|
import sys, os |
|
|
|
import numpy as np |
|
import cv2 |
|
|
|
from collections import namedtuple |
|
import torch |
|
import argparse |
|
from RAFT.raft import RAFT |
|
from RAFT.utils.utils import InputPadder |
|
|
|
import modules.paths as ph |
|
import gc |
|
|
|
RAFT_model = None |
|
fgbg = cv2.createBackgroundSubtractorMOG2(history=500, varThreshold=16, detectShadows=True) |
|
|
|
def background_subtractor(frame, fgbg): |
|
fgmask = fgbg.apply(frame) |
|
return cv2.bitwise_and(frame, frame, mask=fgmask) |
|
|
|
def RAFT_clear_memory(): |
|
global RAFT_model |
|
del RAFT_model |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
RAFT_model = None |
|
|
|
def RAFT_estimate_flow(frame1, frame2, device='cuda'): |
|
global RAFT_model |
|
|
|
org_size = frame1.shape[1], frame1.shape[0] |
|
size = frame1.shape[1] // 16 * 16, frame1.shape[0] // 16 * 16 |
|
frame1 = cv2.resize(frame1, size) |
|
frame2 = cv2.resize(frame2, size) |
|
|
|
model_path = ph.models_path + '/RAFT/raft-things.pth' |
|
remote_model_path = 'https://drive.google.com/uc?id=1MqDajR89k-xLV0HIrmJ0k-n8ZpG6_suM' |
|
|
|
if not os.path.isfile(model_path): |
|
from basicsr.utils.download_util import load_file_from_url |
|
os.makedirs(os.path.dirname(model_path), exist_ok=True) |
|
load_file_from_url(remote_model_path, file_name=model_path) |
|
|
|
if RAFT_model is None: |
|
args = argparse.Namespace(**{ |
|
'model': ph.models_path + '/RAFT/raft-things.pth', |
|
'mixed_precision': True, |
|
'small': False, |
|
'alternate_corr': False, |
|
'path': "" |
|
}) |
|
|
|
RAFT_model = torch.nn.DataParallel(RAFT(args)) |
|
RAFT_model.load_state_dict(torch.load(args.model)) |
|
|
|
RAFT_model = RAFT_model.module |
|
RAFT_model.to(device) |
|
RAFT_model.eval() |
|
|
|
with torch.no_grad(): |
|
frame1_torch = torch.from_numpy(frame1).permute(2, 0, 1).float()[None].to(device) |
|
frame2_torch = torch.from_numpy(frame2).permute(2, 0, 1).float()[None].to(device) |
|
|
|
padder = InputPadder(frame1_torch.shape) |
|
image1, image2 = padder.pad(frame1_torch, frame2_torch) |
|
|
|
|
|
_, next_flow = RAFT_model(image1, image2, iters=20, test_mode=True) |
|
_, prev_flow = RAFT_model(image2, image1, iters=20, test_mode=True) |
|
|
|
next_flow = next_flow[0].permute(1, 2, 0).cpu().numpy() |
|
prev_flow = prev_flow[0].permute(1, 2, 0).cpu().numpy() |
|
|
|
fb_flow = next_flow + prev_flow |
|
fb_norm = np.linalg.norm(fb_flow, axis=2) |
|
|
|
occlusion_mask = fb_norm[..., None].repeat(3, axis=-1) |
|
|
|
next_flow = cv2.resize(next_flow, org_size) |
|
prev_flow = cv2.resize(prev_flow, org_size) |
|
|
|
return next_flow, prev_flow, occlusion_mask |
|
|
|
def compute_diff_map(next_flow, prev_flow, prev_frame, cur_frame, prev_frame_styled, args_dict): |
|
h, w = cur_frame.shape[:2] |
|
fl_w, fl_h = next_flow.shape[:2] |
|
|
|
|
|
next_flow = next_flow / np.array([fl_h,fl_w]) |
