File size: 13,435 Bytes
a0611b0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 |
import sys, os
import gradio as gr
import modules
from types import SimpleNamespace
from modules import script_callbacks, shared
from modules.shared import cmd_opts, opts
from webui import wrap_gradio_gpu_call
from modules.ui_components import ToolButton, FormRow, FormGroup
from modules.ui import create_override_settings_dropdown
import modules.scripts as scripts
from modules.sd_samplers import samplers_for_img2img
from modules.ui import setup_progressbar, create_sampler_and_steps_selection, ordered_ui_categories, create_output_panel
from scripts.core import vid2vid, txt2vid, utils
import traceback
def V2VArgs():
seed = -1
width = 1024
height = 576
cfg_scale = 5.5
steps = 15
prompt = ""
n_prompt = "text, letters, logo, brand, close up, cropped, out of frame, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck"
processing_strength = 0.85
fix_frame_strength = 0.15
return locals()
def T2VArgs():
seed = -1
width = 768
height = 512
cfg_scale = 5.5
steps = 15
prompt = ""
n_prompt = "((blur, blurr, blurred, blurry, fuzzy, unclear, unfocus, bocca effect)), text, letters, logo, brand, close up, cropped, out of frame, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck"
processing_strength = 0.75
fix_frame_strength = 0.35
return locals()
def setup_common_values(mode, d):
with gr.Row():
width = gr.Slider(label='Width', minimum=64, maximum=2048, step=64, value=d.width, interactive=True)
height = gr.Slider(label='Height', minimum=64, maximum=2048, step=64, value=d.height, interactive=True)
with gr.Row(elem_id=f'{mode}_prompt_toprow'):
prompt = gr.Textbox(label='Prompt', lines=3, interactive=True, elem_id=f"{mode}_prompt", placeholder="Enter your prompt here...")
with gr.Row(elem_id=f'{mode}_n_prompt_toprow'):
n_prompt = gr.Textbox(label='Negative prompt', lines=3, interactive=True, elem_id=f"{mode}_n_prompt", value=d.n_prompt)
with gr.Row():
cfg_scale = gr.Slider(label='CFG scale', minimum=1, maximum=100, step=1, value=d.cfg_scale, interactive=True)
with gr.Row():
seed = gr.Number(label='Seed (this parameter controls how the first frame looks like and the color distribution of the consecutive frames as they are dependent on the first one)', value = d.seed, Interactive = True, precision=0)
with gr.Row():
processing_strength = gr.Slider(label="Processing strength (Step 1)", value=d.processing_strength, minimum=0, maximum=1, step=0.05, interactive=True)
fix_frame_strength = gr.Slider(label="Fix frame strength (Step 2)", value=d.fix_frame_strength, minimum=0, maximum=1, step=0.05, interactive=True)
with gr.Row():
sampler_index = gr.Dropdown(label='Sampling method', elem_id=f"{mode}_sampling", choices=[x.name for x in samplers_for_img2img], value=samplers_for_img2img[0].name, type="index", interactive=True)
steps = gr.Slider(label="Sampling steps", minimum=1, maximum=150, step=1, elem_id=f"{mode}_steps", value=d.steps, interactive=True)
return width, height, prompt, n_prompt, cfg_scale, seed, processing_strength, fix_frame_strength, sampler_index, steps
def inputs_ui():
v2v_args = SimpleNamespace(**V2VArgs())
t2v_args = SimpleNamespace(**T2VArgs())
with gr.Tabs():
glo_sdcn_process_mode = gr.State(value='vid2vid')
with gr.Tab('vid2vid') as tab_vid2vid:
with gr.Row():
gr.HTML('Input video (each frame will be used as initial image for SD and as input image to CN): *REQUIRED')
with gr.Row():
v2v_file = gr.File(label="Input video", interactive=True, file_count="single", file_types=["video"], elem_id="vid_to_vid_chosen_file")
v2v_width, v2v_height, v2v_prompt, v2v_n_prompt, v2v_cfg_scale, v2v_seed, v2v_processing_strength, v2v_fix_frame_strength, v2v_sampler_index, v2v_steps = setup_common_values('vid2vid', v2v_args)
