toto10's picture
Upload folder using huggingface_hub (#5)
306918c
raw
history blame
40.7 kB
import modules.scripts as scripts
import gradio as gr
import os
import torch
import random
import time
import pprint
import shutil
from modules.processing import process_images,Processed
from modules.paths import models_path
from modules.textual_inversion import autocrop
import modules.images
from modules import shared,deepbooru,masking
import cv2
import copy
import numpy as np
from PIL import Image,ImageOps
import glob
import requests
import json
import re
from extensions.ebsynth_utility.calculator import CalcParser,ParseError
def get_my_dir():
if os.path.isdir("extensions/ebsynth_utility"):
return "extensions/ebsynth_utility"
return scripts.basedir()
def x_ceiling(value, step):
return -(-value // step) * step
def remove_pngs_in_dir(path):
if not os.path.isdir(path):
return
pngs = glob.glob( os.path.join(path, "*.png") )
for png in pngs:
os.remove(png)
def resize_img(img, w, h):
if img.shape[0] + img.shape[1] < h + w:
interpolation = interpolation=cv2.INTER_CUBIC
else:
interpolation = interpolation=cv2.INTER_AREA
return cv2.resize(img, (w, h), interpolation=interpolation)
def download_and_cache_models(dirname):
download_url = 'https://github.com/zymk9/yolov5_anime/blob/8b50add22dbd8224904221be3173390f56046794/weights/yolov5s_anime.pt?raw=true'
model_file_name = 'yolov5s_anime.pt'
if not os.path.exists(dirname):
os.makedirs(dirname)
cache_file = os.path.join(dirname, model_file_name)
if not os.path.exists(cache_file):
print(f"downloading face detection model from '{download_url}' to '{cache_file}'")
response = requests.get(download_url)
with open(cache_file, "wb") as f:
f.write(response.content)
if os.path.exists(cache_file):
return cache_file
return None
class Script(scripts.Script):
anime_face_detector = None
face_detector = None
face_merge_mask_filename = "face_crop_img2img_mask.png"
face_merge_mask_image = None
prompts_dir = ""
calc_parser = None
is_invert_mask = False
controlnet_weight = 0.5
controlnet_weight_for_face = 0.5
add_tag_replace_underscore = False
# The title of the script. This is what will be displayed in the dropdown menu.
def title(self):
return "ebsynth utility"
# Determines when the script should be shown in the dropdown menu via the
# returned value. As an example:
# is_img2img is True if the current tab is img2img, and False if it is txt2img.
# Thus, return is_img2img to only show the script on the img2img tab.
def show(self, is_img2img):
return is_img2img
# How the script's is displayed in the UI. See https://gradio.app/docs/#components
# for the different UI components you can use and how to create them.
# Most UI components can return a value, such as a boolean for a checkbox.
# The returned values are passed to the run method as parameters.
def ui(self, is_img2img):
with gr.Column(variant='panel'):
with gr.Column():
project_dir = gr.Textbox(label='Project directory', lines=1)
generation_test = gr.Checkbox(False, label="Generation TEST!!(Ignore Project directory and use the image and mask specified in the main UI)")
with gr.Accordion("Mask option"):
mask_mode = gr.Dropdown(choices=["Normal","Invert","None","Don't Override"], value="Normal" ,label="Mask Mode(Override img2img Mask mode)")
inpaint_area = gr.Dropdown(choices=["Whole picture","Only masked","Don't Override"], type = "index", value="Only masked" ,label="Inpaint Area(Override img2img Inpaint area)")
use_depth = gr.Checkbox(True, label="Use Depth Map If exists in /video_key_depth")
gr.HTML(value="<p style='margin-bottom: 0.7em'>\
See \
<font color=\"blue\"><a href=\"https://github.com/thygate/stable-diffusion-webui-depthmap-script\">[here]</a></font> for depth map.\
</p>")
with gr.Accordion("ControlNet option"):
controlnet_weight = gr.Slider(minimum=0.0, maximum=2.0, step=0.01, value=0.5, label="Control Net Weight")
controlnet_weight_for_face = gr.Slider(minimum=0.0, maximum=2.0, step=0.01, value=0.5, label="Control Net Weight For Face")
use_preprocess_img = gr.Checkbox(True, label="Use Preprocess image If exists in /controlnet_preprocess")
gr.HTML(value="<p style='margin-bottom: 0.7em'>\
Please enable the following settings to use controlnet from this script.<br>\
<font color=\"red\">\
Settings->ControlNet->Allow other script to control this extension\
</font>\
</p>")
with gr.Accordion("Loopback option"):
img2img_repeat_count = gr.Slider(minimum=1, maximum=30, step=1, value=1, label="Img2Img Repeat Count (Loop Back)")
inc_seed = gr.Slider(minimum=0, maximum=9999999, step=1, value=1, label="Add N to seed when repeating ")
with gr.Accordion("Auto Tagging option"):
auto_tag_mode = gr.Dropdown(choices=["None","DeepDanbooru","CLIP"], value="None" ,label="Auto Tagging")
add_tag_to_head = gr.Checkbox(False, label="Add additional prompts to the head")
add_tag_replace_underscore = gr.Checkbox(False, label="Replace '_' with ' '(Does not affect the function to add tokens using add_token.txt.)")
