|
import torch |
|
import torch.nn as nn |
|
from omegaconf import OmegaConf |
|
from modules import devices, shared |
|
|
|
cond_cast_unet = getattr(devices, 'cond_cast_unet', lambda x: x) |
|
|
|
from ldm.util import exists |
|
from ldm.modules.attention import SpatialTransformer |
|
from ldm.modules.diffusionmodules.util import conv_nd, linear, zero_module, timestep_embedding |
|
from ldm.modules.diffusionmodules.openaimodel import UNetModel, TimestepEmbedSequential, ResBlock, Downsample, AttentionBlock |
|
|
|
|
|
class TorchHijackForUnet: |
|
""" |
|
This is torch, but with cat that resizes tensors to appropriate dimensions if they do not match; |
|
this makes it possible to create pictures with dimensions that are multiples of 8 rather than 64 |
|
""" |
|
|
|
def __getattr__(self, item): |
|
if item == 'cat': |
|
return self.cat |
|
|
|
if hasattr(torch, item): |
|
return getattr(torch, item) |
|
|
|
raise AttributeError("'{}' object has no attribute '{}'".format(type(self).__name__, item)) |
|
|
|
def cat(self, tensors, *args, **kwargs): |
|
if len(tensors) == 2: |
|
a, b = tensors |
|
if a.shape[-2:] != b.shape[-2:]: |
|
a = torch.nn.functional.interpolate(a, b.shape[-2:], mode="nearest") |
|
|
|
tensors = (a, b) |
|
|
|
return torch.cat(tensors, *args, **kwargs) |
|
|
|
|
|
th = TorchHijackForUnet() |
|
|
|
|
|
def align(hint, size): |
|
b, c, h1, w1 = hint.shape |
|
h, w = size |
|
if h != h1 or w != w1: |
|
hint = th.nn.functional.interpolate(hint, size=size, mode="nearest") |
|
return hint |
|
|
|
|
|
def get_node_name(name, parent_name): |
|
if len(name) <= len(parent_name): |
|
return False, '' |
|
p = name[:len(parent_name)] |
|
if p != parent_name: |
|
return False, '' |
|
return True, name[len(parent_name):] |
|
|
|
|
|
class PlugableControlModel(nn.Module): |
|
def __init__(self, state_dict, config_path, lowvram=False, base_model=None) -> None: |
|
super().__init__() |
|
self.config = OmegaConf.load(config_path) |
|
self.control_model = ControlNet(**self.config.model.params.control_stage_config.params) |
|
|
|
if any([k.startswith("control_model.") for k, v in state_dict.items()]): |
|
if 'difference' in state_dict and base_model is not None: |
|
print('We will stop supporting diff models soon because of its lack of robustness.') |
|
print('Please begin to use official models as soon as possible.') |
|
|
|
unet_state_dict = base_model.state_dict() |
|
unet_state_dict_keys = unet_state_dict.keys() |
|
final_state_dict = {} |
|
counter = 0 |
|
for key in state_dict.keys(): |
|
if not key.startswith("control_model."): |
|
continue |
|
p = state_dict[key] |
|
is_control, node_name = get_node_name(key, 'control_') |
|
key_name = node_name.replace("model.", "") if is_control else key |
|
if key_name in unet_state_dict_keys: |
|
p_new = p + unet_state_dict[key_name].clone().cpu() |
|
counter += 1 |
|
else: |
|
p_new = p |
|
final_state_dict[key] = p_new |
|
print(f'Diff model cloned: {counter} values') |
|
state_dict = final_state_dict |
|
state_dict = {k.replace("control_model.", ""): v for k, v in state_dict.items() if k.startswith("control_model.")} |
|
|
|
self.control_model.load_state_dict(state_dict) |
|
if not lowvram: |
|
self.control_model.to(devices.get_device_for("controlnet")) |
|
|
|
def reset(self): |
|
pass |
|
|
|
def forward(self, *args, **kwargs): |
|
return self.control_model(*args, **kwargs) |
|
|
|
|
|
class ControlNet(nn.Module): |
|
def __init__( |
|
self, |
|
image_size, |
|
in_channels, |
|
model_channels, |
|
hint_channels, |
|
num_res_blocks, |
|
attention_resolutions, |
|
dropout=0, |
|
channel_mult=(1, 2, 4, 8), |
|
conv_resample=True, |
|
dims=2, |
|
use_checkpoint=False, |
|
use_fp16=False, |
|
num_heads=-1, |
|
num_head_channels=-1, |
|
num_heads_upsample=-1, |
|
use_scale_shift_norm=False, |
|
resblock_updown=False, |
|
use_new_attention_order=False, |
|
use_spatial_transformer=False, |
|
transformer_depth=1, |
