File size: 15,885 Bytes
5bfcfd2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 |
class shared:
is_interrupted = False
v2v_custom_inputs_size = 0
t2v_custom_inputs_size = 0
def get_component_names():
components_list = [
'glo_sdcn_process_mode',
'v2v_file', 'v2v_width', 'v2v_height', 'v2v_prompt', 'v2v_n_prompt', 'v2v_cfg_scale', 'v2v_seed', 'v2v_processing_strength', 'v2v_fix_frame_strength',
'v2v_sampler_index', 'v2v_steps', 'v2v_override_settings',
'v2v_occlusion_mask_blur', 'v2v_occlusion_mask_trailing', 'v2v_occlusion_mask_flow_multiplier', 'v2v_occlusion_mask_difo_multiplier', 'v2v_occlusion_mask_difs_multiplier',
'v2v_step_1_processing_mode', 'v2v_step_1_blend_alpha', 'v2v_step_1_seed', 'v2v_step_2_seed',
't2v_file','t2v_init_image', 't2v_width', 't2v_height', 't2v_prompt', 't2v_n_prompt', 't2v_cfg_scale', 't2v_seed', 't2v_processing_strength', 't2v_fix_frame_strength',
't2v_sampler_index', 't2v_steps', 't2v_length', 't2v_fps', 't2v_cn_frame_send',
'glo_save_frames_check'
]
return components_list
def args_to_dict(*args): # converts list of argumets into dictionary for better handling of it
args_list = get_component_names()
# set default values for params that were not specified
args_dict = {
# video to video params
'v2v_mode': 0,
'v2v_prompt': '',
'v2v_n_prompt': '',
'v2v_prompt_styles': [],
'v2v_init_video': None, # Always required
'v2v_steps': 15,
'v2v_sampler_index': 0, # 'Euler a'
'v2v_mask_blur': 0,
'v2v_inpainting_fill': 1, # original
'v2v_restore_faces': False,
'v2v_tiling': False,
'v2v_n_iter': 1,
'v2v_batch_size': 1,
'v2v_cfg_scale': 5.5,
'v2v_image_cfg_scale': 1.5,
'v2v_denoising_strength': 0.75,
'v2v_processing_strength': 0.85,
'v2v_fix_frame_strength': 0.15,
'v2v_seed': -1,
'v2v_subseed': -1,
'v2v_subseed_strength': 0,
'v2v_seed_resize_from_h': 512,
'v2v_seed_resize_from_w': 512,
'v2v_seed_enable_extras': False,
'v2v_height': 512,
'v2v_width': 512,
'v2v_resize_mode': 1,
'v2v_inpaint_full_res': True,
'v2v_inpaint_full_res_padding': 0,
'v2v_inpainting_mask_invert': False,
# text to video params
't2v_mode': 4,
't2v_prompt': '',
't2v_n_prompt': '',
't2v_prompt_styles': [],
't2v_init_img': None,
't2v_mask_img': None,
't2v_steps': 15,
't2v_sampler_index': 0, # 'Euler a'
't2v_mask_blur': 0,
't2v_inpainting_fill': 1, # original
't2v_restore_faces': False,
't2v_tiling': False,
't2v_n_iter': 1,
't2v_batch_size': 1,
't2v_cfg_scale': 5.5,
't2v_image_cfg_scale': 1.5,
't2v_denoising_strength': 0.75,
't2v_processing_strength': 0.85,
't2v_fix_frame_strength': 0.15,
't2v_seed': -1,
't2v_subseed': -1,
't2v_subseed_strength': 0,
't2v_seed_resize_from_h': 512,
't2v_seed_resize_from_w': 512,
't2v_seed_enable_extras': False,
't2v_height': 512,
't2v_width': 512,
't2v_resize_mode': 1,
't2v_inpaint_full_res': True,
't2v_inpaint_full_res_padding': 0,
't2v_inpainting_mask_invert': False,
't2v_override_settings': [],
#'t2v_script_inputs': [0],