gr.HTML(value="<p style='margin-bottom: 0.7em'>\
The results are stored in timestamp_prompts.txt.<br>\
If you want to use the same tagging results the next time you run img2img, rename the file to prompts.txt<br>\
Recommend enabling the following settings.<br>\
<font color=\"red\">\
Settings->Interrogate Option->Interrogate: include ranks of model tags matches in results\
</font>\
</p>")
with gr.Accordion("Face Crop option"):
is_facecrop = gr.Checkbox(False, label="use Face Crop img2img")
with gr.Row():
face_detection_method = gr.Dropdown(choices=["YuNet","Yolov5_anime"], value="YuNet" ,label="Face Detection Method")
gr.HTML(value="<p style='margin-bottom: 0.7em'>\
If loading of the Yolov5_anime model fails, check\
<font color=\"blue\"><a href=\"https://github.com/AUTOMATIC1111/stable-diffusion-webui/issues/2235\">[this]</a></font> solution.\
</p>")
face_crop_resolution = gr.Slider(minimum=128, maximum=2048, step=1, value=512, label="Face Crop Resolution")
max_crop_size = gr.Slider(minimum=0, maximum=2048, step=1, value=1024, label="Max Crop Size")
face_denoising_strength = gr.Slider(minimum=0.00, maximum=1.00, step=0.01, value=0.5, label="Face Denoising Strength")
face_area_magnification = gr.Slider(minimum=1.00, maximum=10.00, step=0.01, value=1.5, label="Face Area Magnification ")
disable_facecrop_lpbk_last_time = gr.Checkbox(False, label="Disable at the last loopback time")
with gr.Column():
enable_face_prompt = gr.Checkbox(False, label="Enable Face Prompt")
face_prompt = gr.Textbox(label="Face Prompt", show_label=False, lines=2,
placeholder="Prompt for Face",
value = "face close up,"
)
return [project_dir, generation_test, mask_mode, inpaint_area, use_depth, img2img_repeat_count, inc_seed, auto_tag_mode, add_tag_to_head, add_tag_replace_underscore, is_facecrop, face_detection_method, face_crop_resolution, max_crop_size, face_denoising_strength, face_area_magnification, enable_face_prompt, face_prompt, controlnet_weight, controlnet_weight_for_face, disable_facecrop_lpbk_last_time,use_preprocess_img]
def detect_face_from_img(self, img_array):
if not self.face_detector:
dnn_model_path = autocrop.download_and_cache_models(os.path.join(models_path, "opencv"))
self.face_detector = cv2.FaceDetectorYN.create(dnn_model_path, "", (0, 0))
self.face_detector.setInputSize((img_array.shape[1], img_array.shape[0]))
_, result = self.face_detector.detect(img_array)
return result
def detect_anime_face_from_img(self, img_array):
import sys
if not self.anime_face_detector:
if 'models' in sys.modules:
del sys.modules['models']
anime_model_path = download_and_cache_models(os.path.join(models_path, "yolov5_anime"))
if not os.path.isfile(anime_model_path):
print( "WARNING!! " + anime_model_path + " not found.")
print( "use YuNet instead.")
