File size: 11,826 Bytes
5bfcfd2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
import sys, os
import math
import os
import sys
import traceback
import numpy as np
from PIL import Image
from modules import devices, sd_samplers
from modules import shared, sd_hijack, lowvram
from modules.shared import devices
import modules.shared as shared
import gc
import cv2
import gradio as gr
import time
import skimage
import datetime
from scripts.core.flow_utils import RAFT_estimate_flow, RAFT_clear_memory, compute_diff_map
from scripts.core import utils
class sdcn_anim_tmp:
prepear_counter = 0
process_counter = 0
input_video = None
output_video = None
curr_frame = None
prev_frame = None
prev_frame_styled = None
prev_frame_alpha_mask = None
fps = None
total_frames = None
prepared_frames = None
prepared_next_flows = None
prepared_prev_flows = None
frames_prepared = False
def read_frame_from_video():
# Reading video file
if sdcn_anim_tmp.input_video.isOpened():
ret, cur_frame = sdcn_anim_tmp.input_video.read()
if cur_frame is not None:
cur_frame = cv2.cvtColor(cur_frame, cv2.COLOR_BGR2RGB)
else:
cur_frame = None
sdcn_anim_tmp.input_video.release()
return cur_frame
def get_cur_stat():
stat = f'Frames prepared: {sdcn_anim_tmp.prepear_counter + 1} / {sdcn_anim_tmp.total_frames}; '
stat += f'Frames processed: {sdcn_anim_tmp.process_counter + 1} / {sdcn_anim_tmp.total_frames}; '
return stat
def clear_memory_from_sd():
if shared.sd_model is not None:
sd_hijack.model_hijack.undo_hijack(shared.sd_model)
try:
lowvram.send_everything_to_cpu()
except Exception as e:
...
del shared.sd_model
shared.sd_model = None
gc.collect()
devices.torch_gc()
def start_process(*args):
processing_start_time = time.time()
args_dict = utils.args_to_dict(*args)
args_dict = utils.get_mode_args('v2v', args_dict)
sdcn_anim_tmp.process_counter = 0
sdcn_anim_tmp.prepear_counter = 0
# Open the input video file
sdcn_anim_tmp.input_video = cv2.VideoCapture(args_dict['file'].name)
# Get useful info from the source video
sdcn_anim_tmp.fps = int(sdcn_anim_tmp.input_video.get(cv2.CAP_PROP_FPS))
sdcn_anim_tmp.total_frames = int(sdcn_anim_tmp.input_video.get(cv2.CAP_PROP_FRAME_COUNT))
loop_iterations = (sdcn_anim_tmp.total_frames-1) * 2
# Create an output video file with the same fps, width, and height as the input video
output_video_name = f'outputs/sd-cn-animation/vid2vid/{datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S")}.mp4'
output_video_folder = os.path.splitext(output_video_name)[0]
os.makedirs(os.path.dirname(output_video_name), exist_ok=True)
if args_dict['save_frames_check']:
os.makedirs(output_video_folder, exist_ok=True)
def save_result_to_image(image, ind):
if args_dict['save_frames_check']:
cv2.imwrite(os.path.join(output_video_folder, f'{ind:05d}.png'), cv2.cvtColor(image, cv2.COLOR_RGB2BGR))
sdcn_anim_tmp.output_video = cv2.VideoWriter(output_video_name, cv2.VideoWriter_fourcc(*'mp4v'), sdcn_anim_tmp.fps, (args_dict['width'], args_dict['height']))
curr_frame = read_frame_from_video()
curr_frame = cv2.resize(curr_frame, (args_dict['width'], args_dict['height']))
sdcn_anim_tmp.prepared_frames = np.zeros((11, args_dict['height'], args_dict['width'], 3), dtype=np.uint8)
sdcn_anim_tmp.prepared_next_flows = np.zeros((10, args_dict['height'], args_dict['width'], 2))
sdcn_anim_tmp.prepared_prev_flows = np.zeros((10, args_dict['height'], args_dict['width'], 2))
sdcn_anim_tmp.prepared_frames[0] = curr_frame
args_dict['init_img'] = Image.fromarray(curr_frame)
utils.set_CNs_input_image(args_dict, Image.fromarray(curr_frame))
processed_frames, _, _, _ = utils.img2img(args_dict)
processed_frame = np.array(processed_frames[0])[...,:3]
processed_frame = skimage.exposure.match_histograms(processed_frame, curr_frame, channel_axis=None)
processed_frame = np.clip(processed_frame, 0, 255).astype(np.uint8)
#print('Processed frame ', 0)
sdcn_anim_tmp.curr_frame = curr_frame
sdcn_anim_tmp.prev_frame = curr_frame.copy()