|
prev_flow = prev_flow / np.array([fl_h,fl_w]) |
|
|
|
|
|
fb_flow = next_flow + prev_flow |
|
fb_norm = np.linalg.norm(fb_flow , axis=2) |
|
|
|
zero_flow_mask = np.clip(1 - np.linalg.norm(prev_flow, axis=-1)[...,None] * 20, 0, 1) |
|
diff_mask_flow = fb_norm[..., None] * zero_flow_mask |
|
|
|
|
|
next_flow = cv2.resize(next_flow, (w, h)) |
|
next_flow = (next_flow * np.array([h,w])).astype(np.float32) |
|
prev_flow = cv2.resize(prev_flow, (w, h)) |
|
prev_flow = (prev_flow * np.array([h,w])).astype(np.float32) |
|
|
|
|
|
grid_y, grid_x = torch.meshgrid(torch.arange(0, h), torch.arange(0, w)) |
|
flow_grid = torch.stack((grid_x, grid_y), dim=0).float() |
|
flow_grid += torch.from_numpy(prev_flow).permute(2, 0, 1) |
|
flow_grid = flow_grid.unsqueeze(0) |
|
flow_grid[:, 0, :, :] = 2 * flow_grid[:, 0, :, :] / (w - 1) - 1 |
|
flow_grid[:, 1, :, :] = 2 * flow_grid[:, 1, :, :] / (h - 1) - 1 |
|
flow_grid = flow_grid.permute(0, 2, 3, 1) |
|
|
|
|
|
prev_frame_torch = torch.from_numpy(prev_frame).float().unsqueeze(0).permute(0, 3, 1, 2) |
|
prev_frame_styled_torch = torch.from_numpy(prev_frame_styled).float().unsqueeze(0).permute(0, 3, 1, 2) |
|
|
|
warped_frame = torch.nn.functional.grid_sample(prev_frame_torch, flow_grid, mode="nearest", padding_mode="reflection", align_corners=True).permute(0, 2, 3, 1)[0].numpy() |
|
warped_frame_styled = torch.nn.functional.grid_sample(prev_frame_styled_torch, flow_grid, mode="nearest", padding_mode="reflection", align_corners=True).permute(0, 2, 3, 1)[0].numpy() |
|
|
|
|
|
|
|
|
|
|
|
diff_mask_org = np.abs(warped_frame.astype(np.float32) - cur_frame.astype(np.float32)) / 255 |
|
diff_mask_org = diff_mask_org.max(axis = -1, keepdims=True) |
|
|
|
diff_mask_stl = np.abs(warped_frame_styled.astype(np.float32) - cur_frame.astype(np.float32)) / 255 |
|
diff_mask_stl = diff_mask_stl.max(axis = -1, keepdims=True) |
|
|
|
alpha_mask = np.maximum.reduce([diff_mask_flow * args_dict['occlusion_mask_flow_multiplier'] * 10, \ |
|
diff_mask_org * args_dict['occlusion_mask_difo_multiplier'], \ |
|
diff_mask_stl * args_dict['occlusion_mask_difs_multiplier']]) |
|
alpha_mask = alpha_mask.repeat(3, axis = -1) |
|
|
|
|
|
if args_dict['occlusion_mask_blur'] > 0: |
|
blur_filter_size = min(w,h) // 15 | 1 |
|
alpha_mask = cv2.GaussianBlur(alpha_mask, (blur_filter_size, blur_filter_size) , args_dict['occlusion_mask_blur'], cv2.BORDER_REFLECT) |
|
|
|
alpha_mask = np.clip(alpha_mask, 0, 1) |
|
|
|
return alpha_mask, warped_frame_styled |
|
|
|
def frames_norm(frame): return frame / 127.5 - 1 |
|
|
|
def flow_norm(flow): return flow / 255 |
|
|
|
def occl_norm(occl): return occl / 127.5 - 1 |
|
|
|
def frames_renorm(frame): return (frame + 1) * 127.5 |
|
|
|
def flow_renorm(flow): return flow * 255 |
|
|
|
def occl_renorm(occl): return (occl + 1) * 127.5 |
|
|