't2v_fps': 12,
}
args = list(args)
for i in range(len(args_list)):
if (args[i] is None) and (args_list[i] in args_dict):
#args[i] = args_dict[args_list[i]]
pass
else:
args_dict[args_list[i]] = args[i]
args_dict['v2v_script_inputs'] = args[len(args_list):len(args_list)+shared.v2v_custom_inputs_size]
#print('v2v_script_inputs', args_dict['v2v_script_inputs'])
args_dict['t2v_script_inputs'] = args[len(args_list)+shared.v2v_custom_inputs_size:]
#print('t2v_script_inputs', args_dict['t2v_script_inputs'])
return args_dict
def get_mode_args(mode, args_dict):
mode_args_dict = {}
for key, value in args_dict.items():
if key[:3] in [mode, 'glo'] :
mode_args_dict[key[4:]] = value
return mode_args_dict
def set_CNs_input_image(args_dict, image, set_references = False):
for script_input in args_dict['script_inputs']:
if type(script_input).__name__ == 'UiControlNetUnit':
if script_input.module not in ["reference_only", "reference_adain", "reference_adain+attn"] or set_references:
script_input.image = np.array(image)
script_input.batch_images = [np.array(image)]
import time
import datetime
def get_time_left(ind, length, processing_start_time):
s_passed = int(time.time() - processing_start_time)
time_passed = datetime.timedelta(seconds=s_passed)
s_left = int(s_passed / ind * (length - ind))
time_left = datetime.timedelta(seconds=s_left)
return f"Time elapsed: {time_passed}; Time left: {time_left};"
import numpy as np
from PIL import Image, ImageOps, ImageFilter, ImageEnhance, ImageChops
from types import SimpleNamespace
from modules.generation_parameters_copypaste import create_override_settings_dict
from modules.processing import Processed, StableDiffusionProcessingImg2Img, StableDiffusionProcessingTxt2Img, process_images
import modules.processing as processing
from modules.ui import plaintext_to_html
import modules.images as images
import modules.scripts
from modules.shared import opts, devices, state
from modules import devices, sd_samplers, img2img
from modules import shared, sd_hijack, lowvram
# TODO: Refactor all the code below
def process_img(p, input_img, output_dir, inpaint_mask_dir, args):
processing.fix_seed(p)
#images = shared.listfiles(input_dir)
images = [input_img]
is_inpaint_batch = False
#if inpaint_mask_dir:
# inpaint_masks = shared.listfiles(inpaint_mask_dir)
# is_inpaint_batch = len(inpaint_masks) > 0
#if is_inpaint_batch:
# print(f"\nInpaint batch is enabled. {len(inpaint_masks)} masks found.")
#print(f"Will process {len(images)} images, creating {p.n_iter * p.batch_size} new images for each.")
save_normally = output_dir == ''
p.do_not_save_grid = True
p.do_not_save_samples = not save_normally
state.job_count = len(images) * p.n_iter
generated_images = []
for i, image in enumerate(images):
state.job = f"{i+1} out of {len(images)}"
if state.skipped:
state.skipped = False
if state.interrupted:
break
img = image #Image.open(image)
