File size: 11,369 Bytes
34097e9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 |
import os
import os.path
import re
import shutil
import json
import stat
import tqdm
from collections import OrderedDict
from multiprocessing.pool import ThreadPool as Pool
from modules import shared, sd_models, hashes
from scripts import safetensors_hack, model_util, util
import modules.scripts as scripts
# MAX_MODEL_COUNT = shared.cmd_opts.addnet_max_model_count or 5
MAX_MODEL_COUNT = shared.cmd_opts.addnet_max_model_count if hasattr(shared.cmd_opts, "addnet_max_model_count") else 5
LORA_MODEL_EXTS = [".pt", ".ckpt", ".safetensors"]
re_legacy_hash = re.compile("\(([0-9a-f]{8})\)$") # matches 8-character hashes, new hash has 12 characters
lora_models = {} # "My_Lora(abcdef123456)" -> "C:/path/to/model.safetensors"
lora_model_names = {} # "my_lora" -> "My_Lora(My_Lora(abcdef123456)"
legacy_model_names = {}
lora_models_dir = os.path.join(scripts.basedir(), "models/lora")
os.makedirs(lora_models_dir, exist_ok=True)
def is_safetensors(filename):
return os.path.splitext(filename)[1] == ".safetensors"
def read_model_metadata(model_path, module):
if model_path.startswith('"') and model_path.endswith('"'): # trim '"' at start/end
model_path = model_path[1:-1]
if not os.path.exists(model_path):
return None
metadata = None
if module == "LoRA":
if os.path.splitext(model_path)[1] == ".safetensors":
metadata = safetensors_hack.read_metadata(model_path)
return metadata
def write_model_metadata(model_path, module, updates):
if model_path.startswith('"') and model_path.endswith('"'): # trim '"' at start/end
model_path = model_path[1:-1]
if not os.path.exists(model_path):
return None
from safetensors.torch import save_file
back_up = shared.opts.data.get("additional_networks_back_up_model_when_saving", True)
if back_up:
backup_path = model_path + ".backup"
if not os.path.exists(backup_path):
print(f"[MetadataEditor] Backing up current model to {backup_path}")
shutil.copyfile(model_path, backup_path)
metadata = None
tensors = {}
if module == "LoRA":
if os.path.splitext(model_path)[1] == ".safetensors":
tensors, metadata = safetensors_hack.load_file(model_path, "cpu")
for k, v in updates.items():
metadata[k] = str(v)
save_file(tensors, model_path, metadata)
print(f"[MetadataEditor] Model saved: {model_path}")
def get_model_list(module, model, model_dir, sort_by):
if model_dir == "":
# Get list of models with same folder as this one
model_path = lora_models.get(model, None)
if model_path is None:
return []
model_dir = os.path.dirname(model_path)
if not os.path.isdir(model_dir):
return []
found, _ = get_all_models([model_dir], sort_by, "")
return list(found.keys()) # convert dict_keys to list
def traverse_all_files(curr_path, model_list):
f_list = [(os.path.join(curr_path, entry.name), entry.stat()) for entry in os.scandir(curr_path)]
for f_info in f_list:
fname, fstat = f_info
if os.path.splitext(fname)[1] in LORA_MODEL_EXTS:
model_list.append(f_info)
elif stat.S_ISDIR(fstat.st_mode):
model_list = traverse_all_files(fname, model_list)
return model_list
def get_model_hash(metadata, filename):
if metadata is None:
return hashes.calculate_sha256(filename)
if "sshs_model_hash" in metadata:
return metadata["sshs_model_hash"]
return safetensors_hack.hash_file(filename)
def get_legacy_hash(metadata, filename):
if metadata is None:
return sd_models.model_hash(filename)
if "sshs_legacy_hash" in metadata:
return metadata["sshs_legacy_hash"]
return safetensors_hack.legacy_hash_file(filename)
import filelock
cache_filename = os.path.join(scripts.basedir(), "hashes.json")
cache_data = None
def cache(subsection):
global cache_data
if cache_data is None:
with filelock.FileLock(cache_filename + ".lock"):
if not os.path.isfile(cache_filename):
cache_data = {}
else:
with open(cache_filename, "r", encoding="utf8") as file:
cache_data = json.load(file)
s = cache_data.get(subsection, {})
cache_data[subsection] = s
return s
def dump_cache():
with filelock.FileLock(cache_filename + ".lock"):
with open(cache_filename, "w", encoding="utf8") as file:
json.dump(cache_data, file, indent=4)
def get_model_rating(filename):
if not model_util.is_safetensors(filename):
return 0
metadata = safetensors_hack.read_metadata(filename)
return int(metadata.get("ssmd_rating", "0"))
def has_user_metadata(filename):
if not model_util.is_safetensors(filename):
return False
metadata = safetensors_hack.read_metadata(filename)
return any(k.startswith("ssmd_") for k in metadata.keys())
def hash_model_file(finfo):
filename = finfo[0]
stat = finfo[1]
name = os.path.splitext(os.path.basename(filename))[0]
