|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import cv2 |
|
import numpy as np |
|
|
|
|
|
lvmin_kernels_raw = [ |
|
np.array([ |
|
[-1, -1, -1], |
|
[0, 1, 0], |
|
[1, 1, 1] |
|
], dtype=np.int32), |
|
np.array([ |
|
[0, -1, -1], |
|
[1, 1, -1], |
|
[0, 1, 0] |
|
], dtype=np.int32) |
|
] |
|
|
|
lvmin_kernels = [] |
|
lvmin_kernels += [np.rot90(x, k=0, axes=(0, 1)) for x in lvmin_kernels_raw] |
|
lvmin_kernels += [np.rot90(x, k=1, axes=(0, 1)) for x in lvmin_kernels_raw] |
|
lvmin_kernels += [np.rot90(x, k=2, axes=(0, 1)) for x in lvmin_kernels_raw] |
|
lvmin_kernels += [np.rot90(x, k=3, axes=(0, 1)) for x in lvmin_kernels_raw] |
|
|
|
lvmin_prunings_raw = [ |
|
np.array([ |
|
[-1, -1, -1], |
|
[-1, 1, -1], |
|
[0, 0, -1] |
|
], dtype=np.int32), |
|
np.array([ |
|
[-1, -1, -1], |
|
[-1, 1, -1], |
|
[-1, 0, 0] |
|
], dtype=np.int32) |
|
] |
|
|
|
lvmin_prunings = [] |
|
lvmin_prunings += [np.rot90(x, k=0, axes=(0, 1)) for x in lvmin_prunings_raw] |
|
lvmin_prunings += [np.rot90(x, k=1, axes=(0, 1)) for x in lvmin_prunings_raw] |
|
lvmin_prunings += [np.rot90(x, k=2, axes=(0, 1)) for x in lvmin_prunings_raw] |
|
lvmin_prunings += [np.rot90(x, k=3, axes=(0, 1)) for x in lvmin_prunings_raw] |
|
|
|
|
|
def remove_pattern(x, kernel): |
|
objects = cv2.morphologyEx(x, cv2.MORPH_HITMISS, kernel) |
|
objects = np.where(objects > 127) |
|
x[objects] = 0 |
|
return x, objects[0].shape[0] > 0 |
|
|
|
|
|
def thin_one_time(x, kernels): |
|
y = x |
|
is_done = True |
|
for k in kernels: |
|
y, has_update = remove_pattern(y, k) |
|
if has_update: |
|
is_done = False |
|
return y, is_done |
|
|
|
|
|
def lvmin_thin(x, prunings=True): |
|
y = x |
|
for i in range(32): |
|
y, is_done = thin_one_time(y, lvmin_kernels) |
|
if is_done: |
|
break |
|
if prunings: |
|
y, _ = thin_one_time(y, lvmin_prunings) |
|
return y |
|
|
|
|
|
def nake_nms(x): |
|
f1 = np.array([[0, 0, 0], [1, 1, 1], [0, 0, 0]], dtype=np.uint8) |
|
f2 = np.array([[0, 1, 0], [0, 1, 0], [0, 1, 0]], dtype=np.uint8) |
|
f3 = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]], dtype=np.uint8) |
|
f4 = np.array([[0, 0, 1], [0, 1, 0], [1, 0, 0]], dtype=np.uint8) |
|
y = np.zeros_like(x) |
|
for f in [f1, f2, f3, f4]: |
|
np.putmask(y, cv2.dilate(x, kernel=f) == x, x) |
|
return y |
|
|
|
|