File size: 10,085 Bytes
5bfcfd2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 |
import sys, os
import torch
import gc
import numpy as np
from PIL import Image
import modules.paths as ph
from modules.shared import devices
from scripts.core import utils, flow_utils
from FloweR.model import FloweR
import skimage
import datetime
import cv2
import gradio as gr
import time
FloweR_model = None
DEVICE = 'cpu'
def FloweR_clear_memory():
global FloweR_model
del FloweR_model
gc.collect()
torch.cuda.empty_cache()
FloweR_model = None
def FloweR_load_model(w, h):
global DEVICE, FloweR_model
DEVICE = devices.get_optimal_device()
model_path = ph.models_path + '/FloweR/FloweR_0.1.2.pth'
#remote_model_path = 'https://drive.google.com/uc?id=1K7gXUosgxU729_l-osl1HBU5xqyLsALv' #FloweR_0.1.1.pth
remote_model_path = 'https://drive.google.com/uc?id=1-UYsTXkdUkHLgtPK1Y5_7kKzCgzL_Z6o' #FloweR_0.1.2.pth
if not os.path.isfile(model_path):
from basicsr.utils.download_util import load_file_from_url
os.makedirs(os.path.dirname(model_path), exist_ok=True)
load_file_from_url(remote_model_path, file_name=model_path)
FloweR_model = FloweR(input_size = (h, w))
FloweR_model.load_state_dict(torch.load(model_path, map_location=DEVICE))
# Move the model to the device
FloweR_model = FloweR_model.to(DEVICE)
FloweR_model.eval()
def read_frame_from_video(input_video):
if input_video is None: return None
# Reading video file
if input_video.isOpened():
ret, cur_frame = input_video.read()
if cur_frame is not None:
cur_frame = cv2.cvtColor(cur_frame, cv2.COLOR_BGR2RGB)
else:
cur_frame = None
input_video.release()
input_video = None
return cur_frame
def start_process(*args):
processing_start_time = time.time()
args_dict = utils.args_to_dict(*args)
args_dict = utils.get_mode_args('t2v', args_dict)
# Open the input video file
input_video = None
if args_dict['file'] is not None:
input_video = cv2.VideoCapture(args_dict['file'].name)
# Create an output video file with the same fps, width, and height as the input video
output_video_name = f'outputs/sd-cn-animation/txt2vid/{datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S")}.mp4'
output_video_folder = os.path.splitext(output_video_name)[0]
os.makedirs(os.path.dirname(output_video_name), exist_ok=True)
#if args_dict['save_frames_check']:
os.makedirs(output_video_folder, exist_ok=True)
# Writing to current params to params.json
setts_json = utils.export_settings(*args)
with open(os.path.join(output_video_folder, "params.json"), "w") as outfile:
outfile.write(setts_json)
curr_frame = None
prev_frame = None
def save_result_to_image(image, ind):
if args_dict['save_frames_check']:
cv2.imwrite(os.path.join(output_video_folder, f'{ind:05d}.png'), cv2.cvtColor(image, cv2.COLOR_RGB2BGR))
def set_cn_frame_input():
if args_dict['cn_frame_send'] == 0: # Current generated frame"
pass
elif args_dict['cn_frame_send'] == 1: # Current generated frame"
if curr_frame is not None:
utils.set_CNs_input_image(args_dict, Image.fromarray(curr_frame), set_references=True)
elif args_dict['cn_frame_send'] == 2: # Previous generated frame
if prev_frame is not None:
utils.set_CNs_input_image(args_dict, Image.fromarray(prev_frame), set_references=True)
elif args_dict['cn_frame_send'] == 3: # Current reference video frame
if input_video is not None:
curr_video_frame = read_frame_from_video(input_video)
curr_video_frame = cv2.resize(curr_video_frame, (args_dict['width'], args_dict['height']))
utils.set_CNs_input_image(args_dict, Image.fromarray(curr_video_frame), set_references=True)
else:
raise Exception('There is no input video! Set it up first.')
else:
raise Exception('Incorrect cn_frame_send mode!')
