|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import numpy as np |
|
|
|
def make_colorwheel(): |
|
""" |
|
Generates a color wheel for optical flow visualization as presented in: |
|
Baker et al. "A Database and Evaluation Methodology for Optical Flow" (ICCV, 2007) |
|
URL: http://vision.middlebury.edu/flow/flowEval-iccv07.pdf |
|
|
|
Code follows the original C++ source code of Daniel Scharstein. |
|
Code follows the the Matlab source code of Deqing Sun. |
|
|
|
Returns: |
|
np.ndarray: Color wheel |
|
""" |
|
|
|
RY = 15 |
|
YG = 6 |
|
GC = 4 |
|
CB = 11 |
|
BM = 13 |
|
MR = 6 |
|
|
|
ncols = RY + YG + GC + CB + BM + MR |
|
colorwheel = np.zeros((ncols, 3)) |
|
col = 0 |
|
|
|
|
|
colorwheel[0:RY, 0] = 255 |
|
colorwheel[0:RY, 1] = np.floor(255*np.arange(0,RY)/RY) |
|
col = col+RY |
|
|
|
colorwheel[col:col+YG, 0] = 255 - np.floor(255*np.arange(0,YG)/YG) |
|
colorwheel[col:col+YG, 1] = 255 |
|
col = col+YG |
|
|
|
colorwheel[col:col+GC, 1] = 255 |
|
colorwheel[col:col+GC, 2] = np.floor(255*np.arange(0,GC)/GC) |
|
col = col+GC |
|
|
|
colorwheel[col:col+CB, 1] = 255 - np.floor(255*np.arange(CB)/CB) |
|
colorwheel[col:col+CB, 2] = 255 |
|
col = col+CB |
|
|
|
colorwheel[col:col+BM, 2] = 255 |
|
colorwheel[col:col+BM, 0] = np.floor(255*np.arange(0,BM)/BM) |
|
col = col+BM |
|
|
|
colorwheel[col:col+MR, 2] = 255 - np.floor(255*np.arange(MR)/MR) |
|
colorwheel[col:col+MR, 0] = 255 |
|
return colorwheel |
|
|
|
|
|
def flow_uv_to_colors(u, v, convert_to_bgr=False): |
|
""" |
|
Applies the flow color wheel to (possibly clipped) flow components u and v. |
|
|
|
According to the C++ source code of Daniel Scharstein |
|
According to the Matlab source code of Deqing Sun |
|
|
|
Args: |
|
u (np.ndarray): Input horizontal flow of shape [H,W] |
|
v (np.ndarray): Input vertical flow of shape [H,W] |
|
convert_to_bgr (bool, optional): Convert output image to BGR. Defaults to False. |
|
|
|
Returns: |
|
np.ndarray: Flow visualization image of shape [H,W,3] |
|
""" |
|
flow_image = np.zeros((u.shape[0], u.shape[1], 3), np.uint8) |
|
colorwheel = make_colorwheel() |
|
ncols = colorwheel.shape[0] |
|
rad = np.sqrt(np.square(u) + np.square(v)) |
|
a = np.arctan2(-v, -u)/np.pi |
|
fk = (a+1) / 2*(ncols-1) |
|
k0 = np.floor(fk).astype(np.int32) |
|
k1 = k0 + 1 |
|
k1[k1 == ncols] = 0 |
|
f = fk - k0 |
|
for i in range(colorwheel.shape[1]): |
|
tmp = colorwheel[:,i] |
|
col0 = tmp[k0] / 255.0 |
|
col1 = tmp[k1] / 255.0 |
|
col = (1-f)*col0 + f*col1 |
|
idx = (rad <= 1) |
|
col[idx] = 1 - rad[idx] * (1-col[idx]) |
|
col[~idx] = col[~idx] * 0.75 |
|
|
|
ch_idx = 2-i if convert_to_bgr else i |
|
flow_image[:,:,ch_idx] = np.floor(255 * col) |
|
return flow_image |
|
|
|
|
|
def flow_to_image(flow_uv, clip_flow=None, convert_to_bgr=False): |
|
""" |
|
Expects a two dimensional flow image of shape. |
|
|
|
Args: |
|
flow_uv (np.ndarray): Flow UV image of shape [H,W,2] |
|
clip_flow (float, optional): Clip maximum of flow values. Defaults to None. |
|
convert_to_bgr (bool, optional): Convert output image to BGR. Defaults to False. |
|
|
|
Returns: |
|
np.ndarray: Flow visualization image of shape [H,W,3] |
|
""" |
|
assert flow_uv.ndim == 3, 'input flow must have three dimensions' |
|
assert flow_uv.shape[2] == 2, 'input flow must have shape [H,W,2]' |
|
if clip_flow is not None: |
|
flow_uv = np.clip(flow_uv, 0, clip_flow) |
|
u = flow_uv[:,:,0] |
|
v = flow_uv[:,:,1] |
|
rad = np.sqrt(np.square(u) + np.square(v)) |
|
rad_max = np.max(rad) |
|
epsilon = 1e-5 |
|
u = u / (rad_max + epsilon) |
|
v = v / (rad_max + epsilon) |
|
return flow_uv_to_colors(u, v, convert_to_bgr) |