toto10's picture
Upload folder using huggingface_hub (#1)
34097e9
raw
history blame
48.6 kB
import re
from sklearn.linear_model import PassiveAggressiveClassifier
import torch
import math
import os
import gc
import gradio as gr
from torchmetrics import Precision
import modules.shared as shared
import gc
from safetensors.torch import load_file, save_file
from typing import List
from tqdm import tqdm
from modules import sd_models,scripts
from scripts.mergers.model_util import load_models_from_stable_diffusion_checkpoint,filenamecutter,savemodel
from modules.ui import create_refresh_button
def on_ui_tabs():
import lora
sml_path_root = scripts.basedir()
LWEIGHTSPRESETS="\
NONE:0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0\n\
ALL:1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1\n\
INS:1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0\n\
IND:1,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0\n\
INALL:1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0\n\
MIDD:1,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0\n\
OUTD:1,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,0\n\
OUTS:1,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1\n\
OUTALL:1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1\n\
ALL0.5:0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5"
sml_filepath = os.path.join(sml_path_root,"scripts", "lbwpresets.txt")
sml_lbwpresets=""
try:
with open(sml_filepath,encoding="utf-8") as f:
sml_lbwpresets = f.read()
except OSError as e:
sml_lbwpresets=LWEIGHTSPRESETS
with gr.Blocks(analytics_enabled=False) :
sml_submit_result = gr.Textbox(label="Message")
with gr.Row().style(equal_height=False):
sml_cpmerge = gr.Button(elem_id="model_merger_merge", value="Merge to Checkpoint",variant='primary')
sml_makelora = gr.Button(elem_id="model_merger_merge", value="Make LoRA (alpha * A - beta * B)",variant='primary')
sml_model_a = gr.Dropdown(sd_models.checkpoint_tiles(),elem_id="model_converter_model_name",label="Checkpoint A",interactive=True)
create_refresh_button(sml_model_a, sd_models.list_models,lambda: {"choices": sd_models.checkpoint_tiles()},"refresh_checkpoint_Z")
sml_model_b = gr.Dropdown(sd_models.checkpoint_tiles(),elem_id="model_converter_model_name",label="Checkpoint B",interactive=True)
create_refresh_button(sml_model_b, sd_models.list_models,lambda: {"choices": sd_models.checkpoint_tiles()},"refresh_checkpoint_Z")
with gr.Row().style(equal_height=False):
sml_merge = gr.Button(elem_id="model_merger_merge", value="Merge LoRAs",variant='primary')
alpha = gr.Slider(label="alpha", minimum=-1.0, maximum=2, step=0.001, value=1)
beta = gr.Slider(label="beta", minimum=-1.0, maximum=2, step=0.001, value=1)
with gr.Row().style(equal_height=False):
sml_settings = gr.CheckboxGroup(["same to Strength", "overwrite"], label="settings")
precision = gr.Radio(label = "save precision",choices=["float","fp16","bf16"],value = "fp16",type="value")
with gr.Row().style(equal_height=False):
sml_dim = gr.Radio(label = "remake dimension",choices = ["no","auto",*[2**(x+2) for x in range(9)]],value = "no",type = "value")
sml_filename = gr.Textbox(label="filename(option)",lines=1,visible =True,interactive = True)
sml_loranames = gr.Textbox(label='LoRAname1:ratio1:Blocks1,LoRAname2:ratio2:Blocks2,...(":blocks" is option, not necessary)',lines=1,value="",visible =True)
sml_dims = gr.CheckboxGroup(label = "limit dimension",choices=[],value = [],type="value",interactive=True,visible = False)
with gr.Row().style(equal_height=False):
sml_calcdim = gr.Button(elem_id="calcloras", value="calculate dimension of LoRAs(It may take a few minutes if there are many LoRAs)",variant='primary')
sml_update = gr.Button(elem_id="calcloras", value="update list",variant='primary')
sml_loras = gr.CheckboxGroup(label = "Lora",choices=[x[0] for x in lora.available_loras.items()],type="value",interactive=True,visible = True)
sml_loraratios = gr.TextArea(label="",value=sml_lbwpresets,visible =True,interactive = True)
sml_merge.click(
fn=lmerge,
inputs=[sml_loranames,sml_loraratios,sml_settings,sml_filename,sml_dim,precision],
outputs=[sml_submit_result]
)
sml_makelora.click(
fn=makelora,
inputs=[sml_model_a,sml_model_b,sml_dim,sml_filename,sml_settings,alpha,beta,precision],
outputs=[sml_submit_result]
)
sml_cpmerge.click(
fn=pluslora,
inputs=[sml_loranames,sml_loraratios,sml_settings,sml_filename,sml_model_a,precision],
outputs=[sml_submit_result]
)
llist ={}
dlist =[]
dn = []
def updateloras():
lora.list_available_loras()
for n in lora.available_loras.items():
if n[0] not in llist:llist[n[0]] = ""
return gr.update(choices = [f"{x[0]}({x[1]})" for x in llist.items()])
sml_update.click(fn = updateloras,outputs = [sml_loras])
def calculatedim():
print("listing dimensions...")