set_cn_frame_input()
if args_dict['init_image'] is not None:
#resize array to args_dict['width'], args_dict['height']
image_array=args_dict['init_image']#this is a numpy array
init_frame = np.array(Image.fromarray(image_array).resize((args_dict['width'], args_dict['height'])).convert('RGB'))
processed_frame = init_frame.copy()
else:
processed_frames, _, _, _ = utils.txt2img(args_dict)
processed_frame = np.array(processed_frames[0])[...,:3]
#if input_video is not None:
# processed_frame = skimage.exposure.match_histograms(processed_frame, curr_video_frame, channel_axis=-1)
processed_frame = np.clip(processed_frame, 0, 255).astype(np.uint8)
init_frame = processed_frame.copy()
output_video = cv2.VideoWriter(output_video_name, cv2.VideoWriter_fourcc(*'mp4v'), args_dict['fps'], (args_dict['width'], args_dict['height']))
output_video.write(cv2.cvtColor(processed_frame, cv2.COLOR_RGB2BGR))
stat = f"Frame: 1 / {args_dict['length']}; " + utils.get_time_left(1, args_dict['length'], processing_start_time)
utils.shared.is_interrupted = False
save_result_to_image(processed_frame, 1)
yield stat, init_frame, None, None, processed_frame, None, gr.Button.update(interactive=False), gr.Button.update(interactive=True)
org_size = args_dict['width'], args_dict['height']
size = args_dict['width'] // 128 * 128, args_dict['height'] // 128 * 128
FloweR_load_model(size[0], size[1])
clip_frames = np.zeros((4, size[1], size[0], 3), dtype=np.uint8)
prev_frame = init_frame
for ind in range(args_dict['length'] - 1):
if utils.shared.is_interrupted: break
args_dict = utils.args_to_dict(*args)
args_dict = utils.get_mode_args('t2v', args_dict)
clip_frames = np.roll(clip_frames, -1, axis=0)
clip_frames[-1] = cv2.resize(prev_frame[...,:3], size)
clip_frames_torch = flow_utils.frames_norm(torch.from_numpy(clip_frames).to(DEVICE, dtype=torch.float32))
with torch.no_grad():
pred_data = FloweR_model(clip_frames_torch.unsqueeze(0))[0]
pred_flow = flow_utils.flow_renorm(pred_data[...,:2]).cpu().numpy()
pred_occl = flow_utils.occl_renorm(pred_data[...,2:3]).cpu().numpy().repeat(3, axis = -1)
pred_next = flow_utils.frames_renorm(pred_data[...,3:6]).cpu().numpy()
pred_occl = np.clip(pred_occl * 10, 0, 255).astype(np.uint8)
pred_next = np.clip(pred_next, 0, 255).astype(np.uint8)
pred_flow = cv2.resize(pred_flow, org_size)
pred_occl = cv2.resize(pred_occl, org_size)
pred_next = cv2.resize(pred_next, org_size)
curr_frame = pred_next.copy()
'''
pred_flow = pred_flow / (1 + np.linalg.norm(pred_flow, axis=-1, keepdims=True) * 0.05)
pred_flow = cv2.GaussianBlur(pred_flow, (31,31), 1, cv2.BORDER_REFLECT_101)
pred_occl = cv2.GaussianBlur(pred_occl, (21,21), 2, cv2.BORDER_REFLECT_101)
pred_occl = (np.abs(pred_occl / 255) ** 1.5) * 255
pred_occl = np.clip(pred_occl * 25, 0, 255).astype(np.uint8)
flow_map = pred_flow.copy()
flow_map[:,:,0] += np.arange(args_dict['width'])
flow_map[:,:,1] += np.arange(args_dict['height'])[:,np.newaxis]
warped_frame = cv2.remap(prev_frame, flow_map, None, cv2.INTER_NEAREST, borderMode = cv2.BORDER_REFLECT_101)
alpha_mask = pred_occl / 255.
#alpha_mask = np.clip(alpha_mask + np.random.normal(0, 0.4, size = alpha_mask.shape), 0, 1)
curr_frame = pred_next.astype(float) * alpha_mask + warped_frame.astype(float) * (1 - alpha_mask)
curr_frame = np.clip(curr_frame, 0, 255).astype(np.uint8)
#curr_frame = warped_frame.copy()
'''
set_cn_frame_input()
args_dict['mode'] = 4
args_dict['init_img'] = Image.fromarray(pred_next)
args_dict['mask_img'] = Image.fromarray(pred_occl)
args_dict['seed'] = -1
args_dict['denoising_strength'] = args_dict['processing_strength']
processed_frames, _, _, _ = utils.img2img(args_dict)
processed_frame = np.array(processed_frames[0])[...,:3]
#if input_video is not None:
# processed_frame = skimage.exposure.match_histograms(processed_frame, curr_video_frame, channel_axis=-1)
#else:
processed_frame = skimage.exposure.match_histograms(processed_frame, init_frame, channel_axis=-1)
processed_frame = np.clip(processed_frame, 0, 255).astype(np.uint8)
args_dict['mode'] = 0
args_dict['init_img'] = Image.fromarray(processed_frame)
args_dict['mask_img'] = None
args_dict['seed'] = -1
args_dict['denoising_strength'] = args_dict['fix_frame_strength']
#utils.set_CNs_input_image(args_dict, Image.fromarray(curr_frame))
processed_frames, _, _, _ = utils.img2img(args_dict)
processed_frame = np.array(processed_frames[0])[...,:3]
#if input_video is not None:
# processed_frame = skimage.exposure.match_histograms(processed_frame, curr_video_frame, channel_axis=-1)
#else:
processed_frame = skimage.exposure.match_histograms(processed_frame, init_frame, channel_axis=-1)
processed_frame = np.clip(processed_frame, 0, 255).astype(np.uint8)
output_video.write(cv2.cvtColor(processed_frame, cv2.COLOR_RGB2BGR))
prev_frame = processed_frame.copy()
save_result_to_image(processed_frame, ind + 2)
stat = f"Frame: {ind + 2} / {args_dict['length']}; " + utils.get_time_left(ind+2, args_dict['length'], processing_start_time)
yield stat, curr_frame, pred_occl, pred_next, processed_frame, None, gr.Button.update(interactive=False), gr.Button.update(interactive=True)
if input_video is not None: input_video.release()
output_video.release()
FloweR_clear_memory()
curr_frame = gr.Image.update()
occlusion_mask = gr.Image.update()
warped_styled_frame_ = gr.Image.update()
processed_frame = gr.Image.update()
# print('TOTAL TIME:', int(time.time() - processing_start_time))
yield 'done', curr_frame, occlusion_mask, warped_styled_frame_, processed_frame, output_video_name, gr.Button.update(interactive=True), gr.Button.update(interactive=False) |