return self.detect_face_from_img(img_array)
self.anime_face_detector = torch.hub.load('ultralytics/yolov5', 'custom', path=anime_model_path)
# warmup
test = np.zeros([512,512,3],dtype=np.uint8)
_ = self.anime_face_detector(test)
result = self.anime_face_detector(img_array)
#models.common.Detections
faces = []
for x_c, y_c, w, h, _, _ in result.xywh[0].tolist():
faces.append( [ x_c - w/2 , y_c - h/2, w, h ] )
return faces
def detect_face(self, img, mask, face_detection_method, max_crop_size):
img_array = np.array(img)
# image without alpha
if img_array.shape[2] == 4:
img_array = img_array[:,:,:3]
if mask is not None:
if self.is_invert_mask:
mask = ImageOps.invert(mask)
mask_array = np.array(mask)/255
if mask_array.ndim == 2:
mask_array = mask_array[:, :, np.newaxis]
if mask_array.shape[2] == 4:
mask_array = mask_array[:,:,:3]
img_array = mask_array * img_array
img_array = img_array.astype(np.uint8)
if face_detection_method == "YuNet":
faces = self.detect_face_from_img(img_array)
elif face_detection_method == "Yolov5_anime":
faces = self.detect_anime_face_from_img(img_array)
else:
faces = self.detect_face_from_img(img_array)
if faces is None or len(faces) == 0:
return []
face_coords = []
for face in faces:
x = int(face[0])
y = int(face[1])
w = int(face[2])
h = int(face[3])
if max(w,h) > max_crop_size:
print("ignore big face")
continue
if w == 0 or h == 0:
print("ignore w,h = 0 face")
continue
face_coords.append( [ x/img_array.shape[1],y/img_array.shape[0],w/img_array.shape[1],h/img_array.shape[0]] )
return face_coords
def get_mask(self):
def create_mask( output, x_rate, y_rate, k_size ):
img = np.zeros((512, 512, 3))
img = cv2.ellipse(img, ((256, 256), (int(512 * x_rate), int(512 * y_rate)), 0), (255, 255, 255), thickness=-1)
img = cv2.GaussianBlur(img, (k_size, k_size), 0)
cv2.imwrite(output, img)
if self.face_merge_mask_image is None:
mask_file_path = os.path.join( get_my_dir() , self.face_merge_mask_filename)
if not os.path.isfile(mask_file_path):
create_mask( mask_file_path, 0.9, 0.9, 91)
m = cv2.imread( mask_file_path )[:,:,0]
m = m[:, :, np.newaxis]
self.face_merge_mask_image = m / 255
return self.face_merge_mask_image
def face_img_crop(self, img, face_coords,face_area_magnification):
img_array = np.array(img)
face_imgs =[]
new_coords = []
for face in face_coords:
x = int(face[0] * img_array.shape[1])
y = int(face[1] * img_array.shape[0])
w = int(face[2] * img_array.shape[1])
h = int(face[3] * img_array.shape[0])
print([x,y,w,h])
cx = x + int(w/2)
cy = y + int(h/2)
x = cx - int(w*face_area_magnification / 2)
x = x if x > 0 else 0
w = cx + int(w*face_area_magnification / 2) - x
w = w if x+w < img.width else img.width - x
y = cy - int(h*face_area_magnification / 2)
y = y if y > 0 else 0
h = cy + int(h*face_area_magnification / 2) - y
h = h if y+h < img.height else img.height - y
print([x,y,w,h])
face_imgs.append( img_array[y: y+h, x: x+w] )
new_coords.append( [x,y,w,h] )
resized = []
for face_img in face_imgs:
if face_img.shape[1] < face_img.shape[0]:
re_w = self.face_crop_resolution
re_h = int(x_ceiling( (self.face_crop_resolution / face_img.shape[1]) * face_img.shape[0] , 64))
else:
re_w = int(x_ceiling( (self.face_crop_resolution / face_img.shape[0]) * face_img.shape[1] , 64))
re_h = self.face_crop_resolution
face_img = resize_img(face_img, re_w, re_h)
resized.append( Image.fromarray(face_img))
return resized, new_coords
def face_crop_img2img(self, p, face_coords, face_denoising_strength, face_area_magnification, enable_face_prompt, face_prompt, controlnet_input_img, controlnet_input_face_imgs, preprocess_img_exist):
def merge_face(img, face_img, face_coord, base_img_size, mask):
