File size: 22,281 Bytes
34097e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
import cv2
import numpy as np

from annotator.util import HWC3
from typing import Callable, Tuple


def pad64(x):
    return int(np.ceil(float(x) / 64.0) * 64 - x)


def safer_memory(x):
    # Fix many MAC/AMD problems
    return np.ascontiguousarray(x.copy()).copy()


def resize_image_with_pad(input_image, resolution):
    img = HWC3(input_image)
    H_raw, W_raw, _ = img.shape
    k = float(resolution) / float(min(H_raw, W_raw))
    interpolation = cv2.INTER_CUBIC if k > 1 else cv2.INTER_AREA
    H_target = int(np.round(float(H_raw) * k))
    W_target = int(np.round(float(W_raw) * k))
    img = cv2.resize(img, (W_target, H_target), interpolation=interpolation)
    H_pad, W_pad = pad64(H_target), pad64(W_target)
    img_padded = np.pad(img, [[0, H_pad], [0, W_pad], [0, 0]], mode='edge')

    def remove_pad(x):
        return safer_memory(x[:H_target, :W_target])

    return safer_memory(img_padded), remove_pad


model_canny = None


def canny(img, res=512, thr_a=100, thr_b=200, **kwargs):
    l, h = thr_a, thr_b
    img, remove_pad = resize_image_with_pad(img, res)
    global model_canny
    if model_canny is None:
        from annotator.canny import apply_canny
        model_canny = apply_canny
    result = model_canny(img, l, h)
    return remove_pad(result), True


def scribble_thr(img, res=512, **kwargs):
    img, remove_pad = resize_image_with_pad(img, res)
    result = np.zeros_like(img, dtype=np.uint8)
    result[np.min(img, axis=2) < 127] = 255
    return remove_pad(result), True


def scribble_xdog(img, res=512, thr_a=32, **kwargs):
    img, remove_pad = resize_image_with_pad(img, res)
    g1 = cv2.GaussianBlur(img.astype(np.float32), (0, 0), 0.5)
    g2 = cv2.GaussianBlur(img.astype(np.float32), (0, 0), 5.0)
    dog = (255 - np.min(g2 - g1, axis=2)).clip(0, 255).astype(np.uint8)
    result = np.zeros_like(img, dtype=np.uint8)
    result[2 * (255 - dog) > thr_a] = 255
    return remove_pad(result), True


def tile_resample(img, res=512, thr_a=1.0, **kwargs):
    img = HWC3(img)
    if thr_a < 1.1:
        return img, True
    H, W, C = img.shape
    H = int(float(H) / float(thr_a))
    W = int(float(W) / float(thr_a))
    img = cv2.resize(img, (W, H), interpolation=cv2.INTER_AREA)
    return img, True


def threshold(img, res=512, thr_a=127, **kwargs):
    img, remove_pad = resize_image_with_pad(img, res)
    result = np.zeros_like(img, dtype=np.uint8)
    result[np.min(img, axis=2) > thr_a] = 255
    return remove_pad(result), True


def identity(img, **kwargs):
    return img, True


def invert(img, res=512, **kwargs):
    return 255 - HWC3(img), True


model_hed = None


def hed(img, res=512, **kwargs):
    img, remove_pad = resize_image_with_pad(img, res)
    global model_hed
    if model_hed is None:
        from annotator.hed import apply_hed
        model_hed = apply_hed
    result = model_hed(img)
    return remove_pad(result), True


def hed_safe(img, res=512, **kwargs):
    img, remove_pad = resize_image_with_pad(img, res)
    global model_hed
    if model_hed is None:
        from annotator.hed import apply_hed
        model_hed = apply_hed
    result = model_hed(img, is_safe=True)
    return remove_pad(result), True


def unload_hed():
    global model_hed
    if model_hed is not None:
        from annotator.hed import unload_hed_model
        unload_hed_model()


def scribble_hed(img, res=512, **kwargs):
    result, _ = hed(img, res)
    import cv2
    from annotator.util import nms
    result = nms(result, 127, 3.0)
    result = cv2.GaussianBlur(result, (0, 0), 3.0)
    result[result > 4] = 255
    result[result < 255] = 0
    return result, True


model_mediapipe_face = None


def mediapipe_face(img, res=512, thr_a: int = 10, thr_b: float = 0.5, **kwargs):
    max_faces = int(thr_a)
    min_confidence = thr_b
    img, remove_pad = resize_image_with_pad(img, res)
    global model_mediapipe_face
    if model_mediapipe_face is None:
        from annotator.mediapipe_face import apply_mediapipe_face
        model_mediapipe_face = apply_mediapipe_face
    result = model_mediapipe_face(img, max_faces=max_faces, min_confidence=min_confidence)
    return remove_pad(result), True