for n in tqdm(lora.available_loras.items()):
if n[0] in llist:
if llist[n[0]] !="": continue
c_lora = lora.available_loras.get(n[0], None)
d,t = dimgetter(c_lora.filename)
if t == "LoCon" : d = f"{d}:{t}"
if d not in dlist:
if type(d) == int :dlist.append(d)
elif d not in dn: dn.append(d)
llist[n[0]] = d
dlist.sort()
return gr.update(choices = [f"{x[0]}({x[1]})" for x in llist.items()],value =[]),gr.update(visible =True,choices = [x for x in (dlist+dn)])
sml_calcdim.click(
fn=calculatedim,
inputs=[],
outputs=[sml_loras,sml_dims]
)
def dimselector(dims):
if dims ==[]:return gr.update(choices = [f"{x[0]}({x[1]})" for x in llist.items()])
rl=[]
for d in dims:
for i in llist.items():
if d == i[1]:rl.append(f"{i[0]}({i[1]})")
return gr.update(choices = [l for l in rl],value =[])
def llister(names):
if names ==[] : return ""
else:
for i,n in enumerate(names):
if "(" in n:names[i] = n[:n.rfind("(")]
return ":1.0,".join(names)+":1.0"
sml_loras.change(fn=llister,inputs=[sml_loras],outputs=[sml_loranames])
sml_dims.change(fn=dimselector,inputs=[sml_dims],outputs=[sml_loras])
def makelora(model_a,model_b,dim,saveto,settings,alpha,beta,precision):
print("make LoRA start")
if model_a == "" or model_b =="":
return "ERROR: No model Selected"
gc.collect()
if saveto =="" : saveto = makeloraname(model_a,model_b)
if not ".safetensors" in saveto :saveto += ".safetensors"
saveto = os.path.join(shared.cmd_opts.lora_dir,saveto)
dim = 128 if type(dim) != int else int(dim)
if os.path.isfile(saveto ) and not "overwrite" in settings:
_err_msg = f"Output file ({saveto}) existed and was not saved"
print(_err_msg)
return _err_msg
svd(fullpathfromname(model_a),fullpathfromname(model_b),False,dim,precision,saveto,alpha,beta)
return f"saved to {saveto}"
def lmerge(loranames,loraratioss,settings,filename,dim,precision):
import lora
loras_on_disk = [lora.available_loras.get(name, None) for name in loranames]
if any([x is None for x in loras_on_disk]):
lora.list_available_loras()
loras_on_disk = [lora.available_loras.get(name, None) for name in loranames]
lnames = [loranames] if "," not in loranames else loranames.split(",")
for i, n in enumerate(lnames):
lnames[i] = n.split(":")
loraratios=loraratioss.splitlines()
ldict ={}
for i,l in enumerate(loraratios):
if ":" not in l or not (l.count(",") == 16 or l.count(",") == 25) : continue
ldict[l.split(":")[0]]=l.split(":")[1]
ln = []
lr = []
ld = []
lt = []
dmax = 1
for i,n in enumerate(lnames):
if len(n) ==3:
if n[2].strip() in ldict:
ratio = [float(r)*float(n[1]) for r in ldict[n[2]].split(",")]
else:ratio = [float(n[1])]*17
else:ratio = [float(n[1])]*17
c_lora = lora.available_loras.get(n[0], None)
ln.append(c_lora.filename)
lr.append(ratio)
d,t = dimgetter(c_lora.filename)
lt.append(t)
ld.append(d)
if d != "LyCORIS":
if d > dmax : dmax = d
if filename =="":filename =loranames.replace(",","+").replace(":","_")
if not ".safetensors" in filename:filename += ".safetensors"
filename = os.path.join(shared.cmd_opts.lora_dir,filename)
dim = int(dim) if dim != "no" and dim != "auto" else 0
if "LyCORIS" in ld or "LoCon" in lt:
if len(ld) !=1:
return "multiple merge of LyCORIS is not supported"
sd = lycomerge(ln[0],lr[0])
elif dim > 0:
print("change demension to ", dim)
sd = merge_lora_models_dim(ln, lr, dim,settings)
elif "auto" in settings and ld.count(ld[0]) != len(ld):
print("change demension to ",dmax)
sd = merge_lora_models_dim(ln, lr, dmax,settings)
else:
sd = merge_lora_models(ln, lr,settings)
if os.path.isfile(filename) and not "overwrite" in settings:
_err_msg = f"Output file ({filename}) existed and was not saved"
print(_err_msg)
return _err_msg
save_to_file(filename,sd,sd, str_to_dtype(precision))
return "saved : "+filename
def pluslora(lnames,loraratios,settings,output,model,precision):
if model == []:
return "ERROR: No model Selected"
if lnames == "":
return "ERROR: No LoRA Selected"
print("plus LoRA start")
import lora
lnames = [lnames] if "," not in lnames else lnames.split(",")
for i, n in enumerate(lnames):
lnames[i] = n.split(":")
loraratios=loraratios.splitlines()
ldict ={}
for i,l in enumerate(loraratios):
if ":" not in l or not (l.count(",") == 16 or l.count(",") == 25) : continue
ldict[l.split(":")[0].strip()]=l.split(":")[1]
names=[]
filenames=[]
loratypes=[]
lweis=[]
for n in lnames:
if len(n) ==3:
if n[2].strip() in ldict:
ratio = [float(r)*float(n[1]) for r in ldict[n[2]].split(",")]
else:ratio = [float(n[1])]*17
else:ratio = [float(n[1])]*17
c_lora = lora.available_loras.get(n[0], None)
names.append(n[0])
filenames.append(c_lora.filename)
_,t = dimgetter(c_lora.filename)
if "LyCORIS" in t: return "LyCORIS merge is not supported"
lweis.append(ratio)
modeln=filenamecutter(model,True)
dname = modeln
for n in names:
dname = dname + "+"+n
checkpoint_info = sd_models.get_closet_checkpoint_match(model)
print(f"Loading {model}")
theta_0 = sd_models.read_state_dict(checkpoint_info.filename,"cpu")
keychanger = {}
for key in theta_0.keys():
if "model" in key:
skey = key.replace(".","_").replace("_weight","")
keychanger[skey.split("model_",1)[1]] = key
for name,filename, lwei in zip(names,filenames, lweis):
print(f"loading: {name}")
lora_sd = load_state_dict(filename, torch.float)
print(f"merging..." ,lwei)
for key in lora_sd.keys():
ratio = 1
fullkey = convert_diffusers_name_to_compvis(key)
for i,block in enumerate(LORABLOCKS):
if block in fullkey:
ratio = lwei[i]
msd_key, lora_key = fullkey.split(".", 1)
if "lora_down" in key:
up_key = key.replace("lora_down", "lora_up")
alpha_key = key[:key.index("lora_down")] + 'alpha'
# print(f"apply {key} to {module}")
down_weight = lora_sd[key].to(device="cpu")