x_rate = img.width / base_img_size[0]
y_rate = img.height / base_img_size[1]
img_array = np.array(img)
x = int(face_coord[0] * x_rate)
y = int(face_coord[1] * y_rate)
w = int(face_coord[2] * x_rate)
h = int(face_coord[3] * y_rate)
face_array = np.array(face_img)
face_array = resize_img(face_array, w, h)
mask = resize_img(mask, w, h)
if mask.ndim == 2:
mask = mask[:, :, np.newaxis]
bg = img_array[y: y+h, x: x+w]
img_array[y: y+h, x: x+w] = mask * face_array + (1-mask)*bg
return Image.fromarray(img_array)
base_img = p.init_images[0]
base_img_size = (base_img.width, base_img.height)
if face_coords is None or len(face_coords) == 0:
print("no face detected")
return process_images(p)
print(face_coords)
face_imgs, new_coords = self.face_img_crop(base_img, face_coords, face_area_magnification)
if not face_imgs:
return process_images(p)
face_p = copy.copy(p)
### img2img base img
proc = self.process_images(p, controlnet_input_img, self.controlnet_weight, preprocess_img_exist)
print(proc.seed)
### img2img for each face
face_img2img_results = []
for face, coord, controlnet_input_face in zip(face_imgs, new_coords, controlnet_input_face_imgs):
# cv2.imwrite("scripts/face.png", np.array(face)[:, :, ::-1])
face_p.init_images = [face]
face_p.width = face.width
face_p.height = face.height
face_p.denoising_strength = face_denoising_strength
if enable_face_prompt:
face_p.prompt = face_prompt
else:
face_p.prompt = "close-up face ," + face_p.prompt
if p.image_mask is not None:
x,y,w,h = coord
cropped_face_mask = Image.fromarray(np.array(p.image_mask)[y: y+h, x: x+w])
face_p.image_mask = modules.images.resize_image(0, cropped_face_mask, face.width, face.height)
face_proc = self.process_images(face_p, controlnet_input_face, self.controlnet_weight_for_face, preprocess_img_exist)
print(face_proc.seed)
face_img2img_results.append((face_proc.images[0], coord))
### merge faces
bg = proc.images[0]
mask = self.get_mask()
for face_img, coord in face_img2img_results:
bg = merge_face(bg, face_img, coord, base_img_size, mask)
proc.images[0] = bg
return proc
def get_depth_map(self, mask, depth_path ,img_basename, is_invert_mask):
depth_img_path = os.path.join( depth_path , img_basename )
depth = None
if os.path.isfile( depth_img_path ):
depth = Image.open(depth_img_path)
else:
# try 00001-0000.png
os.path.splitext(img_basename)[0]
depth_img_path = os.path.join( depth_path , os.path.splitext(img_basename)[0] + "-0000.png" )
if os.path.isfile( depth_img_path ):
depth = Image.open(depth_img_path)
if depth:
if mask:
mask_array = np.array(mask)
depth_array = np.array(depth)
if is_invert_mask == False:
depth_array[mask_array[:,:,0] == 0] = 0
else:
depth_array[mask_array[:,:,0] != 0] = 0
depth = Image.fromarray(depth_array)
tmp_path = os.path.join( depth_path , "tmp" )
os.makedirs(tmp_path, exist_ok=True)
tmp_path = os.path.join( tmp_path , img_basename )
depth_array = depth_array.astype(np.uint16)
cv2.imwrite(tmp_path, depth_array)
mask = depth
return depth!=None, mask
### auto tagging
debug_count = 0
def get_masked_image(self, image, mask_image):
if mask_image == None:
return image.convert("RGB")
mask = mask_image.convert('L')
if self.is_invert_mask:
mask = ImageOps.invert(mask)
crop_region = masking.get_crop_region(np.array(mask), 0)
# crop_region = masking.expand_crop_region(crop_region, self.width, self.height, mask.width, mask.height)
# x1, y1, x2, y2 = crop_region
image = image.crop(crop_region).convert("RGB")
mask = mask.crop(crop_region)
base_img = Image.new("RGB", image.size, (255, 190, 200))
image = Image.composite( image, base_img, mask )