# Use the EXIF orientation of photos taken by smartphones.
img = ImageOps.exif_transpose(img)
p.init_images = [img] * p.batch_size
#if is_inpaint_batch:
# # try to find corresponding mask for an image using simple filename matching
# mask_image_path = os.path.join(inpaint_mask_dir, os.path.basename(image))
# # if not found use first one ("same mask for all images" use-case)
# if not mask_image_path in inpaint_masks:
# mask_image_path = inpaint_masks[0]
# mask_image = Image.open(mask_image_path)
# p.image_mask = mask_image
proc = modules.scripts.scripts_img2img.run(p, *args)
if proc is None:
proc = process_images(p)
generated_images.append(proc.images[0])
#for n, processed_image in enumerate(proc.images):
# filename = os.path.basename(image)
# if n > 0:
# left, right = os.path.splitext(filename)
# filename = f"{left}-{n}{right}"
# if not save_normally:
# os.makedirs(output_dir, exist_ok=True)
# if processed_image.mode == 'RGBA':
# processed_image = processed_image.convert("RGB")
# processed_image.save(os.path.join(output_dir, filename))
return generated_images
def img2img(args_dict):
args = SimpleNamespace(**args_dict)
override_settings = create_override_settings_dict(args.override_settings)
is_batch = args.mode == 5
if args.mode == 0: # img2img
image = args.init_img.convert("RGB")
mask = None
elif args.mode == 1: # img2img sketch
image = args.sketch.convert("RGB")
mask = None
elif args.mode == 2: # inpaint
image, mask = args.init_img_with_mask["image"], args.init_img_with_mask["mask"]
alpha_mask = ImageOps.invert(image.split()[-1]).convert('L').point(lambda x: 255 if x > 0 else 0, mode='1')
mask = ImageChops.lighter(alpha_mask, mask.convert('L')).convert('L')
image = image.convert("RGB")
elif args.mode == 3: # inpaint sketch
image = args.inpaint_color_sketch
orig = args.inpaint_color_sketch_orig or args.inpaint_color_sketch
pred = np.any(np.array(image) != np.array(orig), axis=-1)
mask = Image.fromarray(pred.astype(np.uint8) * 255, "L")
mask = ImageEnhance.Brightness(mask).enhance(1 - args.mask_alpha / 100)
blur = ImageFilter.GaussianBlur(args.mask_blur)
image = Image.composite(image.filter(blur), orig, mask.filter(blur))
image = image.convert("RGB")
elif args.mode == 4: # inpaint upload mask
#image = args.init_img_inpaint
#mask = args.init_mask_inpaint
image = args.init_img.convert("RGB")
mask = args.mask_img.convert("L")
else:
image = None
mask = None
# Use the EXIF orientation of photos taken by smartphones.
if image is not None:
image = ImageOps.exif_transpose(image)
assert 0. <= args.denoising_strength <= 1., 'can only work with strength in [0.0, 1.0]'
p = StableDiffusionProcessingImg2Img(
sd_model=shared.sd_model,
outpath_samples=opts.outdir_samples or opts.outdir_img2img_samples,
outpath_grids=opts.outdir_grids or opts.outdir_img2img_grids,
prompt=args.prompt,
negative_prompt=args.n_prompt,
styles=args.prompt_styles,
seed=args.seed,
subseed=args.subseed,
subseed_strength=args.subseed_strength,
seed_resize_from_h=args.seed_resize_from_h,
seed_resize_from_w=args.seed_resize_from_w,
seed_enable_extras=args.seed_enable_extras,
sampler_name=sd_samplers.samplers_for_img2img[args.sampler_index].name,
batch_size=args.batch_size,
n_iter=args.n_iter,
steps=args.steps,
cfg_scale=args.cfg_scale,
width=args.width,
height=args.height,
restore_faces=args.restore_faces,
tiling=args.tiling,
init_images=[image],
mask=mask,
mask_blur=args.mask_blur,
inpainting_fill=args.inpainting_fill,
resize_mode=args.resize_mode,
denoising_strength=args.denoising_strength,
image_cfg_scale=args.image_cfg_scale,
inpaint_full_res=args.inpaint_full_res,
inpaint_full_res_padding=args.inpaint_full_res_padding,
inpainting_mask_invert=args.inpainting_mask_invert,
override_settings=override_settings,
)
p.scripts = modules.scripts.scripts_img2img
p.script_args = args.script_inputs
#if shared.cmd_opts.enable_console_prompts:
# print(f"\nimg2img: {args.prompt}", file=shared.progress_print_out)
if mask:
p.extra_generation_params["Mask blur"] = args.mask_blur
'''
if is_batch:
...