model_mlsd = None


def mlsd(img, res=512, thr_a=0.1, thr_b=0.1, **kwargs):
    thr_v, thr_d = thr_a, thr_b
    img, remove_pad = resize_image_with_pad(img, res)
    global model_mlsd
    if model_mlsd is None:
        from annotator.mlsd import apply_mlsd
        model_mlsd = apply_mlsd
    result = model_mlsd(img, thr_v, thr_d)
    return remove_pad(result), True


def unload_mlsd():
    global model_mlsd
    if model_mlsd is not None:
        from annotator.mlsd import unload_mlsd_model
        unload_mlsd_model()


model_midas = None


def midas(img, res=512, a=np.pi * 2.0, **kwargs):
    img, remove_pad = resize_image_with_pad(img, res)
    global model_midas
    if model_midas is None:
        from annotator.midas import apply_midas
        model_midas = apply_midas
    result, _ = model_midas(img, a)
    return remove_pad(result), True


def midas_normal(img, res=512, a=np.pi * 2.0, thr_a=0.4, **kwargs):  # bg_th -> thr_a
    bg_th = thr_a
    img, remove_pad = resize_image_with_pad(img, res)
    global model_midas
    if model_midas is None:
        from annotator.midas import apply_midas
        model_midas = apply_midas
    _, result = model_midas(img, a, bg_th)
    return remove_pad(result), True


def unload_midas():
    global model_midas
    if model_midas is not None:
        from annotator.midas import unload_midas_model
        unload_midas_model()


model_leres = None


def leres(img, res=512, a=np.pi * 2.0, thr_a=0, thr_b=0, boost=False, **kwargs):
    img, remove_pad = resize_image_with_pad(img, res)
    global model_leres
    if model_leres is None:
        from annotator.leres import apply_leres
        model_leres = apply_leres
    result = model_leres(img, thr_a, thr_b, boost=boost)
    return remove_pad(result), True


def unload_leres():
    global model_leres
    if model_leres is not None:
        from annotator.leres import unload_leres_model
        unload_leres_model()


class OpenposeModel(object):
    def __init__(self) -> None:
        self.model_openpose = None

    def run_model(
            self,
            img: np.ndarray,
            include_body: bool,
            include_hand: bool,
            include_face: bool,
            json_pose_callback: Callable[[str], None] = None,
            res: int = 512,
            **kwargs  # Ignore rest of kwargs
    ) -> Tuple[np.ndarray, bool]:
        """Run the openpose model. Returns a tuple of
        - result image
        - is_image flag

        The JSON format pose string is passed to `json_pose_callback`.
        """
        if json_pose_callback is None:
            json_pose_callback = lambda x: None

        img, remove_pad = resize_image_with_pad(img, res)

        if self.model_openpose is None:
            from annotator.openpose import OpenposeDetector
            self.model_openpose = OpenposeDetector()

        return remove_pad(self.model_openpose(
            img,
            include_body=include_body,
            include_hand=include_hand,
            include_face=include_face,
            json_pose_callback=json_pose_callback
        )), True

    def unload(self):
        if self.model_openpose is not None:
            self.model_openpose.unload_model()


g_openpose_model = OpenposeModel()

model_uniformer = None


def uniformer(img, res=512, **kwargs):
    img, remove_pad = resize_image_with_pad(img, res)
    global model_uniformer
    if model_uniformer is None:
        from annotator.uniformer import apply_uniformer
        model_uniformer = apply_uniformer
    result = model_uniformer(img)
    return remove_pad(result), True


def unload_uniformer():
    global model_uniformer
    if model_uniformer is not None:
        from annotator.uniformer import unload_uniformer_model
        unload_uniformer_model()


model_pidinet = None


def pidinet(img, res=512, **kwargs):
    img, remove_pad = resize_image_with_pad(img, res)
    global model_pidinet
    if model_pidinet is None:
        from annotator.pidinet import apply_pidinet
        model_pidinet = apply_pidinet
    result = model_pidinet(img)
    return remove_pad(result), True


def pidinet_ts(img, res=512, **kwargs):
    img, remove_pad = resize_image_with_pad(img, res)
    global model_pidinet
    if model_pidinet is None:
        from annotator.pidinet import apply_pidinet
        model_pidinet = apply_pidinet
    result = model_pidinet(img, apply_fliter=True)
    return remove_pad(result), True