|
context_dim=None, |
|
|
|
n_embed=None, |
|
legacy=True, |
|
disable_self_attentions=None, |
|
num_attention_blocks=None, |
|
disable_middle_self_attn=False, |
|
use_linear_in_transformer=False, |
|
): |
|
use_fp16 = getattr(devices, 'dtype_unet', devices.dtype) == th.float16 and not getattr(shared.cmd_opts, "no_half_controlnet", False) |
|
|
|
super().__init__() |
|
if use_spatial_transformer: |
|
assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...' |
|
|
|
if context_dim is not None: |
|
assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...' |
|
from omegaconf.listconfig import ListConfig |
|
if type(context_dim) == ListConfig: |
|
context_dim = list(context_dim) |
|
|
|
if num_heads_upsample == -1: |
|
num_heads_upsample = num_heads |
|
|
|
if num_heads == -1: |
|
assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set' |
|
|
|
if num_head_channels == -1: |
|
assert num_heads != -1, 'Either num_heads or num_head_channels has to be set' |
|
|
|
self.dims = dims |
|
self.image_size = image_size |
|
self.in_channels = in_channels |
|
self.model_channels = model_channels |
|
if isinstance(num_res_blocks, int): |
|
self.num_res_blocks = len(channel_mult) * [num_res_blocks] |
|
else: |
|
if len(num_res_blocks) != len(channel_mult): |
|
raise ValueError("provide num_res_blocks either as an int (globally constant) or " |
|
"as a list/tuple (per-level) with the same length as channel_mult") |
|
self.num_res_blocks = num_res_blocks |
|
if disable_self_attentions is not None: |
|
|
|
assert len(disable_self_attentions) == len(channel_mult) |
|
if num_attention_blocks is not None: |
|
assert len(num_attention_blocks) == len(self.num_res_blocks) |
|
assert all(map(lambda i: self.num_res_blocks[i] >= num_attention_blocks[i], range( |
|
len(num_attention_blocks)))) |
|
print(f"Constructor of UNetModel received num_attention_blocks={num_attention_blocks}. " |
|
f"This option has LESS priority than attention_resolutions {attention_resolutions}, " |
|
f"i.e., in cases where num_attention_blocks[i] > 0 but 2**i not in attention_resolutions, " |
|
f"attention will still not be set.") |
|
|
|
self.attention_resolutions = attention_resolutions |
|
self.dropout = dropout |
|
self.channel_mult = channel_mult |
|
self.conv_resample = conv_resample |
|
self.use_checkpoint = use_checkpoint |
|
self.dtype = th.float16 if use_fp16 else th.float32 |
|
self.num_heads = num_heads |
|
self.num_head_channels = num_head_channels |
|
self.num_heads_upsample = num_heads_upsample |
|
self.predict_codebook_ids = n_embed is not None |
|
|
|
time_embed_dim = model_channels * 4 |
|
self.time_embed = nn.Sequential( |
|
linear(model_channels, time_embed_dim), |
|
nn.SiLU(), |
|
linear(time_embed_dim, time_embed_dim), |
|
) |
|
|
|
self.input_blocks = nn.ModuleList( |
|
[ |
|
TimestepEmbedSequential( |
|
conv_nd(dims, in_channels, model_channels, 3, padding=1) |
|
) |
|
] |
|
) |
|
self.zero_convs = nn.ModuleList([self.make_zero_conv(model_channels)]) |
|
|
|
self.input_hint_block = TimestepEmbedSequential( |
|
conv_nd(dims, hint_channels, 16, 3, padding=1), |
|
nn.SiLU(), |
|
conv_nd(dims, 16, 16, 3, padding=1), |
|
nn.SiLU(), |
|
conv_nd(dims, 16, 32, 3, padding=1, stride=2), |
|
nn.SiLU(), |
|
conv_nd(dims, 32, 32, 3, padding=1), |
|
nn.SiLU(), |
|
conv_nd(dims, 32, 96, 3, padding=1, stride=2), |
|
nn.SiLU(), |
|
conv_nd(dims, 96, 96, 3, padding=1), |
|
nn.SiLU(), |
|
conv_nd(dims, 96, 256, 3, padding=1, stride=2), |
|
nn.SiLU(), |
|
zero_module(conv_nd(dims, 256, model_channels, 3, padding=1)) |
|
) |
|
|
|
self._feature_size = model_channels |
|
input_block_chans = [model_channels] |
|
ch = model_channels |
|
ds = 1 |
|
for level, mult in enumerate(channel_mult): |
|
for nr in range(self.num_res_blocks[level]): |
|
layers = [ |
|
ResBlock( |
|
ch, |
|
time_embed_dim, |
|
dropout, |
|
out_channels=mult * model_channels, |
|
dims=dims, |
|
use_checkpoint=use_checkpoint, |