# assert not shared.cmd_opts.hide_ui_dir_config, "Launched with --hide-ui-dir-config, batch img2img disabled"
# process_batch(p, img2img_batch_input_dir, img2img_batch_output_dir, img2img_batch_inpaint_mask_dir, args.script_inputs)
# processed = Processed(p, [], p.seed, "")
else:
processed = modules.scripts.scripts_img2img.run(p, *args.script_inputs)
if processed is None:
processed = process_images(p)
'''
generated_images = process_img(p, image, None, '', args.script_inputs)
processed = Processed(p, [], p.seed, "")
p.close()
shared.total_tqdm.clear()
generation_info_js = processed.js()
#if opts.samples_log_stdout:
# print(generation_info_js)
#if opts.do_not_show_images:
# processed.images = []
#print(generation_info_js, plaintext_to_html(processed.info), plaintext_to_html(processed.comments))
return generated_images, generation_info_js, plaintext_to_html(processed.info), plaintext_to_html(processed.comments)
def txt2img(args_dict):
args = SimpleNamespace(**args_dict)
override_settings = create_override_settings_dict(args.override_settings)
p = StableDiffusionProcessingTxt2Img(
sd_model=shared.sd_model,
outpath_samples=opts.outdir_samples or opts.outdir_txt2img_samples,
outpath_grids=opts.outdir_grids or opts.outdir_txt2img_grids,
prompt=args.prompt,
styles=args.prompt_styles,
negative_prompt=args.n_prompt,
seed=args.seed,
subseed=args.subseed,
subseed_strength=args.subseed_strength,
seed_resize_from_h=args.seed_resize_from_h,
seed_resize_from_w=args.seed_resize_from_w,
seed_enable_extras=args.seed_enable_extras,
sampler_name=sd_samplers.samplers[args.sampler_index].name,
batch_size=args.batch_size,
n_iter=args.n_iter,
steps=args.steps,
cfg_scale=args.cfg_scale,
width=args.width,
height=args.height,
restore_faces=args.restore_faces,
tiling=args.tiling,
#enable_hr=args.enable_hr,
#denoising_strength=args.denoising_strength if enable_hr else None,
#hr_scale=hr_scale,
#hr_upscaler=hr_upscaler,
#hr_second_pass_steps=hr_second_pass_steps,
#hr_resize_x=hr_resize_x,
#hr_resize_y=hr_resize_y,
override_settings=override_settings,
)
p.scripts = modules.scripts.scripts_txt2img
p.script_args = args.script_inputs
#if cmd_opts.enable_console_prompts:
# print(f"\ntxt2img: {prompt}", file=shared.progress_print_out)
processed = modules.scripts.scripts_txt2img.run(p, *args.script_inputs)
if processed is None:
processed = process_images(p)
p.close()
shared.total_tqdm.clear()
generation_info_js = processed.js()
#if opts.samples_log_stdout:
# print(generation_info_js)
#if opts.do_not_show_images:
# processed.images = []
return processed.images, generation_info_js, plaintext_to_html(processed.info), plaintext_to_html(processed.comments)
import json
def get_json(obj):
return json.loads(
json.dumps(obj, default=lambda o: getattr(o, '__dict__', str(o)))
)
def export_settings(*args):
args_dict = args_to_dict(*args)
if args[0] == 'vid2vid':
args_dict = get_mode_args('v2v', args_dict)
elif args[0] == 'txt2vid':
args_dict = get_mode_args('t2v', args_dict)
else:
msg = f"Unsupported processing mode: '{args[0]}'"
raise Exception(msg)
# convert CN params into a readable dict
cn_remove_list = ['low_vram', 'is_ui', 'input_mode', 'batch_images', 'output_dir', 'loopback', 'image']
args_dict['ControlNets'] = []
for script_input in args_dict['script_inputs']:
if type(script_input).__name__ == 'UiControlNetUnit':
cn_values_dict = get_json(script_input)
if cn_values_dict['enabled']:
for key in cn_remove_list:
if key in cn_values_dict: del cn_values_dict[key]
args_dict['ControlNets'].append(cn_values_dict)
# remove unimportant values
remove_list = ['save_frames_check', 'restore_faces', 'prompt_styles', 'mask_blur', 'inpainting_fill', 'tiling', 'n_iter', 'batch_size', 'subseed', 'subseed_strength', 'seed_resize_from_h', \
'seed_resize_from_w', 'seed_enable_extras', 'resize_mode', 'inpaint_full_res', 'inpaint_full_res_padding', 'inpainting_mask_invert', 'file', 'denoising_strength', \
'override_settings', 'script_inputs', 'init_img', 'mask_img', 'mode', 'init_video']
for key in remove_list:
if key in args_dict: del args_dict[key]
return json.dumps(args_dict, indent=2, default=lambda o: getattr(o, '__dict__', str(o))) |