def pidinet_safe(img, res=512, **kwargs):
    img, remove_pad = resize_image_with_pad(img, res)
    global model_pidinet
    if model_pidinet is None:
        from annotator.pidinet import apply_pidinet
        model_pidinet = apply_pidinet
    result = model_pidinet(img, is_safe=True)
    return remove_pad(result), True


def scribble_pidinet(img, res=512, **kwargs):
    result, _ = pidinet(img, res)
    import cv2
    from annotator.util import nms
    result = nms(result, 127, 3.0)
    result = cv2.GaussianBlur(result, (0, 0), 3.0)
    result[result > 4] = 255
    result[result < 255] = 0
    return result, True


def unload_pidinet():
    global model_pidinet
    if model_pidinet is not None:
        from annotator.pidinet import unload_pid_model
        unload_pid_model()


clip_encoder = None


def clip(img, res=512, **kwargs):
    img = HWC3(img)
    global clip_encoder
    if clip_encoder is None:
        from annotator.clip import apply_clip
        clip_encoder = apply_clip
    result = clip_encoder(img)
    return result, False


def clip_vision_visualization(x):
    x = x.detach().cpu().numpy()[0]
    x = np.ascontiguousarray(x).copy()
    return np.ndarray((x.shape[0] * 4, x.shape[1]), dtype="uint8", buffer=x.tobytes())


def unload_clip():
    global clip_encoder
    if clip_encoder is not None:
        from annotator.clip import unload_clip_model
        unload_clip_model()


model_color = None


def color(img, res=512, **kwargs):
    img = HWC3(img)
    global model_color
    if model_color is None:
        from annotator.color import apply_color
        model_color = apply_color
    result = model_color(img, res=res)
    return result, True


def lineart_standard(img, res=512, **kwargs):
    img, remove_pad = resize_image_with_pad(img, res)
    x = img.astype(np.float32)
    g = cv2.GaussianBlur(x, (0, 0), 6.0)
    intensity = np.min(g - x, axis=2).clip(0, 255)
    intensity /= max(16, np.median(intensity[intensity > 8]))
    intensity *= 127
    result = intensity.clip(0, 255).astype(np.uint8)
    return remove_pad(result), True


model_lineart = None


def lineart(img, res=512, **kwargs):
    img, remove_pad = resize_image_with_pad(img, res)
    global model_lineart
    if model_lineart is None:
        from annotator.lineart import LineartDetector
        model_lineart = LineartDetector(LineartDetector.model_default)

    # applied auto inversion
    result = 255 - model_lineart(img)
    return remove_pad(result), True


def unload_lineart():
    global model_lineart
    if model_lineart is not None:
        model_lineart.unload_model()


model_lineart_coarse = None


def lineart_coarse(img, res=512, **kwargs):
    img, remove_pad = resize_image_with_pad(img, res)
    global model_lineart_coarse
    if model_lineart_coarse is None:
        from annotator.lineart import LineartDetector
        model_lineart_coarse = LineartDetector(LineartDetector.model_coarse)

    # applied auto inversion
    result = 255 - model_lineart_coarse(img)
    return remove_pad(result), True


def unload_lineart_coarse():
    global model_lineart_coarse
    if model_lineart_coarse is not None:
        model_lineart_coarse.unload_model()


model_lineart_anime = None


def lineart_anime(img, res=512, **kwargs):
    img, remove_pad = resize_image_with_pad(img, res)
    global model_lineart_anime
    if model_lineart_anime is None:
        from annotator.lineart_anime import LineartAnimeDetector
        model_lineart_anime = LineartAnimeDetector()

    # applied auto inversion
    result = 255 - model_lineart_anime(img)
    return remove_pad(result), True


def unload_lineart_anime():
    global model_lineart_anime
    if model_lineart_anime is not None:
        model_lineart_anime.unload_model()


model_manga_line = None


def lineart_anime_denoise(img, res=512, **kwargs):
    img, remove_pad = resize_image_with_pad(img, res)
    global model_manga_line
    if model_manga_line is None:
        from annotator.manga_line import MangaLineExtration
        model_manga_line = MangaLineExtration()