with gr.Accordion("Extra settings",open=False):
gr.HTML('# Occlusion mask params:')
with gr.Row():
with gr.Column(scale=1, variant='compact'):
v2v_occlusion_mask_blur = gr.Slider(label='Occlusion blur strength', minimum=0, maximum=10, step=0.1, value=3, interactive=True)
gr.HTML('')
v2v_occlusion_mask_trailing = gr.Checkbox(label="Occlusion trailing", info="Reduce ghosting but adds more flickering to the video", value=True, interactive=True)
with gr.Column(scale=1, variant='compact'):
v2v_occlusion_mask_flow_multiplier = gr.Slider(label='Occlusion flow multiplier', minimum=0, maximum=10, step=0.1, value=5, interactive=True)
v2v_occlusion_mask_difo_multiplier = gr.Slider(label='Occlusion diff origin multiplier', minimum=0, maximum=10, step=0.1, value=2, interactive=True)
v2v_occlusion_mask_difs_multiplier = gr.Slider(label='Occlusion diff styled multiplier', minimum=0, maximum=10, step=0.1, value=0, interactive=True)
with gr.Row():
with gr.Column(scale=1, variant='compact'):
gr.HTML('# Step 1 params:')
v2v_step_1_seed = gr.Number(label='Seed', value = -1, Interactive = True, precision=0)
gr.HTML('<br>')
v2v_step_1_blend_alpha = gr.Slider(label='Warped prev frame vs Current frame blend alpha', minimum=0, maximum=1, step=0.1, value=1, interactive=True)
v2v_step_1_processing_mode = gr.Radio(["Process full image then blend in occlusions", "Inpaint occlusions"], type="index", \
label="Processing mode", value="Process full image then blend in occlusions", interactive=True)
with gr.Column(scale=1, variant='compact'):
gr.HTML('# Step 2 params:')
v2v_step_2_seed = gr.Number(label='Seed', value = 8888, Interactive = True, precision=0)
with FormRow(elem_id="vid2vid_override_settings_row") as row:
v2v_override_settings = create_override_settings_dropdown("vid2vid", row)
with FormGroup(elem_id=f"script_container"):
v2v_custom_inputs = scripts.scripts_img2img.setup_ui()
with gr.Tab('txt2vid') as tab_txt2vid:
with gr.Row():
gr.HTML('Control video (each frame will be used as input image to CN): *NOT REQUIRED')
with gr.Row():
t2v_file = gr.File(label="Input video", interactive=True, file_count="single", file_types=["video"], elem_id="tex_to_vid_chosen_file")
t2v_init_image = gr.Image(label="Input image", interactive=True, file_count="single", file_types=["image"], elem_id="tex_to_vid_init_image")
t2v_width, t2v_height, t2v_prompt, t2v_n_prompt, t2v_cfg_scale, t2v_seed, t2v_processing_strength, t2v_fix_frame_strength, t2v_sampler_index, t2v_steps = setup_common_values('txt2vid', t2v_args)
with gr.Row():
t2v_length = gr.Slider(label='Length (in frames)', minimum=10, maximum=2048, step=10, value=40, interactive=True)
t2v_fps = gr.Slider(label='Video FPS', minimum=4, maximum=64, step=4, value=12, interactive=True)
gr.HTML('<br>')
t2v_cn_frame_send = gr.Radio(["None", "Current generated frame", "Previous generated frame", "Current reference video frame"], type="index", \
label="What frame should be send to CN?", value="None", interactive=True)
with FormRow(elem_id="txt2vid_override_settings_row") as row:
t2v_override_settings = create_override_settings_dropdown("txt2vid", row)
with FormGroup(elem_id=f"script_container"):
t2v_custom_inputs = scripts.scripts_txt2img.setup_ui()
tab_vid2vid.select(fn=lambda: 'vid2vid', inputs=[], outputs=[glo_sdcn_process_mode])
tab_txt2vid.select(fn=lambda: 'txt2vid', inputs=[], outputs=[glo_sdcn_process_mode])
return locals()
def process(*args):
msg = 'Done'
try:
if args[0] == 'vid2vid':
yield from vid2vid.start_process(*args)
elif args[0] == 'txt2vid':
yield from txt2vid.start_process(*args)
else:
msg = f"Unsupported processing mode: '{args[0]}'"