# Prevent a hypothetical "None.pt" from being listed.
if name != "None":
metadata = None
cached = cache("hashes").get(filename, None)
if cached is None or stat.st_mtime != cached["mtime"]:
if metadata is None and model_util.is_safetensors(filename):
try:
metadata = safetensors_hack.read_metadata(filename)
except Exception as ex:
return {"error": ex, "filename": filename}
model_hash = get_model_hash(metadata, filename)
legacy_hash = get_legacy_hash(metadata, filename)
else:
model_hash = cached["model"]
legacy_hash = cached["legacy"]
return {"model": model_hash, "legacy": legacy_hash, "fileinfo": finfo}
def get_all_models(paths, sort_by, filter_by):
fileinfos = []
for path in paths:
if os.path.isdir(path):
fileinfos += traverse_all_files(path, [])
show_only_safetensors = shared.opts.data.get("additional_networks_show_only_safetensors", False)
show_only_missing_meta = shared.opts.data.get("additional_networks_show_only_models_with_metadata", "disabled")
if show_only_safetensors:
fileinfos = [x for x in fileinfos if is_safetensors(x[0])]
if show_only_missing_meta == "has metadata":
fileinfos = [x for x in fileinfos if has_user_metadata(x[0])]
elif show_only_missing_meta == "missing metadata":
fileinfos = [x for x in fileinfos if not has_user_metadata(x[0])]
print("[AddNet] Updating model hashes...")
data = []
thread_count = max(1, int(shared.opts.data.get("additional_networks_hash_thread_count", 1)))
p = Pool(processes=thread_count)
with tqdm.tqdm(total=len(fileinfos)) as pbar:
for res in p.imap_unordered(hash_model_file, fileinfos):
pbar.update()
if "error" in res:
print(f"Failed to read model file {res['filename']}: {res['error']}")
else:
data.append(res)
p.close()
cache_hashes = cache("hashes")
res = OrderedDict()
res_legacy = OrderedDict()
filter_by = filter_by.strip(" ")
if len(filter_by) != 0:
data = [x for x in data if filter_by.lower() in os.path.basename(x["fileinfo"][0]).lower()]
if sort_by == "name":
data = sorted(data, key=lambda x: os.path.basename(x["fileinfo"][0]))
elif sort_by == "date":
data = sorted(data, key=lambda x: -x["fileinfo"][1].st_mtime)
elif sort_by == "path name":
data = sorted(data, key=lambda x: x["fileinfo"][0])
elif sort_by == "rating":
data = sorted(data, key=lambda x: get_model_rating(x["fileinfo"][0]), reverse=True)
elif sort_by == "has user metadata":
data = sorted(
data, key=lambda x: os.path.basename(x["fileinfo"][0]) if has_user_metadata(x["fileinfo"][0]) else "", reverse=True
)
reverse = shared.opts.data.get("additional_networks_reverse_sort_order", False)
if reverse:
data = reversed(data)
for result in data:
finfo = result["fileinfo"]
filename = finfo[0]
stat = finfo[1]
model_hash = result["model"]
legacy_hash = result["legacy"]
name = os.path.splitext(os.path.basename(filename))[0]
# Commas in the model name will mess up infotext restoration since the
# infotext is delimited by commas
name = name.replace(",", "_")
# Prevent a hypothetical "None.pt" from being listed.
if name != "None":
full_name = name + f"({model_hash[0:12]})"
res[full_name] = filename
res_legacy[legacy_hash] = full_name
cache_hashes[filename] = {"model": model_hash, "legacy": legacy_hash, "mtime": stat.st_mtime}
return res, res_legacy
def find_closest_lora_model_name(search: str):
if not search or search == "None":
return None
# Match name and hash, case-sensitive
# "MyModel-epoch00002(abcdef123456)"
if search in lora_models:
return search
# Match model path, case-sensitive (from metadata editor)
# "C:/path/to/mymodel-epoch00002.safetensors"
if os.path.isfile(search):
import json
find = os.path.normpath(search)
value = next((k for k in lora_models.keys() if lora_models[k] == find), None)
if value:
return value
search = search.lower()
# Match full name, case-insensitive
# "mymodel-epoch00002"
if search in lora_model_names:
return lora_model_names.get(search)
# Match legacy hash (8 characters)
# "MyModel(abcd1234)"
result = re_legacy_hash.search(search)
if result is not None:
model_hash = result.group(1)
if model_hash in legacy_model_names:
new_model_name = legacy_model_names[model_hash]
return new_model_name
# Use any model with the search term as the prefix, case-insensitive, sorted
# by name length
# "mymodel"
applicable = [name for name in lora_model_names.keys() if search in name.lower()]
if not applicable:
return None
applicable = sorted(applicable, key=lambda name: len(name))
return lora_model_names[applicable[0]]
def update_models():
global lora_models, lora_model_names, legacy_model_names
paths = [lora_models_dir]
extra_lora_paths = util.split_path_list(shared.opts.data.get("additional_networks_extra_lora_path", ""))
for path in extra_lora_paths:
path = path.lstrip()
if os.path.isdir(path):
paths.append(path)
sort_by = shared.opts.data.get("additional_networks_sort_models_by", "name")
filter_by = shared.opts.data.get("additional_networks_model_name_filter", "")
res, res_legacy = get_all_models(paths, sort_by, filter_by)
lora_models.clear()
lora_models["None"] = None
lora_models.update(res)
for name_and_hash, filename in lora_models.items():
if filename == None:
continue
name = os.path.splitext(os.path.basename(filename))[0].lower()
lora_model_names[name] = name_and_hash
legacy_model_names = res_legacy
dump_cache()
update_models()
|