sdcn_anim_tmp.prev_frame_styled = processed_frame.copy()
utils.shared.is_interrupted = False
save_result_to_image(processed_frame, 1)
stat = get_cur_stat() + utils.get_time_left(1, loop_iterations, processing_start_time)
yield stat, sdcn_anim_tmp.curr_frame, None, None, processed_frame, None, gr.Button.update(interactive=False), gr.Button.update(interactive=True)
for step in range(loop_iterations):
if utils.shared.is_interrupted: break
args_dict = utils.args_to_dict(*args)
args_dict = utils.get_mode_args('v2v', args_dict)
occlusion_mask = None
prev_frame = None
curr_frame = sdcn_anim_tmp.curr_frame
warped_styled_frame_ = gr.Image.update()
processed_frame = gr.Image.update()
prepare_steps = 10
if sdcn_anim_tmp.process_counter % prepare_steps == 0 and not sdcn_anim_tmp.frames_prepared: # prepare next 10 frames for processing
#clear_memory_from_sd()
device = devices.get_optimal_device()
curr_frame = read_frame_from_video()
if curr_frame is not None:
curr_frame = cv2.resize(curr_frame, (args_dict['width'], args_dict['height']))
prev_frame = sdcn_anim_tmp.prev_frame.copy()
next_flow, prev_flow, occlusion_mask = RAFT_estimate_flow(prev_frame, curr_frame, device=device)
occlusion_mask = np.clip(occlusion_mask * 0.1 * 255, 0, 255).astype(np.uint8)
cn = sdcn_anim_tmp.prepear_counter % 10
if sdcn_anim_tmp.prepear_counter % 10 == 0:
sdcn_anim_tmp.prepared_frames[cn] = sdcn_anim_tmp.prev_frame
sdcn_anim_tmp.prepared_frames[cn + 1] = curr_frame.copy()
sdcn_anim_tmp.prepared_next_flows[cn] = next_flow.copy()
sdcn_anim_tmp.prepared_prev_flows[cn] = prev_flow.copy()
#print('Prepared frame ', cn+1)
sdcn_anim_tmp.prev_frame = curr_frame.copy()
sdcn_anim_tmp.prepear_counter += 1
if sdcn_anim_tmp.prepear_counter % prepare_steps == 0 or \
sdcn_anim_tmp.prepear_counter >= sdcn_anim_tmp.total_frames - 1 or \
curr_frame is None:
# Remove RAFT from memory
RAFT_clear_memory()
sdcn_anim_tmp.frames_prepared = True
else:
# process frame
sdcn_anim_tmp.frames_prepared = False
cn = sdcn_anim_tmp.process_counter % 10
curr_frame = sdcn_anim_tmp.prepared_frames[cn+1][...,:3]
prev_frame = sdcn_anim_tmp.prepared_frames[cn][...,:3]
next_flow = sdcn_anim_tmp.prepared_next_flows[cn]
prev_flow = sdcn_anim_tmp.prepared_prev_flows[cn]
### STEP 1
alpha_mask, warped_styled_frame = compute_diff_map(next_flow, prev_flow, prev_frame, curr_frame, sdcn_anim_tmp.prev_frame_styled, args_dict)
warped_styled_frame_ = warped_styled_frame.copy()
#fl_w, fl_h = prev_flow.shape[:2]
#prev_flow_n = prev_flow / np.array([fl_h,fl_w])
#flow_mask = np.clip(1 - np.linalg.norm(prev_flow_n, axis=-1)[...,None] * 20, 0, 1)
#alpha_mask = alpha_mask * flow_mask
if sdcn_anim_tmp.process_counter > 0 and args_dict['occlusion_mask_trailing']:
alpha_mask = alpha_mask + sdcn_anim_tmp.prev_frame_alpha_mask * 0.5
sdcn_anim_tmp.prev_frame_alpha_mask = alpha_mask
# alpha_mask = np.round(alpha_mask * 8) / 8 #> 0.3
alpha_mask = np.clip(alpha_mask, 0, 1)
occlusion_mask = np.clip(alpha_mask * 255, 0, 255).astype(np.uint8)
# fix warped styled frame from duplicated that occures on the places where flow is zero, but only because there is no place to get the color from
warped_styled_frame = curr_frame.astype(float) * alpha_mask + warped_styled_frame.astype(float) * (1 - alpha_mask)
# process current frame
# TODO: convert args_dict into separate dict that stores only params necessery for img2img processing
img2img_args_dict = args_dict #copy.deepcopy(args_dict)
img2img_args_dict['denoising_strength'] = args_dict['processing_strength']
if args_dict['step_1_processing_mode'] == 0: # Process full image then blend in occlusions
img2img_args_dict['mode'] = 0
img2img_args_dict['mask_img'] = None #Image.fromarray(occlusion_mask)
elif args_dict['step_1_processing_mode'] == 1: # Inpaint occlusions
img2img_args_dict['mode'] = 4
img2img_args_dict['mask_img'] = Image.fromarray(occlusion_mask)
else:
raise Exception('Incorrect step 1 processing mode!')
