
|
|
|
preprocessor_filters = { |
|
"All": "none", |
|
"Canny": "canny", |
|
"Depth": "depth_midas", |
|
"Normal": "normal_bae", |
|
"OpenPose": "openpose_full", |
|
"MLSD": "mlsd", |
|
"Lineart": "lineart_standard (from white bg & black line)", |
|
"SoftEdge": "softedge_pidinet", |
|
"Scribble": "scribble_pidinet", |
|
"Seg": "seg_ofade20k", |
|
"Shuffle": "shuffle", |
|
"Tile": "tile_resample", |
|
"Inpaint": "inpaint_only", |
|
"IP2P": "none", |
|
"Reference": "reference_only", |
|
"T2IA": "none", |
|
} |
|
|