# image.save("scripts/get_masked_image_test_"+ str(self.debug_count) + ".png")
# self.debug_count += 1
return image
def interrogate_deepdanbooru(self, imgs, masks):
prompts_dict = {}
cause_err = False
try:
deepbooru.model.start()
for img,mask in zip(imgs,masks):
key = os.path.basename(img)
print(key + " interrogate deepdanbooru")
image = Image.open(img)
mask_image = Image.open(mask) if mask else None
image = self.get_masked_image(image, mask_image)
prompt = deepbooru.model.tag_multi(image)
prompts_dict[key] = prompt
except Exception as e:
import traceback
traceback.print_exc()
print(e)
cause_err = True
finally:
deepbooru.model.stop()
if cause_err:
print("Exception occurred during auto-tagging(deepdanbooru)")
return Processed()
return prompts_dict
def interrogate_clip(self, imgs, masks):
from modules import devices, shared, lowvram, paths
import importlib
import models
caption_list = []
prompts_dict = {}
cause_err = False
try:
if shared.cmd_opts.lowvram or shared.cmd_opts.medvram:
lowvram.send_everything_to_cpu()
devices.torch_gc()
with paths.Prioritize("BLIP"):
importlib.reload(models)
shared.interrogator.load()
for img,mask in zip(imgs,masks):
key = os.path.basename(img)
print(key + " generate caption")
image = Image.open(img)
mask_image = Image.open(mask) if mask else None
image = self.get_masked_image(image, mask_image)
caption = shared.interrogator.generate_caption(image)
caption_list.append(caption)
shared.interrogator.send_blip_to_ram()
devices.torch_gc()
for img,mask,caption in zip(imgs,masks,caption_list):
key = os.path.basename(img)
print(key + " interrogate clip")
image = Image.open(img)
mask_image = Image.open(mask) if mask else None
image = self.get_masked_image(image, mask_image)
clip_image = shared.interrogator.clip_preprocess(image).unsqueeze(0).type(shared.interrogator.dtype).to(devices.device_interrogate)
res = ""
with torch.no_grad(), devices.autocast():
image_features = shared.interrogator.clip_model.encode_image(clip_image).type(shared.interrogator.dtype)
image_features /= image_features.norm(dim=-1, keepdim=True)
for name, topn, items in shared.interrogator.categories():
matches = shared.interrogator.rank(image_features, items, top_count=topn)
for match, score in matches:
if shared.opts.interrogate_return_ranks:
res += f", ({match}:{score/100:.3f})"
else:
res += ", " + match
prompts_dict[key] = (caption + res)
except Exception as e:
import traceback
traceback.print_exc()
print(e)
cause_err = True
finally:
shared.interrogator.unload()
if cause_err:
print("Exception occurred during auto-tagging(blip/clip)")
return Processed()
return prompts_dict
def remove_reserved_token(self, token_list):
reserved_list = ["pink_background","simple_background","pink","pink_theme"]
result_list = []
head_token = token_list[0]
if head_token[2] == "normal":
head_token_str = head_token[0].replace('pink background', '')
token_list[0] = (head_token_str, head_token[1], head_token[2])
for token in token_list:
if token[0] in reserved_list:
continue
result_list.append(token)
return result_list
def remove_blacklisted_token(self, token_list):
black_list_path = os.path.join(self.prompts_dir, "blacklist.txt")
if not os.path.isfile(black_list_path):
print(black_list_path + " not found.")
return token_list
with open(black_list_path) as f:
black_list = [s.strip() for s in f.readlines()]
result_list = []
for token in token_list:
if token[0] in black_list:
continue
result_list.append(token)
token_list = result_list
return token_list
def add_token(self, token_list):
add_list_path = os.path.join(self.prompts_dir, "add_token.txt")
if not os.path.isfile(add_list_path):
print(add_list_path + " not found.")