blend_alpha = args_dict['step_1_blend_alpha']
init_img = warped_styled_frame * (1 - blend_alpha) + curr_frame * blend_alpha
img2img_args_dict['init_img'] = Image.fromarray(np.clip(init_img, 0, 255).astype(np.uint8))
img2img_args_dict['seed'] = args_dict['step_1_seed']
utils.set_CNs_input_image(img2img_args_dict, Image.fromarray(curr_frame))
processed_frames, _, _, _ = utils.img2img(img2img_args_dict)
processed_frame = np.array(processed_frames[0])[...,:3]
# normalizing the colors
processed_frame = skimage.exposure.match_histograms(processed_frame, curr_frame, channel_axis=None)
processed_frame = processed_frame.astype(float) * alpha_mask + warped_styled_frame.astype(float) * (1 - alpha_mask)
#processed_frame = processed_frame * 0.94 + curr_frame * 0.06
processed_frame = np.clip(processed_frame, 0, 255).astype(np.uint8)
sdcn_anim_tmp.prev_frame_styled = processed_frame.copy()
### STEP 2
if args_dict['fix_frame_strength'] > 0:
img2img_args_dict = args_dict #copy.deepcopy(args_dict)
img2img_args_dict['mode'] = 0
img2img_args_dict['init_img'] = Image.fromarray(processed_frame)
img2img_args_dict['mask_img'] = None
img2img_args_dict['denoising_strength'] = args_dict['fix_frame_strength']
img2img_args_dict['seed'] = args_dict['step_2_seed']
utils.set_CNs_input_image(img2img_args_dict, Image.fromarray(curr_frame))
processed_frames, _, _, _ = utils.img2img(img2img_args_dict)
processed_frame = np.array(processed_frames[0])
processed_frame = skimage.exposure.match_histograms(processed_frame, curr_frame, channel_axis=None)
processed_frame = np.clip(processed_frame, 0, 255).astype(np.uint8)
warped_styled_frame_ = np.clip(warped_styled_frame_, 0, 255).astype(np.uint8)
# Write the frame to the output video
frame_out = np.clip(processed_frame, 0, 255).astype(np.uint8)
frame_out = cv2.cvtColor(frame_out, cv2.COLOR_RGB2BGR)
sdcn_anim_tmp.output_video.write(frame_out)
sdcn_anim_tmp.process_counter += 1
#if sdcn_anim_tmp.process_counter >= sdcn_anim_tmp.total_frames - 1:
# sdcn_anim_tmp.input_video.release()
# sdcn_anim_tmp.output_video.release()
# sdcn_anim_tmp.prev_frame = None
save_result_to_image(processed_frame, sdcn_anim_tmp.process_counter + 1)
stat = get_cur_stat() + utils.get_time_left(step+2, loop_iterations+1, processing_start_time)
yield stat, curr_frame, occlusion_mask, warped_styled_frame_, processed_frame, None, gr.Button.update(interactive=False), gr.Button.update(interactive=True)
RAFT_clear_memory()
sdcn_anim_tmp.input_video.release()
sdcn_anim_tmp.output_video.release()
curr_frame = gr.Image.update()
occlusion_mask = gr.Image.update()
warped_styled_frame_ = gr.Image.update()
processed_frame = gr.Image.update()
yield get_cur_stat(), curr_frame, occlusion_mask, warped_styled_frame_, processed_frame, output_video_name, gr.Button.update(interactive=True), gr.Button.update(interactive=False) |