up_weight = lora_sd[up_key].to(device="cpu")
dim = down_weight.size()[0]
alpha = lora_sd.get(alpha_key, dim)
scale = alpha / dim
# W <- W + U * D
weight = theta_0[keychanger[msd_key]].to(device="cpu")
if not len(down_weight.size()) == 4:
# linear
weight = weight + ratio * (up_weight @ down_weight) * scale
else:
# conv2d
weight = weight + ratio * (up_weight.squeeze(3).squeeze(2) @ down_weight.squeeze(3).squeeze(2)
).unsqueeze(2).unsqueeze(3) * scale
theta_0[keychanger[msd_key]] = torch.nn.Parameter(weight)
#usemodelgen(theta_0,model)
settings.append(precision)
result = savemodel(theta_0,dname,output,settings,model)
del theta_0
gc.collect()
return result
def save_to_file(file_name, model, state_dict, dtype):
if dtype is not None:
for key in list(state_dict.keys()):
if type(state_dict[key]) == torch.Tensor:
state_dict[key] = state_dict[key].to(dtype)
if os.path.splitext(file_name)[1] == '.safetensors':
save_file(model, file_name)
else:
torch.save(model, file_name)
re_digits = re.compile(r"\d+")
re_unet_down_blocks = re.compile(r"lora_unet_down_blocks_(\d+)_attentions_(\d+)_(.+)")
re_unet_mid_blocks = re.compile(r"lora_unet_mid_block_attentions_(\d+)_(.+)")
re_unet_up_blocks = re.compile(r"lora_unet_up_blocks_(\d+)_attentions_(\d+)_(.+)")
re_unet_down_blocks_res = re.compile(r"lora_unet_down_blocks_(\d+)_resnets_(\d+)_(.+)")
re_unet_mid_blocks_res = re.compile(r"lora_unet_mid_block_resnets_(\d+)_(.+)")
re_unet_up_blocks_res = re.compile(r"lora_unet_up_blocks_(\d+)_resnets_(\d+)_(.+)")
re_unet_downsample = re.compile(r"lora_unet_down_blocks_(\d+)_downsamplers_0_conv(.+)")
re_unet_upsample = re.compile(r"lora_unet_up_blocks_(\d+)_upsamplers_0_conv(.+)")
re_text_block = re.compile(r"lora_te_text_model_encoder_layers_(\d+)_(.+)")
def convert_diffusers_name_to_compvis(key):
def match(match_list, regex):
r = re.match(regex, key)
if not r:
return False
match_list.clear()
match_list.extend([int(x) if re.match(re_digits, x) else x for x in r.groups()])
return True
m = []
if match(m, re_unet_down_blocks):
return f"diffusion_model_input_blocks_{1 + m[0] * 3 + m[1]}_1_{m[2]}"
if match(m, re_unet_mid_blocks):
return f"diffusion_model_middle_block_1_{m[1]}"
if match(m, re_unet_up_blocks):
return f"diffusion_model_output_blocks_{m[0] * 3 + m[1]}_1_{m[2]}"
if match(m, re_unet_down_blocks_res):
block = f"diffusion_model_input_blocks_{1 + m[0] * 3 + m[1]}_0_"
if m[2].startswith('conv1'):
return f"{block}in_layers_2{m[2][len('conv1'):]}"
elif m[2].startswith('conv2'):
return f"{block}out_layers_3{m[2][len('conv2'):]}"
elif m[2].startswith('time_emb_proj'):
return f"{block}emb_layers_1{m[2][len('time_emb_proj'):]}"
elif m[2].startswith('conv_shortcut'):
return f"{block}skip_connection{m[2][len('conv_shortcut'):]}"
if match(m, re_unet_mid_blocks_res):
block = f"diffusion_model_middle_block_{m[0]*2}_"
if m[1].startswith('conv1'):
return f"{block}in_layers_2{m[1][len('conv1'):]}"
elif m[1].startswith('conv2'):
return f"{block}out_layers_3{m[1][len('conv2'):]}"
elif m[1].startswith('time_emb_proj'):
return f"{block}emb_layers_1{m[1][len('time_emb_proj'):]}"
elif m[1].startswith('conv_shortcut'):
return f"{block}skip_connection{m[1][len('conv_shortcut'):]}"
if match(m, re_unet_up_blocks_res):
block = f"diffusion_model_output_blocks_{m[0] * 3 + m[1]}_0_"
if m[2].startswith('conv1'):
return f"{block}in_layers_2{m[2][len('conv1'):]}"
elif m[2].startswith('conv2'):
return f"{block}out_layers_3{m[2][len('conv2'):]}"
elif m[2].startswith('time_emb_proj'):
return f"{block}emb_layers_1{m[2][len('time_emb_proj'):]}"
elif m[2].startswith('conv_shortcut'):
return f"{block}skip_connection{m[2][len('conv_shortcut'):]}"
if match(m, re_unet_downsample):
return f"diffusion_model_input_blocks_{m[0]*3+3}_0_op{m[1]}"
if match(m, re_unet_upsample):
return f"diffusion_model_output_blocks_{m[0]*3 + 2}_{1+(m[0]!=0)}_conv{m[1]}"
if match(m, re_text_block):
return f"transformer_text_model_encoder_layers_{m[0]}_{m[1]}"
return key
CLAMP_QUANTILE = 0.99
MIN_DIFF = 1e-6
def str_to_dtype(p):
if p == 'float':
return torch.float
if p == 'fp16':
return torch.float16
if p == 'bf16':
return torch.bfloat16
return None
def svd(model_a,model_b,v2,dim,save_precision,save_to,alpha,beta):
save_dtype = str_to_dtype(save_precision)
if model_a == model_b:
text_encoder_t, _, unet_t = load_models_from_stable_diffusion_checkpoint(v2, model_a)
text_encoder_o, _, unet_o = text_encoder_t, _, unet_t
else:
print(f"loading SD model : {model_b}")
text_encoder_o, _, unet_o = load_models_from_stable_diffusion_checkpoint(v2, model_b)
print(f"loading SD model : {model_a}")
text_encoder_t, _, unet_t = load_models_from_stable_diffusion_checkpoint(v2, model_a)
# create LoRA network to extract weights: Use dim (rank) as alpha
lora_network_o = create_network(1.0, dim, dim, None, text_encoder_o, unet_o)
lora_network_t = create_network(1.0, dim, dim, None, text_encoder_t, unet_t)
assert len(lora_network_o.text_encoder_loras) == len(
lora_network_t.text_encoder_loras), f"model version is different (SD1.x vs SD2.x) / それぞれのモデルのバージョンが違います(SD1.xベースとSD2.xベース) "
# get diffs
diffs = {}
text_encoder_different = False
for i, (lora_o, lora_t) in enumerate(zip(lora_network_o.text_encoder_loras, lora_network_t.text_encoder_loras)):
lora_name = lora_o.lora_name
module_o = lora_o.org_module
module_t = lora_t.org_module
diff = alpha*module_t.weight - beta*module_o.weight
# Text Encoder might be same
if torch.max(torch.abs(diff)) > MIN_DIFF:
text_encoder_different = True
diff = diff.float()
diffs[lora_name] = diff
if not text_encoder_different:
print("Text encoder is same. Extract U-Net only.")