    # applied auto inversion
    result = model_manga_line(img)
    return remove_pad(result), True


def unload_lineart_anime_denoise():
    global model_manga_line
    if model_manga_line is not None:
        model_manga_line.unload_model()


model_zoe_depth = None


def zoe_depth(img, res=512, **kwargs):
    img, remove_pad = resize_image_with_pad(img, res)
    global model_zoe_depth
    if model_zoe_depth is None:
        from annotator.zoe import ZoeDetector
        model_zoe_depth = ZoeDetector()
    result = model_zoe_depth(img)
    return remove_pad(result), True


def unload_zoe_depth():
    global model_zoe_depth
    if model_zoe_depth is not None:
        model_zoe_depth.unload_model()


model_normal_bae = None


def normal_bae(img, res=512, **kwargs):
    img, remove_pad = resize_image_with_pad(img, res)
    global model_normal_bae
    if model_normal_bae is None:
        from annotator.normalbae import NormalBaeDetector
        model_normal_bae = NormalBaeDetector()
    result = model_normal_bae(img)
    return remove_pad(result), True


def unload_normal_bae():
    global model_normal_bae
    if model_normal_bae is not None:
        model_normal_bae.unload_model()


model_oneformer_coco = None


def oneformer_coco(img, res=512, **kwargs):
    img, remove_pad = resize_image_with_pad(img, res)
    global model_oneformer_coco
    if model_oneformer_coco is None:
        from annotator.oneformer import OneformerDetector
        model_oneformer_coco = OneformerDetector(OneformerDetector.configs["coco"])
    result = model_oneformer_coco(img)
    return remove_pad(result), True


def unload_oneformer_coco():
    global model_oneformer_coco
    if model_oneformer_coco is not None:
        model_oneformer_coco.unload_model()


model_oneformer_ade20k = None


def oneformer_ade20k(img, res=512, **kwargs):
    img, remove_pad = resize_image_with_pad(img, res)
    global model_oneformer_ade20k
    if model_oneformer_ade20k is None:
        from annotator.oneformer import OneformerDetector
        model_oneformer_ade20k = OneformerDetector(OneformerDetector.configs["ade20k"])
    result = model_oneformer_ade20k(img)
    return remove_pad(result), True


def unload_oneformer_ade20k():
    global model_oneformer_ade20k
    if model_oneformer_ade20k is not None:
        model_oneformer_ade20k.unload_model()


model_shuffle = None


def shuffle(img, res=512, **kwargs):
    img, remove_pad = resize_image_with_pad(img, res)
    img = remove_pad(img)
    global model_shuffle
    if model_shuffle is None:
        from annotator.shuffle import ContentShuffleDetector
        model_shuffle = ContentShuffleDetector()
    result = model_shuffle(img)
    return result, True


model_free_preprocessors = [
    "reference_only",
    "reference_adain",
    "reference_adain+attn"
]

flag_preprocessor_resolution = "Preprocessor Resolution"
preprocessor_sliders_config = {
    "none": [],
    "inpaint": [],
    "inpaint_only": [],
    "canny": [
        {
            "name": flag_preprocessor_resolution,
            "value": 512,
            "min": 64,
            "max": 2048
        },
        {
            "name": "Canny Low Threshold",
            "value": 100,
            "min": 1,
            "max": 255
        },
        {
            "name": "Canny High Threshold",
            "value": 200,
            "min": 1,
            "max": 255
        },
    ],
    "mlsd": [
        {
            "name": flag_preprocessor_resolution,
            "min": 64,
            "max": 2048,
            "value": 512
        },
        {
            "name": "MLSD Value Threshold",
            "min": 0.01,
            "max": 2.0,
            "value": 0.1,
            "step": 0.01
        },
        {
            "name": "MLSD Distance Threshold",
            "min": 0.01,
            "max": 20.0,
            "value": 0.1,
            "step": 0.01
        }
    ],
    "hed": [
        {
            "name": flag_preprocessor_resolution,
            "min": 64,
            "max": 2048,
            "value": 512
        }
    ],
    "scribble_hed": [
        {
            "name": flag_preprocessor_resolution,
            "min": 64,
            "max": 2048,
            "value": 512
        }
    ],
    "hed_safe": [
        {
            "name": flag_preprocessor_resolution,
            "min": 64,
            "max": 2048,
            "value": 512
        }
    ],
    "openpose": [
        {
            "name": flag_preprocessor_resolution,
            "min": 64,
            "max": 2048,
            "value": 512
        }
    ],
    "openpose_full": [
        {
            "name": flag_preprocessor_resolution,
            "min": 64,
            "max": 2048,
            "value": 512
        }
    ],
    "segmentation": [
        {
            "name": flag_preprocessor_resolution,
            "min": 64,
            "max": 2048,
            "value": 512
        }
    ],
    "depth": [
        {
            "name": flag_preprocessor_resolution,
            "min": 64,
            "max": 2048,
            "value": 512
        }
    ],
    "depth_leres": [
        {
            "name": flag_preprocessor_resolution,
            "min": 64,
            "max": 2048,
            "value": 512
        },
        {
            "name": "Remove Near %",
            "min": 0,
            "max": 100,
            "value": 0,
            "step": 0.1,
        },
        {
            "name": "Remove Background %",
            "min": 0,
            "max": 100,
            "value": 0,
            "step": 0.1,
        }
    ],
    "depth_leres++": [
        {
            "name": flag_preprocessor_resolution,
            "min": 64,
            "max": 2048,
            "value": 512
        },
        {
            "name": "Remove Near %",
            "min": 0,
            "max": 100,
            "value": 0,
            "step": 0.1,
        },
        {
            "name": "Remove Background %",
            "min": 0,
            "max": 100,
            "value": 0,
            "step": 0.1,
        }
    ],
    "normal_map": [
        {
            "name": flag_preprocessor_resolution,
            "min": 64,
            "max": 2048,
            "value": 512
        },
        {
            "name": "Normal Background Threshold",
            "min": 0.0,
            "max": 1.0,
            "value": 0.4,
            "step": 0.01
        }
    ],
    "threshold": [
        {
            "name": flag_preprocessor_resolution,
            "value": 512,
            "min": 64,
            "max": 2048
        },
        {
            "name": "Binarization Threshold",
            "min": 0,
            "max": 255,
            "value": 127
        }
    ],