if self.add_tag_replace_underscore:
token_list = [ (x[0].replace("_"," "), x[1], x[2]) for x in token_list ]
return token_list
if not self.calc_parser:
self.calc_parser = CalcParser()
with open(add_list_path) as f:
add_list = json.load(f)
'''
[
{
"target":"test_token",
"min_score":0.8,
"token": ["lora_name_A", "0.5"],
"type":"lora"
},
{
"target":"test_token",
"min_score":0.5,
"token": ["bbbb", "score - 0.1"],
"type":"normal"
},
{
"target":"test_token2",
"min_score":0.8,
"token": ["hypernet_name_A", "score"],
"type":"hypernet"
},
{
"target":"test_token3",
"min_score":0.0,
"token": ["dddd", "score"],
"type":"normal"
}
]
'''
result_list = []
for token in token_list:
for add_item in add_list:
if token[0] == add_item["target"]:
if token[1] > add_item["min_score"]:
# hit
formula = str(add_item["token"][1])
formula = formula.replace("score",str(token[1]))
print('Input: %s' % str(add_item["token"][1]))
try:
score = self.calc_parser.parse(formula)
score = round(score, 3)
except (ParseError, ZeroDivisionError) as e:
print('Input: %s' % str(add_item["token"][1]))
print('Error: %s' % e)
print("ignore this token")
continue
print("score = " + str(score))
result_list.append( ( add_item["token"][0], score, add_item["type"] ) )
if self.add_tag_replace_underscore:
token_list = [ (x[0].replace("_"," "), x[1], x[2]) for x in token_list ]
token_list = token_list + result_list
return token_list
def create_prompts_dict(self, imgs, masks, auto_tag_mode):
prompts_dict = {}
if auto_tag_mode == "DeepDanbooru":
raw_dict = self.interrogate_deepdanbooru(imgs, masks)
elif auto_tag_mode == "CLIP":
raw_dict = self.interrogate_clip(imgs, masks)
repatter = re.compile(r'\((.+)\:([0-9\.]+)\)')
for key, value_str in raw_dict.items():
value_list = [x.strip() for x in value_str.split(',')]
value = []
for v in value_list:
m = repatter.fullmatch(v)
if m:
value.append((m.group(1), float(m.group(2)), "normal"))
else:
value.append((v, 1, "no_score"))
# print(value)
value = self.remove_reserved_token(value)
# print(value)
value = self.remove_blacklisted_token(value)
# print(value)
value = self.add_token(value)
# print(value)
def create_token_str(x):
print(x)
if x[2] == "no_score":
return x[0]
elif x[2] == "lora":
return "<lora:" + x[0] + ":" + str(x[1]) + ">"
elif x[2] == "hypernet":
return "<hypernet:" + x[0] + ":" + str(x[1]) + ">"
else:
return "(" + x[0] + ":" + str(x[1]) + ")"
value_list = [create_token_str(x) for x in value]
value = ",".join(value_list)
prompts_dict[key] = value
return prompts_dict
def load_prompts_dict(self, imgs, default_token):
prompts_path = os.path.join(self.prompts_dir, "prompts.txt")
if not os.path.isfile(prompts_path):
print(prompts_path + " not found.")
return {}
prompts_dict = {}
print(prompts_path + " found!!")
print("skip auto tagging.")
with open(prompts_path) as f:
raw_dict = json.load(f)
prev_value = default_token
for img in imgs:
key = os.path.basename(img)
if key in raw_dict:
prompts_dict[key] = raw_dict[key]
prev_value = raw_dict[key]
else:
prompts_dict[key] = prev_value
return prompts_dict
def process_images(self, p, input_img, controlnet_weight, input_img_is_preprocessed):
p.control_net_input_image = input_img
p.control_net_weight = controlnet_weight
if input_img_is_preprocessed:
p.control_net_module = "none"
return process_images(p)