lora_network_o.text_encoder_loras = []
diffs = {}
for i, (lora_o, lora_t) in enumerate(zip(lora_network_o.unet_loras, lora_network_t.unet_loras)):
lora_name = lora_o.lora_name
module_o = lora_o.org_module
module_t = lora_t.org_module
diff = alpha*module_t.weight - beta*module_o.weight
diff = diff.float()
diffs[lora_name] = diff
# make LoRA with svd
print("calculating by svd")
rank = dim
lora_weights = {}
with torch.no_grad():
for lora_name, mat in tqdm(list(diffs.items())):
conv2d = (len(mat.size()) == 4)
if conv2d:
mat = mat.squeeze()
U, S, Vh = torch.linalg.svd(mat)
U = U[:, :rank]
S = S[:rank]
U = U @ torch.diag(S)
Vh = Vh[:rank, :]
dist = torch.cat([U.flatten(), Vh.flatten()])
hi_val = torch.quantile(dist, CLAMP_QUANTILE)
low_val = -hi_val
U = U.clamp(low_val, hi_val)
Vh = Vh.clamp(low_val, hi_val)
lora_weights[lora_name] = (U, Vh)
# make state dict for LoRA
lora_network_o.apply_to(text_encoder_o, unet_o, text_encoder_different, True) # to make state dict
lora_sd = lora_network_o.state_dict()
print(f"LoRA has {len(lora_sd)} weights.")
for key in list(lora_sd.keys()):
if "alpha" in key:
continue
lora_name = key.split('.')[0]
i = 0 if "lora_up" in key else 1
weights = lora_weights[lora_name][i]
# print(key, i, weights.size(), lora_sd[key].size())
if len(lora_sd[key].size()) == 4:
weights = weights.unsqueeze(2).unsqueeze(3)
assert weights.size() == lora_sd[key].size(), f"size unmatch: {key}"
lora_sd[key] = weights
# load state dict to LoRA and save it
info = lora_network_o.load_state_dict(lora_sd)
print(f"Loading extracted LoRA weights: {info}")
dir_name = os.path.dirname(save_to)
if dir_name and not os.path.exists(dir_name):
os.makedirs(dir_name, exist_ok=True)
# minimum metadata
metadata = {"ss_network_dim": str(dim), "ss_network_alpha": str(dim)}
lora_network_o.save_weights(save_to, save_dtype, metadata)
print(f"LoRA weights are saved to: {save_to}")
return save_to
def load_state_dict(file_name, dtype):
if os.path.splitext(file_name)[1] == '.safetensors':
sd = load_file(file_name)
else:
sd = torch.load(file_name, map_location='cpu')
for key in list(sd.keys()):
if type(sd[key]) == torch.Tensor:
sd[key] = sd[key].to(dtype)
return sd
def dimgetter(filename):
lora_sd = load_state_dict(filename, torch.float)
alpha = None
dim = None
type = None
if "lora_unet_down_blocks_0_resnets_0_conv1.lora_down.weight" in lora_sd.keys():
type = "LoCon"
for key, value in lora_sd.items():
if alpha is None and 'alpha' in key:
alpha = value
if dim is None and 'lora_down' in key and len(value.size()) == 2:
dim = value.size()[0]
if "hada_" in key:
dim,type = "LyCORIS","LyCORIS"
if alpha is not None and dim is not None:
break
if alpha is None:
alpha = dim
if type == None:type = "LoRA"
if dim :
return dim,type
else:
return "unknown","unknown"
def blockfromkey(key):
fullkey = convert_diffusers_name_to_compvis(key)
for i,n in enumerate(LORABLOCKS):
if n in fullkey: return i
return 0
def merge_lora_models_dim(models, ratios, new_rank,sets):
merged_sd = {}
fugou = 1
for model, ratios in zip(models, ratios):
merge_dtype = torch.float
lora_sd = load_state_dict(model, merge_dtype)
# merge
print(f"merging {model}: {ratios}")
for key in tqdm(list(lora_sd.keys())):
if 'lora_down' not in key:
continue
lora_module_name = key[:key.rfind(".lora_down")]
down_weight = lora_sd[key]
network_dim = down_weight.size()[0]
up_weight = lora_sd[lora_module_name + '.lora_up.weight']
alpha = lora_sd.get(lora_module_name + '.alpha', network_dim)
in_dim = down_weight.size()[1]
out_dim = up_weight.size()[0]
conv2d = len(down_weight.size()) == 4
# print(lora_module_name, network_dim, alpha, in_dim, out_dim)
# make original weight if not exist
if lora_module_name not in merged_sd:
weight = torch.zeros((out_dim, in_dim, 1, 1) if conv2d else (out_dim, in_dim), dtype=merge_dtype)
else:
weight = merged_sd[lora_module_name]
ratio = ratios[blockfromkey(key)]
if "same to Strength" in sets:
ratio, fugou = (ratio**0.5,1) if ratio > 0 else (abs(ratio)**0.5,-1)
#print(lora_module_name, ratio)
# W <- W + U * D
scale = (alpha / network_dim)
if not conv2d: # linear
weight = weight + ratio * (up_weight @ down_weight) * scale * fugou
else:
weight = weight + ratio * (up_weight.squeeze(3).squeeze(2) @ down_weight.squeeze(3).squeeze(2)
).unsqueeze(2).unsqueeze(3) * scale * fugou
merged_sd[lora_module_name] = weight
# extract from merged weights
print("extract new lora...")