|
use_scale_shift_norm=use_scale_shift_norm, |
|
) |
|
] |
|
ch = mult * model_channels |
|
if ds in attention_resolutions: |
|
if num_head_channels == -1: |
|
dim_head = ch // num_heads |
|
else: |
|
num_heads = ch // num_head_channels |
|
dim_head = num_head_channels |
|
if legacy: |
|
|
|
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels |
|
if exists(disable_self_attentions): |
|
disabled_sa = disable_self_attentions[level] |
|
else: |
|
disabled_sa = False |
|
|
|
if not exists(num_attention_blocks) or nr < num_attention_blocks[level]: |
|
layers.append( |
|
AttentionBlock( |
|
ch, |
|
use_checkpoint=use_checkpoint, |
|
num_heads=num_heads, |
|
num_head_channels=dim_head, |
|
use_new_attention_order=use_new_attention_order, |
|
) if not use_spatial_transformer else SpatialTransformer( |
|
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim, |
|
disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer, |
|
use_checkpoint=use_checkpoint |
|
) |
|
) |
|
self.input_blocks.append(TimestepEmbedSequential(*layers)) |
|
self.zero_convs.append(self.make_zero_conv(ch)) |
|
self._feature_size += ch |
|
input_block_chans.append(ch) |
|
if level != len(channel_mult) - 1: |
|
out_ch = ch |
|
self.input_blocks.append( |
|
TimestepEmbedSequential( |
|
ResBlock( |
|
ch, |
|
time_embed_dim, |
|
dropout, |
|
out_channels=out_ch, |
|
dims=dims, |
|
use_checkpoint=use_checkpoint, |
|
use_scale_shift_norm=use_scale_shift_norm, |
|
down=True, |
|
) |
|
if resblock_updown |
|
else Downsample( |
|
ch, conv_resample, dims=dims, out_channels=out_ch |
|
) |
|
) |
|
) |
|
ch = out_ch |
|
input_block_chans.append(ch) |
|
self.zero_convs.append(self.make_zero_conv(ch)) |
|
ds *= 2 |
|
self._feature_size += ch |
|
|
|
if num_head_channels == -1: |
|
dim_head = ch // num_heads |
|
else: |
|
num_heads = ch // num_head_channels |
|
dim_head = num_head_channels |
|
if legacy: |
|
|
|
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels |
|
self.middle_block = TimestepEmbedSequential( |
|
ResBlock( |
|
ch, |
|
time_embed_dim, |
|
dropout, |
|
dims=dims, |
|
use_checkpoint=use_checkpoint, |
|
use_scale_shift_norm=use_scale_shift_norm, |
|
), |
|
AttentionBlock( |
|
ch, |
|
use_checkpoint=use_checkpoint, |
|
num_heads=num_heads, |
|
num_head_channels=dim_head, |
|
use_new_attention_order=use_new_attention_order, |
|
|
|
) if not use_spatial_transformer else SpatialTransformer( |
|
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim, |
|
disable_self_attn=disable_middle_self_attn, use_linear=use_linear_in_transformer, |
|
use_checkpoint=use_checkpoint |
|
), |
|
ResBlock( |
|
ch, |
|
time_embed_dim, |
|
dropout, |
|
dims=dims, |
|
use_checkpoint=use_checkpoint, |
|
use_scale_shift_norm=use_scale_shift_norm, |
|
), |
|
) |
|
self.middle_block_out = self.make_zero_conv(ch) |
|
self._feature_size += ch |
|
|
|
def make_zero_conv(self, channels): |
|
return TimestepEmbedSequential(zero_module(conv_nd(self.dims, channels, channels, 1, padding=0))) |
|
|
|
def align(self, hint, h, w): |
|
b, c, h1, w1 = hint.shape |
|
if h != h1 or w != w1: |
|
return align(hint, (h, w)) |
|
return hint |
|
|
|
def forward(self, x, hint, timesteps, context, **kwargs): |
|
t_emb = cond_cast_unet(timestep_embedding(timesteps, self.model_channels, repeat_only=False)) |
|
emb = self.time_embed(t_emb) |
|
|
|
guided_hint = self.input_hint_block(cond_cast_unet(hint), emb, context) |
|
outs = [] |
|
|
|
h1, w1 = x.shape[-2:] |
|
guided_hint = self.align(guided_hint, h1, w1) |
|
|
|
h = x.type(self.dtype) |
|
for module, zero_conv in zip(self.input_blocks, self.zero_convs): |
|
if guided_hint is not None: |
|
h = module(h, emb, context) |
|
h += guided_hint |
|
guided_hint = None |
|
else: |
|
h = module(h, emb, context) |
|
outs.append(zero_conv(h, emb, context)) |
|
|
|
h = self.middle_block(h, emb, context) |
|
outs.append(self.middle_block_out(h, emb, context)) |
|
|
|
return outs |
|
|