|
import cv2 |
|
import numpy as np |
|
import torch |
|
import os |
|
|
|
from einops import rearrange |
|
from .models.mbv2_mlsd_tiny import MobileV2_MLSD_Tiny |
|
from .models.mbv2_mlsd_large import MobileV2_MLSD_Large |
|
from .utils import pred_lines |
|
from modules import devices |
|
from annotator.annotator_path import models_path |
|
|
|
mlsdmodel = None |
|
remote_model_path = "https://huggingface.co/lllyasviel/ControlNet/resolve/main/annotator/ckpts/mlsd_large_512_fp32.pth" |
|
old_modeldir = os.path.dirname(os.path.realpath(__file__)) |
|
modeldir = os.path.join(models_path, "mlsd") |
|
|
|
def unload_mlsd_model(): |
|
global mlsdmodel |
|
if mlsdmodel is not None: |
|
mlsdmodel = mlsdmodel.cpu() |
|
|
|
def apply_mlsd(input_image, thr_v, thr_d): |
|
global modelpath, mlsdmodel |
|
if mlsdmodel is None: |
|
modelpath = os.path.join(modeldir, "mlsd_large_512_fp32.pth") |
|
old_modelpath = os.path.join(old_modeldir, "mlsd_large_512_fp32.pth") |
|
if os.path.exists(old_modelpath): |
|
modelpath = old_modelpath |
|
elif not os.path.exists(modelpath): |
|
from basicsr.utils.download_util import load_file_from_url |
|
load_file_from_url(remote_model_path, model_dir=modeldir) |
|
mlsdmodel = MobileV2_MLSD_Large() |
|
mlsdmodel.load_state_dict(torch.load(modelpath), strict=True) |
|
mlsdmodel = mlsdmodel.to(devices.get_device_for("controlnet")).eval() |
|
|
|
model = mlsdmodel |
|
assert input_image.ndim == 3 |
|
img = input_image |
|
img_output = np.zeros_like(img) |
|
try: |
|
with torch.no_grad(): |
|
lines = pred_lines(img, model, [img.shape[0], img.shape[1]], thr_v, thr_d) |
|
for line in lines: |
|
x_start, y_start, x_end, y_end = [int(val) for val in line] |
|
cv2.line(img_output, (x_start, y_start), (x_end, y_end), [255, 255, 255], 1) |
|
except Exception as e: |
|
pass |
|
return img_output[:, :, 0] |
|
|