merged_lora_sd = {}
with torch.no_grad():
for lora_module_name, mat in tqdm(list(merged_sd.items())):
conv2d = (len(mat.size()) == 4)
if conv2d:
mat = mat.squeeze()
U, S, Vh = torch.linalg.svd(mat)
U = U[:, :new_rank]
S = S[:new_rank]
U = U @ torch.diag(S)
Vh = Vh[:new_rank, :]
dist = torch.cat([U.flatten(), Vh.flatten()])
hi_val = torch.quantile(dist, CLAMP_QUANTILE)
low_val = -hi_val
U = U.clamp(low_val, hi_val)
Vh = Vh.clamp(low_val, hi_val)
up_weight = U
down_weight = Vh
if conv2d:
up_weight = up_weight.unsqueeze(2).unsqueeze(3)
down_weight = down_weight.unsqueeze(2).unsqueeze(3)
merged_lora_sd[lora_module_name + '.lora_up.weight'] = up_weight.to("cpu").contiguous()
merged_lora_sd[lora_module_name + '.lora_down.weight'] = down_weight.to("cpu").contiguous()
merged_lora_sd[lora_module_name + '.alpha'] = torch.tensor(new_rank)
return merged_lora_sd
def merge_lora_models(models, ratios,sets):
base_alphas = {} # alpha for merged model
base_dims = {}
merge_dtype = torch.float
merged_sd = {}
fugou = 1
for model, ratios in zip(models, ratios):
print(f"merging {model}: {ratios}")
lora_sd = load_state_dict(model, merge_dtype)
# get alpha and dim
alphas = {} # alpha for current model
dims = {} # dims for current model
for key in lora_sd.keys():
if 'alpha' in key:
lora_module_name = key[:key.rfind(".alpha")]
alpha = float(lora_sd[key].detach().numpy())
alphas[lora_module_name] = alpha
if lora_module_name not in base_alphas:
base_alphas[lora_module_name] = alpha
elif "lora_down" in key:
lora_module_name = key[:key.rfind(".lora_down")]
dim = lora_sd[key].size()[0]
dims[lora_module_name] = dim
if lora_module_name not in base_dims:
base_dims[lora_module_name] = dim
for lora_module_name in dims.keys():
if lora_module_name not in alphas:
alpha = dims[lora_module_name]
alphas[lora_module_name] = alpha
if lora_module_name not in base_alphas:
base_alphas[lora_module_name] = alpha
print(f"dim: {list(set(dims.values()))}, alpha: {list(set(alphas.values()))}")
# merge
print(f"merging...")
for key in lora_sd.keys():
if 'alpha' in key:
continue
if "lora_down" in key: dwon = True
lora_module_name = key[:key.rfind(".lora_")]
base_alpha = base_alphas[lora_module_name]
alpha = alphas[lora_module_name]
ratio = ratios[blockfromkey(key)]
if "same to Strength" in sets:
ratio, fugou = (ratio**0.5,1) if ratio > 0 else (abs(ratio)**0.5,-1)
if "lora_down" in key:
ratio = ratio * fugou
scale = math.sqrt(alpha / base_alpha) * ratio
if key in merged_sd:
assert merged_sd[key].size() == lora_sd[key].size(
), f"weights shape mismatch merging v1 and v2, different dims? / 重みのサイズが合いません。v1とv2、または次元数の異なるモデルはマージできません"
merged_sd[key] = merged_sd[key] + lora_sd[key] * scale
else:
merged_sd[key] = lora_sd[key] * scale
# set alpha to sd
for lora_module_name, alpha in base_alphas.items():
key = lora_module_name + ".alpha"
merged_sd[key] = torch.tensor(alpha)
print("merged model")
print(f"dim: {list(set(base_dims.values()))}, alpha: {list(set(base_alphas.values()))}")
return merged_sd
def fullpathfromname(name):
if hash == "" or hash ==[]: return ""
checkpoint_info = sd_models.get_closet_checkpoint_match(name)
return checkpoint_info.filename
def makeloraname(model_a,model_b):
model_a=filenamecutter(model_a)
model_b=filenamecutter(model_b)
return "lora_"+model_a+"-"+model_b
def lycomerge(filename,ratios):
sd = load_state_dict(filename, torch.float)
if len(ratios) == 17:
r0 = 1
ratios = [ratios[0]] + [r0] + ratios[1:3]+ [r0] + ratios[3:5]+[r0] + ratios[5:7]+[r0,r0,r0] + [ratios[7]] + [r0,r0,r0] + ratios[8:]
print("LyCORIS: " , ratios)
keys_failed_to_match = []
for lkey, weight in sd.items():
ratio = 1
picked = False
if 'alpha' in lkey:
continue
fullkey = convert_diffusers_name_to_compvis(lkey)
key, lora_key = fullkey.split(".", 1)
for i,block in enumerate(LYCOBLOCKS):
if block in key:
ratio = ratios[i]
picked = True
if not picked: keys_failed_to_match.append(key)
sd[lkey] = weight * math.sqrt(abs(float(ratio)))
if "down" in lkey and ratio < 0:
sd[key] = sd[key] * -1
if len(keys_failed_to_match) > 0:
print(keys_failed_to_match)
return sd
LORABLOCKS=["encoder",
"diffusion_model_input_blocks_1_",
"diffusion_model_input_blocks_2_",
"diffusion_model_input_blocks_4_",
"diffusion_model_input_blocks_5_",
"diffusion_model_input_blocks_7_",
"diffusion_model_input_blocks_8_",
"diffusion_model_middle_block_",
"diffusion_model_output_blocks_3_",
"diffusion_model_output_blocks_4_",
"diffusion_model_output_blocks_5_",
"diffusion_model_output_blocks_6_",
"diffusion_model_output_blocks_7_",
"diffusion_model_output_blocks_8_",
"diffusion_model_output_blocks_9_",
"diffusion_model_output_blocks_10_",
"diffusion_model_output_blocks_11_"]
LYCOBLOCKS=["encoder",
"diffusion_model_input_blocks_0_",
"diffusion_model_input_blocks_1_",
"diffusion_model_input_blocks_2_",
"diffusion_model_input_blocks_3_",
"diffusion_model_input_blocks_4_",
"diffusion_model_input_blocks_5_",
"diffusion_model_input_blocks_6_",
"diffusion_model_input_blocks_7_",
"diffusion_model_input_blocks_8_",
"diffusion_model_input_blocks_9_",
"diffusion_model_input_blocks_10_",
"diffusion_model_input_blocks_11_",
"diffusion_model_middle_block_",
"diffusion_model_output_blocks_0_",
"diffusion_model_output_blocks_1_",
"diffusion_model_output_blocks_2_",
"diffusion_model_output_blocks_3_",
"diffusion_model_output_blocks_4_",
"diffusion_model_output_blocks_5_",
"diffusion_model_output_blocks_6_",
"diffusion_model_output_blocks_7_",
"diffusion_model_output_blocks_8_",
"diffusion_model_output_blocks_9_",
"diffusion_model_output_blocks_10_",
"diffusion_model_output_blocks_11_"]
class LoRAModule(torch.nn.Module):
"""
replaces forward method of the original Linear, instead of replacing the original Linear module.
