File size: 20,217 Bytes
34097e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
import random
import cv2
import numpy as np
import os
import copy
import csv
from PIL import Image
from modules import images
from modules.shared import opts
from scripts.mergers.mergers import TYPES,smerge,simggen,filenamecutter,draw_origin,wpreseter
from scripts.mergers.model_util import usemodelgen

hear = True
hearm = False

state_mergen = False

numadepth = []

def freezetime():
    global state_mergen
    state_mergen = True

def numanager(normalstart,xtype,xmen,ytype,ymen,esettings,
                    weights_a,weights_b,model_a,model_b,model_c,alpha,beta,mode,calcmode,useblocks,custom_name,save_sets,id_sets,wpresets,deep,tensor,
                    prompt,nprompt,steps,sampler,cfg,seed,w,h,
                    hireson,hrupscaler,hr2ndsteps,denoise_str,hr_scale,batch_size):
    global numadepth
    grids = []
    sep = "|"

    if sep  in xmen:
        xmens = xmen.split(sep)
        xmen = xmens[0]
        if seed =="-1": seed = str(random.randrange(4294967294))
        for men in xmens[1:]:
            numaker(xtype,men,ytype,ymen,esettings,
                        weights_a,weights_b,model_a,model_b,model_c,alpha,beta,mode,calcmode,useblocks,custom_name,save_sets,id_sets,wpresets,deep,tensor,
                        prompt,nprompt,steps,sampler,cfg,seed,w,h,
                        hireson,hrupscaler,hr2ndsteps,denoise_str,hr_scale,batch_size)
    elif sep  in ymen:
        ymens = ymen.split(sep)
        ymen = ymens[0]
        if seed =="-1": seed = str(random.randrange(4294967294))
        for men in ymens[1:]:
            numaker(xtype,xmen,ytype,men,esettings,
                        weights_a,weights_b,model_a,model_b,model_c,alpha,beta,mode,calcmode,useblocks,custom_name,save_sets,id_sets,wpresets,deep,tensor,
                        prompt,nprompt,steps,sampler,cfg,seed,w,h,
                        hireson,hrupscaler,hr2ndsteps,denoise_str,hr_scale,batch_size)

    if normalstart:
        result,currentmodel,xyimage,a,b,c= sgenxyplot(xtype,xmen,ytype,ymen,esettings,
                                                                             weights_a,weights_b,model_a,model_b,model_c,alpha,beta,mode,calcmode,
                                                                             useblocks,custom_name,save_sets,id_sets,wpresets,deep,tensor,
                                                                             prompt,nprompt,steps,sampler,cfg,seed,w,h,
                                                                             hireson,hrupscaler,hr2ndsteps,denoise_str,hr_scale,batch_size)
        if xyimage is not None:grids =[xyimage[0]]
        else:print(result)
    else:
        if numadepth ==[]:
            return "no reservation",*[None]*5
        result=currentmodel=xyimage=a=b=c = None

    while True:
        for i,row in enumerate(numadepth):
            if row[1] =="waiting":  
                numadepth[i][1] = "Operating"
                try:
                    result,currentmodel,xyimage,a,b,c = sgenxyplot(*row[2:])
                except Exception as e:
                    print(e)
                    numadepth[i][1] = "Error"
                else:
                    if xyimage is not None:
                        grids.append(xyimage[0])
                        numadepth[i][1] = "Finished"
                    else:
                        print(result)
                        numadepth[i][1] = "Error"
        wcounter = 0
        for row in numadepth:
            if row[1] != "waiting":
                wcounter += 1
        if wcounter == len(numadepth):
            break