# This is where the additional processing is implemented. The parameters include
# self, the model object "p" (a StableDiffusionProcessing class, see
# processing.py), and the parameters returned by the ui method.
# Custom functions can be defined here, and additional libraries can be imported
# to be used in processing. The return value should be a Processed object, which is
# what is returned by the process_images method.
def run(self, p, project_dir, generation_test, mask_mode, inpaint_area, use_depth, img2img_repeat_count, inc_seed, auto_tag_mode, add_tag_to_head, add_tag_replace_underscore, is_facecrop, face_detection_method, face_crop_resolution, max_crop_size, face_denoising_strength, face_area_magnification, enable_face_prompt, face_prompt, controlnet_weight, controlnet_weight_for_face, disable_facecrop_lpbk_last_time, use_preprocess_img):
args = locals()
if generation_test:
print("generation_test")
test_proj_dir = os.path.join( get_my_dir() , "generation_test_proj")
os.makedirs(test_proj_dir, exist_ok=True)
test_video_key_path = os.path.join( test_proj_dir , "video_key")
os.makedirs(test_video_key_path, exist_ok=True)
test_video_mask_path = os.path.join( test_proj_dir , "video_mask")
os.makedirs(test_video_mask_path, exist_ok=True)
controlnet_input_path = os.path.join(test_proj_dir, "controlnet_input")
if os.path.isdir(controlnet_input_path):
shutil.rmtree(controlnet_input_path)
remove_pngs_in_dir(test_video_key_path)
remove_pngs_in_dir(test_video_mask_path)
test_base_img = p.init_images[0]
test_mask = p.image_mask
if test_base_img:
test_base_img.save( os.path.join( test_video_key_path , "00001.png") )
if test_mask:
test_mask.save( os.path.join( test_video_mask_path , "00001.png") )
project_dir = test_proj_dir
else:
if not os.path.isdir(project_dir):
print("project_dir not found")
return Processed()
self.controlnet_weight = controlnet_weight
self.controlnet_weight_for_face = controlnet_weight_for_face
self.add_tag_replace_underscore = add_tag_replace_underscore
self.face_crop_resolution = face_crop_resolution
if p.seed == -1:
p.seed = int(random.randrange(4294967294))
if mask_mode == "Normal":
p.inpainting_mask_invert = 0
elif mask_mode == "Invert":
p.inpainting_mask_invert = 1
if inpaint_area in (0,1): #"Whole picture","Only masked"
p.inpaint_full_res = inpaint_area
is_invert_mask = False
if mask_mode == "Invert":
is_invert_mask = True
inv_path = os.path.join(project_dir, "inv")
if not os.path.isdir(inv_path):
print("project_dir/inv not found")
return Processed()
org_key_path = os.path.join(inv_path, "video_key")
img2img_key_path = os.path.join(inv_path, "img2img_key")
depth_path = os.path.join(inv_path, "video_key_depth")
preprocess_path = os.path.join(inv_path, "controlnet_preprocess")
controlnet_input_path = os.path.join(inv_path, "controlnet_input")
self.prompts_dir = inv_path
self.is_invert_mask = True
else:
org_key_path = os.path.join(project_dir, "video_key")
img2img_key_path = os.path.join(project_dir, "img2img_key")
depth_path = os.path.join(project_dir, "video_key_depth")
preprocess_path = os.path.join(project_dir, "controlnet_preprocess")
controlnet_input_path = os.path.join(project_dir, "controlnet_input")
self.prompts_dir = project_dir
self.is_invert_mask = False
frame_mask_path = os.path.join(project_dir, "video_mask")
if not use_depth:
depth_path = None
if not os.path.isdir(org_key_path):
print(org_key_path + " not found")
print("Generate key frames first." if is_invert_mask == False else \
"Generate key frames first.(with [Ebsynth Utility] Tab -> [configuration] -> [etc]-> [Mask Mode] = Invert setting)")
return Processed()
if not os.path.isdir(controlnet_input_path):
print(controlnet_input_path + " not found")
print("copy {0} -> {1}".format(org_key_path,controlnet_input_path))
os.makedirs(controlnet_input_path, exist_ok=True)
imgs = glob.glob( os.path.join(org_key_path ,"*.png") )
for img in imgs:
img_basename = os.path.basename(img)
shutil.copy( img , os.path.join(controlnet_input_path, img_basename) )
remove_pngs_in_dir(img2img_key_path)
os.makedirs(img2img_key_path, exist_ok=True)
def get_mask_of_img(img):
img_basename = os.path.basename(img)
if mask_mode != "None":
mask_path = os.path.join( frame_mask_path , img_basename )
if os.path.isfile( mask_path ):
return mask_path
return ""
def get_pair_of_img(img, target_dir):
img_basename = os.path.basename(img)