"""
def __init__(self, lora_name, org_module: torch.nn.Module, multiplier=1.0, lora_dim=4, alpha=1):
"""if alpha == 0 or None, alpha is rank (no scaling)."""
super().__init__()
self.lora_name = lora_name
if org_module.__class__.__name__ == "Conv2d":
in_dim = org_module.in_channels
out_dim = org_module.out_channels
else:
in_dim = org_module.in_features
out_dim = org_module.out_features
# if limit_rank:
# self.lora_dim = min(lora_dim, in_dim, out_dim)
# if self.lora_dim != lora_dim:
# print(f"{lora_name} dim (rank) is changed to: {self.lora_dim}")
# else:
self.lora_dim = lora_dim
if org_module.__class__.__name__ == "Conv2d":
kernel_size = org_module.kernel_size
stride = org_module.stride
padding = org_module.padding
self.lora_down = torch.nn.Conv2d(in_dim, self.lora_dim, kernel_size, stride, padding, bias=False)
self.lora_up = torch.nn.Conv2d(self.lora_dim, out_dim, (1, 1), (1, 1), bias=False)
else:
self.lora_down = torch.nn.Linear(in_dim, self.lora_dim, bias=False)
self.lora_up = torch.nn.Linear(self.lora_dim, out_dim, bias=False)
if type(alpha) == torch.Tensor:
alpha = alpha.detach().float().numpy() # without casting, bf16 causes error
alpha = self.lora_dim if alpha is None or alpha == 0 else alpha
self.scale = alpha / self.lora_dim
self.register_buffer("alpha", torch.tensor(alpha)) # 定数として扱える
# same as microsoft's
torch.nn.init.kaiming_uniform_(self.lora_down.weight, a=math.sqrt(5))
torch.nn.init.zeros_(self.lora_up.weight)
self.multiplier = multiplier
self.org_module = org_module # remove in applying
self.region = None
self.region_mask = None
def apply_to(self):
self.org_forward = self.org_module.forward
self.org_module.forward = self.forward
del self.org_module
def merge_to(self, sd, dtype, device):
# get up/down weight
up_weight = sd["lora_up.weight"].to(torch.float).to(device)
down_weight = sd["lora_down.weight"].to(torch.float).to(device)
# extract weight from org_module
org_sd = self.org_module.state_dict()
weight = org_sd["weight"].to(torch.float)
# merge weight
if len(weight.size()) == 2:
# linear
weight = weight + self.multiplier * (up_weight @ down_weight) * self.scale
elif down_weight.size()[2:4] == (1, 1):
# conv2d 1x1
weight = (
weight
+ self.multiplier
* (up_weight.squeeze(3).squeeze(2) @ down_weight.squeeze(3).squeeze(2)).unsqueeze(2).unsqueeze(3)
* self.scale
)
else:
# conv2d 3x3
conved = torch.nn.functional.conv2d(down_weight.permute(1, 0, 2, 3), up_weight).permute(1, 0, 2, 3)
# print(conved.size(), weight.size(), module.stride, module.padding)
weight = weight + self.multiplier * conved * self.scale
# set weight to org_module
org_sd["weight"] = weight.to(dtype)
self.org_module.load_state_dict(org_sd)
def set_region(self, region):
self.region = region
self.region_mask = None
def forward(self, x):
if self.region is None:
return self.org_forward(x) + self.lora_up(self.lora_down(x)) * self.multiplier * self.scale
# regional LoRA FIXME same as additional-network extension
if x.size()[1] % 77 == 0:
# print(f"LoRA for context: {self.lora_name}")
self.region = None
return self.org_forward(x) + self.lora_up(self.lora_down(x)) * self.multiplier * self.scale
# calculate region mask first time
if self.region_mask is None:
if len(x.size()) == 4:
h, w = x.size()[2:4]
else:
seq_len = x.size()[1]
ratio = math.sqrt((self.region.size()[0] * self.region.size()[1]) / seq_len)
h = int(self.region.size()[0] / ratio + 0.5)
w = seq_len // h
r = self.region.to(x.device)
if r.dtype == torch.bfloat16:
r = r.to(torch.float)
r = r.unsqueeze(0).unsqueeze(1)
# print(self.lora_name, self.region.size(), x.size(), r.size(), h, w)
r = torch.nn.functional.interpolate(r, (h, w), mode="bilinear")
r = r.to(x.dtype)
if len(x.size()) == 3:
r = torch.reshape(r, (1, x.size()[1], -1))
self.region_mask = r
return self.org_forward(x) + self.lora_up(self.lora_down(x)) * self.multiplier * self.scale * self.region_mask
def create_network(multiplier, network_dim, network_alpha, vae, text_encoder, unet, **kwargs):
if network_dim is None:
network_dim = 4 # default
# extract dim/alpha for conv2d, and block dim
conv_dim = kwargs.get("conv_dim", None)
conv_alpha = kwargs.get("conv_alpha", None)
if conv_dim is not None:
conv_dim = int(conv_dim)
if conv_alpha is None:
conv_alpha = 1.0
else:
conv_alpha = float(conv_alpha)
"""
block_dims = kwargs.get("block_dims")
block_alphas = None
if block_dims is not None:
block_dims = [int(d) for d in block_dims.split(',')]
assert len(block_dims) == NUM_BLOCKS, f"Number of block dimensions is not same to {NUM_BLOCKS}"
block_alphas = kwargs.get("block_alphas")
if block_alphas is None:
block_alphas = [1] * len(block_dims)
else:
block_alphas = [int(a) for a in block_alphas(',')]
assert len(block_alphas) == NUM_BLOCKS, f"Number of block alphas is not same to {NUM_BLOCKS}"
conv_block_dims = kwargs.get("conv_block_dims")
conv_block_alphas = None
if conv_block_dims is not None:
conv_block_dims = [int(d) for d in conv_block_dims.split(',')]
assert len(conv_block_dims) == NUM_BLOCKS, f"Number of block dimensions is not same to {NUM_BLOCKS}"
conv_block_alphas = kwargs.get("conv_block_alphas")
if conv_block_alphas is None:
conv_block_alphas = [1] * len(conv_block_dims)
else:
conv_block_alphas = [int(a) for a in conv_block_alphas(',')]
assert len(conv_block_alphas) == NUM_BLOCKS, f"Number of block alphas is not same to {NUM_BLOCKS}"
"""
network = LoRANetwork(
text_encoder,
unet,
multiplier=multiplier,
lora_dim=network_dim,
alpha=network_alpha,
conv_lora_dim=conv_dim,
conv_alpha=conv_alpha,
)
return network
class LoRANetwork(torch.nn.Module):
# is it possible to apply conv_in and conv_out?
UNET_TARGET_REPLACE_MODULE = ["Transformer2DModel", "Attention"]
UNET_TARGET_REPLACE_MODULE_CONV2D_3X3 = ["ResnetBlock2D", "Downsample2D", "Upsample2D"]
TEXT_ENCODER_TARGET_REPLACE_MODULE = ["CLIPAttention", "CLIPMLP"]
LORA_PREFIX_UNET = "lora_unet"
LORA_PREFIX_TEXT_ENCODER = "lora_te"
def __init__(
self,
text_encoder,
unet,
multiplier=1.0,
lora_dim=4,
alpha=1,
conv_lora_dim=None,
conv_alpha=None,
modules_dim=None,
modules_alpha=None,
) -> None:
super().__init__()
self.multiplier = multiplier
self.lora_dim = lora_dim
self.alpha = alpha
self.conv_lora_dim = conv_lora_dim
self.conv_alpha = conv_alpha
if modules_dim is not None:
print(f"create LoRA network from weights")
else:
print(f"create LoRA network. base dim (rank): {lora_dim}, alpha: {alpha}")
self.apply_to_conv2d_3x3 = self.conv_lora_dim is not None
if self.apply_to_conv2d_3x3:
if self.conv_alpha is None:
self.conv_alpha = self.alpha
print(f"apply LoRA to Conv2d with kernel size (3,3). dim (rank): {self.conv_lora_dim}, alpha: {self.conv_alpha}")
# create module instances
def create_modules(prefix, root_module: torch.nn.Module, target_replace_modules) -> List[LoRAModule]:
loras = []
for name, module in root_module.named_modules():
if module.__class__.__name__ in target_replace_modules:
# TODO get block index here
for child_name, child_module in module.named_modules():
is_linear = child_module.__class__.__name__ == "Linear"
is_conv2d = child_module.__class__.__name__ == "Conv2d"
is_conv2d_1x1 = is_conv2d and child_module.kernel_size == (1, 1)
if is_linear or is_conv2d:
lora_name = prefix + "." + name + "." + child_name
lora_name = lora_name.replace(".", "_")
if modules_dim is not None:
if lora_name not in modules_dim:
continue # no LoRA module in this weights file
dim = modules_dim[lora_name]
alpha = modules_alpha[lora_name]
else:
if is_linear or is_conv2d_1x1:
dim = self.lora_dim
alpha = self.alpha
elif self.apply_to_conv2d_3x3:
dim = self.conv_lora_dim
alpha = self.conv_alpha
else:
continue
lora = LoRAModule(lora_name, child_module, self.multiplier, dim, alpha)
loras.append(lora)
return loras
self.text_encoder_loras = create_modules(
LoRANetwork.LORA_PREFIX_TEXT_ENCODER, text_encoder, LoRANetwork.TEXT_ENCODER_TARGET_REPLACE_MODULE
)
print(f"create LoRA for Text Encoder: {len(self.text_encoder_loras)} modules.")
# extend U-Net target modules if conv2d 3x3 is enabled, or load from weights
target_modules = LoRANetwork.UNET_TARGET_REPLACE_MODULE
if modules_dim is not None or self.conv_lora_dim is not None:
target_modules += LoRANetwork.UNET_TARGET_REPLACE_MODULE_CONV2D_3X3
self.unet_loras = create_modules(LoRANetwork.LORA_PREFIX_UNET, unet, target_modules)
print(f"create LoRA for U-Net: {len(self.unet_loras)} modules.")