    return result,currentmodel,grids,a,b,c

def numaker(xtype,xmen,ytype,ymen,esettings,
#msettings=[weights_a,weights_b,model_a,model_b,model_c,alpha,beta,mode,calcmode,useblocks,custom_name,save_sets,id_sets,wpresets]       
                    weights_a,weights_b,model_a,model_b,model_c,alpha,beta,mode,calcmode,
                    useblocks,custom_name,save_sets,id_sets,wpresets,deep,tensor,
                    prompt,nprompt,steps,sampler,cfg,seed,w,h,
                    hireson,hrupscaler,hr2ndsteps,denoise_str,hr_scale,batch_size):
    global numadepth
    numadepth.append([len(numadepth)+1,"waiting",xtype,xmen,ytype,ymen,esettings,
                    weights_a,weights_b,model_a,model_b,model_c,alpha,beta,mode,calcmode,
                    useblocks,custom_name,save_sets,id_sets,wpresets,deep,tensor,
                    prompt,nprompt,steps,sampler,cfg,seed,w,h,
                    hireson,hrupscaler,hr2ndsteps,denoise_str,hr_scale,batch_size])
    return numalistmaker(copy.deepcopy(numadepth))

def nulister(redel):
    global numadepth
    if redel == False:
        return numalistmaker(copy.deepcopy(numadepth))
    if redel ==-1:
        numadepth = []
    else:
        try:del numadepth[int(redel-1)]
        except Exception as e:print(e)
    return numalistmaker(copy.deepcopy(numadepth))

def numalistmaker(numa):
    if numa ==[]: return [["no data","",""],]
    for i,r in enumerate(numa):
        r[2] =  TYPES[int(r[2])]
        r[4] =  TYPES[int(r[4])]
        numa[i] = r[0:6]+r[8:11]+r[12:16]+r[6:8]
    return numa

def caster(news,hear):
    if hear: print(news)

def sgenxyplot(xtype,xmen,ytype,ymen,esettings,
                    weights_a,weights_b,model_a,model_b,model_c,alpha,beta,mode,calcmode,
                    useblocks,custom_name,save_sets,id_sets,wpresets,deep,tensor,
                    prompt,nprompt,steps,sampler,cfg,seed,w,h,
                    hireson,hrupscaler,hr2ndsteps,denoise_str,hr_scale,batch_size):
    global hear
    esettings = " ".join(esettings)
    #type[0:none,1:aplha,2:beta,3:seed,4:mbw,5:model_A,6:model_B,7:model_C,8:pinpoint 9:deep]
    xtype = TYPES[xtype]
    ytype = TYPES[ytype]
    if ytype == "none": ymen = ""

    modes=["Weight" ,"Add" ,"Triple","Twice"]
    xs=ys=0
    weights_a_in=weights_b_in="0"

    deepprint  = True if "print change" in esettings else False

    def castall(hear):
        if hear :print(f"xmen:{xmen}, ymen:{ymen}, xtype:{xtype}, ytype:{ytype}, weights_a:{weights_a_in}, weights_b:{weights_b_in}, model_A:{model_a},model_B :{model_b}, model_C:{model_c}, alpha:{alpha},\
        beta :{beta}, mode:{mode}, blocks:{useblocks}")

    pinpoint = "pinpoint blocks" in xtype or "pinpoint blocks" in ytype
    usebeta = modes[2] in mode or modes[3] in mode

    #check and adjust format
    print(f"XY plot start, mode:{mode}, X: {xtype}, Y: {ytype}, MBW: {useblocks}")
    castall(hear)
    None5 = [None,None,None,None,None]
    if xmen =="": return "ERROR: parameter X is empty",*None5
    if ymen =="" and not ytype=="none": return "ERROR: parameter Y is empty",*None5
    if model_a ==[] and not ("model_A" in xtype or "model_A" in ytype):return f"ERROR: model_A is not selected",*None5
    if model_b ==[] and not ("model_B" in xtype or "model_B" in ytype):return f"ERROR: model_B is not selected",*None5
    if model_c ==[] and usebeta and not ("model_C" in xtype or "model_C" in ytype):return "ERROR: model_C is not selected",*None5
    if xtype == ytype: return "ERROR: same type selected for X,Y",*None5

    if useblocks:
        weights_a_in=wpreseter(weights_a,wpresets)
        weights_b_in=wpreseter(weights_b,wpresets)

    #for X only plot, use same seed
    if seed == -1: seed = int(random.randrange(4294967294))