    "scribble_xdog": [
        {
            "name": flag_preprocessor_resolution,
            "value": 512,
            "min": 64,
            "max": 2048
        },
        {
            "name": "XDoG Threshold",
            "min": 1,
            "max": 64,
            "value": 32,
        }
    ],
    "tile_resample": [
        None,
        {
            "name": "Down Sampling Rate",
            "value": 1.0,
            "min": 1.0,
            "max": 8.0,
            "step": 0.01
        }
    ],
    "tile_colorfix": [
        None,
        {
            "name": "Variation",
            "value": 8.0,
            "min": 3.0,
            "max": 32.0,
            "step": 1.0
        }
    ],
    "tile_colorfix+sharp": [
        None,
        {
            "name": "Variation",
            "value": 8.0,
            "min": 3.0,
            "max": 32.0,
            "step": 1.0
        },
        {
            "name": "Sharpness",
            "value": 1.0,
            "min": 0.0,
            "max": 2.0,
            "step": 0.01
        }
    ],
    "reference_only": [
        None,
        {
            "name": r'Style Fidelity (only for "Balanced" mode)',
            "value": 0.5,
            "min": 0.0,
            "max": 1.0,
            "step": 0.01
        }
    ],
    "reference_adain": [
        None,
        {
            "name": r'Style Fidelity (only for "Balanced" mode)',
            "value": 0.5,
            "min": 0.0,
            "max": 1.0,
            "step": 0.01
        }
    ],
    "reference_adain+attn": [
        None,
        {
            "name": r'Style Fidelity (only for "Balanced" mode)',
            "value": 0.5,
            "min": 0.0,
            "max": 1.0,
            "step": 0.01
        }
    ],
    "color": [
        {
            "name": flag_preprocessor_resolution,
            "value": 512,
            "min": 64,
            "max": 2048,
        }
    ],
    "mediapipe_face": [
        {
            "name": flag_preprocessor_resolution,
            "value": 512,
            "min": 64,
            "max": 2048,
        },
        {
            "name": "Max Faces",
            "value": 1,
            "min": 1,
            "max": 10,
            "step": 1
        },
        {
            "name": "Min Face Confidence",
            "value": 0.5,
            "min": 0.01,
            "max": 1.0,
            "step": 0.01
        }
    ],
}

preprocessor_filters = {
    "All": "none",
    "Canny": "canny",
    "Depth": "depth_midas",
    "Normal": "normal_bae",
    "OpenPose": "openpose_full",
    "MLSD": "mlsd",
    "Lineart": "lineart_standard (from white bg & black line)",
    "SoftEdge": "softedge_pidinet",
    "Scribble": "scribble_pidinet",
    "Seg": "seg_ofade20k",
    "Shuffle": "shuffle",
    "Tile": "tile_resample",
    "Inpaint": "inpaint_only",
    "IP2P": "none",
    "Reference": "reference_only",
    "T2IA": "none",
}