raise Exception(msg)
except Exception as error:
# handle the exception
msg = f"An exception occurred while trying to process the frame: {error}"
print(msg)
traceback.print_exc()
yield msg, gr.Image.update(), gr.Image.update(), gr.Image.update(), gr.Image.update(), gr.Video.update(), gr.Button.update(interactive=True), gr.Button.update(interactive=False)
def stop_process(*args):
utils.shared.is_interrupted = True
return gr.Button.update(interactive=False)
def on_ui_tabs():
modules.scripts.scripts_current = modules.scripts.scripts_img2img
modules.scripts.scripts_img2img.initialize_scripts(is_img2img=True)
with gr.Blocks(analytics_enabled=False) as sdcnanim_interface:
components = {}
#dv = SimpleNamespace(**T2VOutputArgs())
with gr.Row(elem_id='sdcn-core').style(equal_height=False, variant='compact'):
with gr.Column(scale=1, variant='panel'):
#with gr.Tabs():
components = inputs_ui()
with gr.Accordion("Export settings", open=False):
export_settings_button = gr.Button('Export', elem_id=f"sdcn_export_settings_button")
export_setting_json = gr.Code(value='')
with gr.Column(scale=1, variant='compact'):
with gr.Row(variant='compact'):
run_button = gr.Button('Generate', elem_id=f"sdcn_anim_generate", variant='primary')
stop_button = gr.Button('Interrupt', elem_id=f"sdcn_anim_interrupt", variant='primary', interactive=False)
save_frames_check = gr.Checkbox(label="Save frames into a folder nearby a video (check it before running the generation if you also want to save frames separately)", value=True, interactive=True)
gr.HTML('<br>')
with gr.Column(variant="panel"):
sp_progress = gr.HTML(elem_id="sp_progress", value="")
with gr.Row(variant='compact'):
img_preview_curr_frame = gr.Image(label='Current frame', elem_id=f"img_preview_curr_frame", type='pil').style(height=240)
img_preview_curr_occl = gr.Image(label='Current occlusion', elem_id=f"img_preview_curr_occl", type='pil').style(height=240)
with gr.Row(variant='compact'):
img_preview_prev_warp = gr.Image(label='Previous frame warped', elem_id=f"img_preview_curr_frame", type='pil').style(height=240)
img_preview_processed = gr.Image(label='Processed', elem_id=f"img_preview_processed", type='pil').style(height=240)
video_preview = gr.Video(interactive=False)
with gr.Row(variant='compact'):
dummy_component = gr.Label(visible=False)
components['glo_save_frames_check'] = save_frames_check
# Define parameters for the action methods.
utils.shared.v2v_custom_inputs_size = len(components['v2v_custom_inputs'])
utils.shared.t2v_custom_inputs_size = len(components['t2v_custom_inputs'])
#print('v2v_custom_inputs', len(components['v2v_custom_inputs']), components['v2v_custom_inputs'])
#print('t2v_custom_inputs', len(components['t2v_custom_inputs']), components['t2v_custom_inputs'])
method_inputs = [components[name] for name in utils.get_component_names()] + components['v2v_custom_inputs'] + components['t2v_custom_inputs']
method_outputs = [
sp_progress,
img_preview_curr_frame,
img_preview_curr_occl,
img_preview_prev_warp,
img_preview_processed,
video_preview,
run_button,
stop_button,
]
run_button.click(
fn=process, #wrap_gradio_gpu_call(start_process, extra_outputs=[None, '', '']),
inputs=method_inputs,
outputs=method_outputs,
show_progress=True,
)
stop_button.click(
fn=stop_process,
outputs=[stop_button],
show_progress=False
)
export_settings_button.click(
fn=utils.export_settings,
inputs=method_inputs,
outputs=[export_setting_json],
show_progress=False
)
modules.scripts.scripts_current = None
# define queue - required for generators
sdcnanim_interface.queue(concurrency_count=1)
return [(sdcnanim_interface, "SD-CN-Animation", "sd_cn_animation_interface")]
script_callbacks.on_ui_tabs(on_ui_tabs)
|