    #for XY plot, use same seed
    def dicedealer(zs):
        for i,z in enumerate(zs):
            if z =="-1": zs[i] = str(random.randrange(4294967294))
        print(f"the die was thrown : {zs}")

    #adjust parameters, alpha,beta,models,seed: list of single parameters, mbw(no beta):list of text,mbw(usebeta); list of pair text
    def adjuster(zmen,ztype,aztype):
        if "mbw" in ztype or "prompt" in ztype:#men separated by newline
            zs = zmen.splitlines()
            caster(zs,hear)
            if "mbw alpha and beta" in ztype:
                zs = [zs[i:i+2] for i in range(0,len(zs),2)]
                caster(zs,hear)
        elif "elemental" in ztype:
            zs = zmen.split("\n\n")
        else:
            if "pinpoint element" in ztype:
                zmen = zmen.replace("\n",",")
            if "effective" in ztype:
                zmen = ","+zmen
                zmen = zmen.replace("\n",",")
            zs = [z.strip() for z in zmen.split(',')]
            caster(zs,hear)
        if "alpha" in ztype and "effective" in aztype:
            zs = [zs[0]]
        if "seed" in ztype:dicedealer(zs)
        if "alpha" == ztype or "beta" == ztype:
            oz = []
            for z in zs:
                try:
                    float(z)
                    oz.append(z)
                except:
                    pass
            zs = oz
        return zs

    xs = adjuster(xmen,xtype,ytype)
    ys = adjuster(ymen,ytype,xtype)

    #in case beta selected but mode is Weight sum or Add or Diff
    if ("beta" in xtype or "beta" in ytype) and (not usebeta and "tensor" not in calcmode):
        mode = modes[3]
        print(f"{modes[3]} mode automatically selected)")

    #in case mbw or pinpoint selected but useblocks not chekced
    if ("mbw" in xtype or "pinpoint blocks" in xtype) and not useblocks:
        useblocks = True
        print(f"MBW mode enabled")

    if ("mbw" in ytype or "pinpoint blocks" in ytype) and not useblocks:
        useblocks = True
        print(f"MBW mode enabled")

    xyimage=[]
    xcount =ycount=0
    allcount = len(xs)*len(ys)

    #for STOP XY bottun
    flag = False
    global state_mergen
    state_mergen = False

    #type[0:none,1:aplha,2:beta,3:seed,4:mbw,5:model_A,6:model_B,7:model_C,8:pinpoint ]
    blockid=["BASE","IN00","IN01","IN02","IN03","IN04","IN05","IN06","IN07","IN08","IN09","IN10","IN11","M00","OUT00","OUT01","OUT02","OUT03","OUT04","OUT05","OUT06","OUT07","OUT08","OUT09","OUT10","OUT11"]
    #format ,IN00 IN03,IN04-IN09,OUT4,OUT05
    def weightsdealer(x,xtype,y,weights):
        caster(f"weights from : {weights}",hear)
        zz = x if "pinpoint blocks" in xtype else y
        za = y if "pinpoint blocks" in xtype else x
        zz = [z.strip() for z in zz.split(' ')]
        weights_t = [w.strip() for w in weights.split(',')]
        if zz[0]!="NOT":
            flagger=[False]*26
            changer = True
        else:
            flagger=[True]*26
            changer = False
        for z in zz:
            if z =="NOT":continue
            if "-" in z:
                zt = [zt.strip() for zt in z.split('-')]
                if  blockid.index(zt[1]) > blockid.index(zt[0]):
                    flagger[blockid.index(zt[0]):blockid.index(zt[1])+1] = [changer]*(blockid.index(zt[1])-blockid.index(zt[0])+1)
                else:
                    flagger[blockid.index(zt[1]):blockid.index(zt[0])+1] = [changer]*(blockid.index(zt[0])-blockid.index(zt[1])+1)
            else:
                flagger[blockid.index(z)] =changer    
        for i,f in enumerate(flagger):
            if f:weights_t[i]=za
        outext = ",".join(weights_t)
        caster(f"weights changed: {outext}",hear)
        return outext

    def abdealer(z):
        if " " in z:return z.split(" ")[0],z.split(" ")[1]
        return z,z