self.weights_sd = None
# assertion
names = set()
for lora in self.text_encoder_loras + self.unet_loras:
assert lora.lora_name not in names, f"duplicated lora name: {lora.lora_name}"
names.add(lora.lora_name)
def set_multiplier(self, multiplier):
self.multiplier = multiplier
for lora in self.text_encoder_loras + self.unet_loras:
lora.multiplier = self.multiplier
def load_weights(self, file):
if os.path.splitext(file)[1] == ".safetensors":
from safetensors.torch import load_file, safe_open
self.weights_sd = load_file(file)
else:
self.weights_sd = torch.load(file, map_location="cpu")
def apply_to(self, text_encoder, unet, apply_text_encoder=None, apply_unet=None):
if self.weights_sd:
weights_has_text_encoder = weights_has_unet = False
for key in self.weights_sd.keys():
if key.startswith(LoRANetwork.LORA_PREFIX_TEXT_ENCODER):
weights_has_text_encoder = True
elif key.startswith(LoRANetwork.LORA_PREFIX_UNET):
weights_has_unet = True
if apply_text_encoder is None:
apply_text_encoder = weights_has_text_encoder
else:
assert (
apply_text_encoder == weights_has_text_encoder
), f"text encoder weights: {weights_has_text_encoder} but text encoder flag: {apply_text_encoder} / 重みとText Encoderのフラグが矛盾しています"
if apply_unet is None:
apply_unet = weights_has_unet
else:
assert (
apply_unet == weights_has_unet
), f"u-net weights: {weights_has_unet} but u-net flag: {apply_unet} / 重みとU-Netのフラグが矛盾しています"
else:
assert apply_text_encoder is not None and apply_unet is not None, f"internal error: flag not set"
if apply_text_encoder:
print("enable LoRA for text encoder")
else:
self.text_encoder_loras = []
if apply_unet:
print("enable LoRA for U-Net")
else:
self.unet_loras = []
for lora in self.text_encoder_loras + self.unet_loras:
lora.apply_to()
self.add_module(lora.lora_name, lora)
if self.weights_sd:
# if some weights are not in state dict, it is ok because initial LoRA does nothing (lora_up is initialized by zeros)
info = self.load_state_dict(self.weights_sd, False)
print(f"weights are loaded: {info}")
# TODO refactor to common function with apply_to
def merge_to(self, text_encoder, unet, dtype, device):
assert self.weights_sd is not None, "weights are not loaded"
apply_text_encoder = apply_unet = False
for key in self.weights_sd.keys():
if key.startswith(LoRANetwork.LORA_PREFIX_TEXT_ENCODER):
apply_text_encoder = True
elif key.startswith(LoRANetwork.LORA_PREFIX_UNET):
apply_unet = True
if apply_text_encoder:
print("enable LoRA for text encoder")
else:
self.text_encoder_loras = []
if apply_unet:
print("enable LoRA for U-Net")
else:
self.unet_loras = []
for lora in self.text_encoder_loras + self.unet_loras:
sd_for_lora = {}
for key in self.weights_sd.keys():
if key.startswith(lora.lora_name):
sd_for_lora[key[len(lora.lora_name) + 1 :]] = self.weights_sd[key]
lora.merge_to(sd_for_lora, dtype, device)
print(f"weights are merged")
def enable_gradient_checkpointing(self):
# not supported
pass
def prepare_optimizer_params(self, text_encoder_lr, unet_lr):
def enumerate_params(loras):
params = []
for lora in loras:
params.extend(lora.parameters())
return params
self.requires_grad_(True)
all_params = []
if self.text_encoder_loras:
param_data = {"params": enumerate_params(self.text_encoder_loras)}
if text_encoder_lr is not None:
param_data["lr"] = text_encoder_lr
all_params.append(param_data)
if self.unet_loras:
param_data = {"params": enumerate_params(self.unet_loras)}
if unet_lr is not None:
param_data["lr"] = unet_lr
all_params.append(param_data)
return all_params
def prepare_grad_etc(self, text_encoder, unet):
self.requires_grad_(True)
def on_epoch_start(self, text_encoder, unet):
self.train()
def get_trainable_params(self):
return self.parameters()
def save_weights(self, file, dtype, metadata):
if metadata is not None and len(metadata) == 0:
metadata = None
state_dict = self.state_dict()
if dtype is not None:
for key in list(state_dict.keys()):
v = state_dict[key]
v = v.detach().clone().to("cpu").to(dtype)
state_dict[key] = v
if os.path.splitext(file)[1] == ".safetensors":
from safetensors.torch import save_file
# Precalculate model hashes to save time on indexing
if metadata is None:
metadata = {}
model_hash, legacy_hash = precalculate_safetensors_hashes(state_dict, metadata)
metadata["sshs_model_hash"] = model_hash
metadata["sshs_legacy_hash"] = legacy_hash
save_file(state_dict, file, metadata)
else:
torch.save(state_dict, file)
@staticmethod
def set_regions(networks, image):
image = image.astype(np.float32) / 255.0
for i, network in enumerate(networks[:3]):
# NOTE: consider averaging overwrapping area
region = image[:, :, i]
if region.max() == 0:
continue
region = torch.tensor(region)
network.set_region(region)
def set_region(self, region):
for lora in self.unet_loras:
lora.set_region(region)
from io import BytesIO
import safetensors.torch
import hashlib
def precalculate_safetensors_hashes(tensors, metadata):
"""Precalculate the model hashes needed by sd-webui-additional-networks to
save time on indexing the model later."""
# Because writing user metadata to the file can change the result of
# sd_models.model_hash(), only retain the training metadata for purposes of
# calculating the hash, as they are meant to be immutable
metadata = {k: v for k, v in metadata.items() if k.startswith("ss_")}
bytes = safetensors.torch.save(tensors, metadata)
b = BytesIO(bytes)
model_hash = addnet_hash_safetensors(b)
legacy_hash = addnet_hash_legacy(b)
return model_hash, legacy_hash
def addnet_hash_safetensors(b):
"""New model hash used by sd-webui-additional-networks for .safetensors format files"""
hash_sha256 = hashlib.sha256()
blksize = 1024 * 1024
b.seek(0)
header = b.read(8)
n = int.from_bytes(header, "little")
offset = n + 8
b.seek(offset)
for chunk in iter(lambda: b.read(blksize), b""):
hash_sha256.update(chunk)
return hash_sha256.hexdigest()
def addnet_hash_legacy(b):
"""Old model hash used by sd-webui-additional-networks for .safetensors format files"""
m = hashlib.sha256()
b.seek(0x100000)
m.update(b.read(0x10000))
return m.hexdigest()[0:8]