pair_path = os.path.join( target_dir , img_basename )
if os.path.isfile( pair_path ):
return pair_path
print("!!! pair of "+ img + " not in " + target_dir)
return ""
def get_controlnet_input_img(img):
pair_img = get_pair_of_img(img, controlnet_input_path)
if not pair_img:
pair_img = get_pair_of_img(img, org_key_path)
return pair_img
imgs = glob.glob( os.path.join(org_key_path ,"*.png") )
masks = [ get_mask_of_img(i) for i in imgs ]
controlnet_input_imgs = [ get_controlnet_input_img(i) for i in imgs ]
for mask in masks:
m = cv2.imread(mask) if mask else None
if m is not None:
if m.max() == 0:
print("{0} blank mask found".format(mask))
if m.ndim == 2:
m[0,0] = 255
else:
m = m[:,:,:3]
m[0,0,0:3] = 255
cv2.imwrite(mask, m)
######################
# face crop
face_coords_dict={}
for img,mask in zip(imgs,masks):
face_detected = False
if is_facecrop:
image = Image.open(img)
mask_image = Image.open(mask) if mask else None
face_coords = self.detect_face(image, mask_image, face_detection_method, max_crop_size)
if face_coords is None or len(face_coords) == 0:
print("no face detected")
else:
print("face detected")
face_detected = True
key = os.path.basename(img)
face_coords_dict[key] = face_coords if face_detected else []
with open( os.path.join( project_dir if is_invert_mask == False else inv_path,"faces.txt" ), "w") as f:
f.write(json.dumps(face_coords_dict,indent=4))
######################
# prompts
prompts_dict = self.load_prompts_dict(imgs, p.prompt)
if not prompts_dict:
if auto_tag_mode != "None":
prompts_dict = self.create_prompts_dict(imgs, masks, auto_tag_mode)
for key, value in prompts_dict.items():
prompts_dict[key] = (value + "," + p.prompt) if add_tag_to_head else (p.prompt + "," + value)
else:
for img in imgs:
key = os.path.basename(img)
prompts_dict[key] = p.prompt
with open( os.path.join( project_dir if is_invert_mask == False else inv_path, time.strftime("%Y%m%d-%H%M%S_") + "prompts.txt" ), "w") as f:
f.write(json.dumps(prompts_dict,indent=4))
######################
# img2img
for img, mask, controlnet_input_img, face_coords, prompts in zip(imgs, masks, controlnet_input_imgs, face_coords_dict.values(), prompts_dict.values()):
# Generation cancelled.
if shared.state.interrupted:
print("Generation cancelled.")
break
image = Image.open(img)
mask_image = Image.open(mask) if mask else None
img_basename = os.path.basename(img)
_p = copy.copy(p)
_p.init_images=[image]
_p.image_mask = mask_image
_p.prompt = prompts
resized_mask = None
repeat_count = img2img_repeat_count
if mask_mode != "None" or use_depth:
if use_depth:
depth_found, _p.image_mask = self.get_depth_map( mask_image, depth_path ,img_basename, is_invert_mask )
mask_image = _p.image_mask
if depth_found:
_p.inpainting_mask_invert = 0
preprocess_img_exist = False
controlnet_input_base_img = Image.open(controlnet_input_img) if controlnet_input_img else None
if use_preprocess_img:
preprocess_img = os.path.join(preprocess_path, img_basename)
if os.path.isfile( preprocess_img ):
controlnet_input_base_img = Image.open(preprocess_img)
preprocess_img_exist = True
if face_coords:
controlnet_input_face_imgs, _ = self.face_img_crop(controlnet_input_base_img, face_coords, face_area_magnification)
while repeat_count > 0:
if disable_facecrop_lpbk_last_time:
if img2img_repeat_count > 1:
if repeat_count == 1:
face_coords = None
if face_coords:
proc = self.face_crop_img2img(_p, face_coords, face_denoising_strength, face_area_magnification, enable_face_prompt, face_prompt, controlnet_input_base_img, controlnet_input_face_imgs, preprocess_img_exist)
else:
proc = self.process_images(_p, controlnet_input_base_img, self.controlnet_weight, preprocess_img_exist)
print(proc.seed)
repeat_count -= 1
if repeat_count > 0:
_p.init_images=[proc.images[0]]
if mask_image is not None and resized_mask is None:
resized_mask = resize_img(np.array(mask_image) , proc.images[0].width, proc.images[0].height)
resized_mask = Image.fromarray(resized_mask)
_p.image_mask = resized_mask
_p.seed += inc_seed
proc.images[0].save( os.path.join( img2img_key_path , img_basename ) )
with open( os.path.join( project_dir if is_invert_mask == False else inv_path,"param.txt" ), "w") as f:
f.write(pprint.pformat(proc.info))
with open( os.path.join( project_dir if is_invert_mask == False else inv_path ,"args.txt" ), "w") as f:
f.write(pprint.pformat(args))
return proc