    def xydealer(z,zt,azt):
        nonlocal alpha,beta,seed,weights_a_in,weights_b_in,model_a,model_b,model_c,deep,calcmode,prompt
        if pinpoint or "pinpoint element" in zt or "effective" in zt:return
        if "mbw" in zt:
            def weightser(z):return z, z.split(',',1)[0]
            if "mbw alpha and beta" in zt:
                weights_a_in,alpha = weightser(wpreseter(z[0],wpresets))
                weights_b_in,beta = weightser(wpreseter(z[1],wpresets))
                return
            elif "alpha" in zt:
                weights_a_in,alpha = weightser(wpreseter(z,wpresets))
                return
            else:
                weights_b_in,beta = weightser(wpreseter(z,wpresets))
                return
        if "and" in zt:
            alpha,beta = abdealer(z)
            return
        if "alpha" in zt and not "pinpoint element" in azt:alpha = z
        if "beta" in zt: beta = z
        if "seed" in zt:seed = int(z)
        if "model_A" in zt:model_a = z
        if "model_B" in zt:model_b = z
        if "model_C" in zt:model_c = z
        if "elemental" in zt:deep = z
        if "calcmode" in zt:calcmode = z
        if "prompt" in zt:prompt = z
    
    # plot start
    for y in ys:
        xydealer(y,ytype,xtype)
        xcount = 0
        for x in xs:
            xydealer(x,xtype,ytype)
            if ("alpha" in xtype or "alpha" in ytype) and pinpoint:
                weights_a_in = weightsdealer(x,xtype,y,weights_a)
                weights_b_in = weights_b
            if ("beta" in xtype or "beta" in ytype) and pinpoint:
                weights_b_in = weightsdealer(x,xtype,y,weights_b)
                weights_a_in =weights_a
            if "pinpoint element" in xtype or "effective" in xtype:
                deep_in = deep +","+ str(x)+":"+ str(y) 
            elif "pinpoint element" in ytype or "effective" in ytype:
                deep_in = deep +","+ str(y)+":"+ str(x) 
            else:
                deep_in = deep

            print(f"XY plot: X: {xtype}, {str(x)}, Y: {ytype}, {str(y)} ({xcount+ycount*len(xs)+1}/{allcount})")
            if not (xtype=="seed" and xcount > 0):
               _ , currentmodel,modelid,theta_0,_=smerge(weights_a_in,weights_b_in, model_a,model_b,model_c, float(alpha),float(beta),mode,calcmode,
                                                                                useblocks,"","",id_sets,False,deep_in,tensor,deepprint = deepprint) 
               usemodelgen(theta_0,model_a,currentmodel)
                             # simggen(prompt, nprompt, steps, sampler, cfg, seed, w, h,mergeinfo="",id_sets=[],modelid = "no id"):
            image_temp = simggen(prompt, nprompt, steps, sampler, cfg, seed, w, h,hireson,hrupscaler,hr2ndsteps,denoise_str,hr_scale,batch_size,currentmodel,id_sets,modelid)
            xyimage.append(image_temp[0][0])
            xcount+=1
            if state_mergen:
                flag = True
                break
        ycount+=1
        if flag:break

    if flag and ycount ==1:
        xs = xs[:xcount]
        ys = [ys[0],]
        print(f"stopped at x={xcount},y={ycount}")
    elif flag:
        ys=ys[:ycount]
        print(f"stopped at x={xcount},y={ycount}")

    if "mbw alpha and beta" in xtype: xs = [f"alpha:({x[0]}),beta({x[1]})" for x in xs ]
    if "mbw alpha and beta" in ytype: ys = [f"alpha:({y[0]}),beta({y[1]})" for y in ys ]

    xs[0]=xtype+" = "+xs[0] #draw X label
    if ytype!=TYPES[0] or "model" in ytype:ys[0]=ytype+" = "+ys[0]  #draw Y label

    if ys==[""]:ys = [" "]

    if "effective" in xtype or "effective" in ytype:
        xyimage,xs,ys = effectivechecker(xyimage,xs,ys,model_a,model_b,esettings)

    if not "grid" in esettings:
        gridmodel= makegridmodelname(model_a, model_b,model_c, useblocks,mode,xtype,ytype,alpha,beta,weights_a,weights_b,usebeta)
        grid = smakegrid(xyimage,xs,ys,gridmodel,image_temp[4])
        xyimage.insert(0,grid)

    state_mergen = False
    return "Finished",currentmodel,xyimage,*image_temp[1:4]

def smakegrid(imgs,xs,ys,currentmodel,p):
    ver_texts = [[images.GridAnnotation(y)] for y in ys]
    hor_texts = [[images.GridAnnotation(x)] for x in xs]

    w, h = imgs[0].size
    grid = Image.new('RGB', size=(len(xs) * w, len(ys) * h), color='black')

    for i, img in enumerate(imgs):
        grid.paste(img, box=(i % len(xs) * w, i // len(xs) * h))

    grid = images.draw_grid_annotations(grid,w,h, hor_texts, ver_texts)
    grid = draw_origin(grid, currentmodel,w*len(xs),h*len(ys),w)
    if opts.grid_save:
        images.save_image(grid, opts.outdir_txt2img_grids, "xy_grid", extension=opts.grid_format, prompt=p.prompt, seed=p.seed, grid=True, p=p)

    return grid

def makegridmodelname(model_a, model_b,model_c, useblocks,mode,xtype,ytype,alpha,beta,wa,wb,usebeta):
    model_a=filenamecutter(model_a)
    model_b=filenamecutter(model_b)
    model_c=filenamecutter(model_c)

    if not usebeta:beta,wb = "not used","not used"
    vals = ""
    modes=["Weight" ,"Add" ,"Triple","Twice"]

    if "mbw" in xtype:
        if "alpha" in xtype:wa = "X"
        if usebeta or " beta" in xtype:wb = "X"

    if "mbw" in ytype:
        if "alpha" in ytype:wa = "Y"
        if usebeta or " beta" in ytype:wb = "Y"

    wa = "alpha = " + wa
    wb = "beta = " + wb

    x = 50
    while len(wa) > x:
        wa  = wa[:x] + '\n' + wa[x:]
        x = x + 50

    x = 50
    while len(wb) > x:
        wb  = wb[:x] + '\n' + wb[x:]
        x = x + 50

    if "model" in xtype:
        if "A" in xtype:model_a = "model A"
        elif "B" in xtype:model_b="model B"
        elif "C" in xtype:model_c="model C"

    if "model" in ytype:
        if "A" in ytype:model_a = "model A"
        elif "B" in ytype:model_b="model B"
        elif "C" in ytype:model_c="model C"

    if modes[1] in mode:
        currentmodel =f"{model_a} \n {model_b} - {model_c})\n x alpha"
    elif modes[2] in mode:
        currentmodel =f"{model_a} x \n(1-alpha-beta) {model_b} x alpha \n+ {model_c} x beta"
    elif modes[3] in mode:
        currentmodel =f"({model_a} x(1-alpha) \n + {model_b} x alpha)*(1-beta)\n+  {model_c} x beta"
    else:
        currentmodel =f"{model_a} x (1-alpha) \n {model_b} x alpha"

    if "alpha" in xtype:alpha = "X"
    if "beta" in xtype:beta = "X" 
    if "alpha" in ytype:alpha = "Y"
    if "beta" in ytype:beta = "Y"

    if "mbw" in xtype:
        if "alpha" in xtype: alpha = "X"
        if "beta" in xtype or usebeta: beta = "X"

    if "mbw" in ytype:
        if "alpha" in ytype: alpha = "Y"
        if "beta" in ytype or usebeta: beta = "Y"

    vals = f"\nalpha = {alpha},beta = {beta}" if not useblocks else f"\n{wa}\n{wb}"

    currentmodel = currentmodel+vals
    return currentmodel

def effectivechecker(imgs,xs,ys,model_a,model_b,esettings):
    diffs = []
    outnum =[]
    im1 = np.array(imgs[0])
    
    model_a = filenamecutter(model_a)
    model_b = filenamecutter(model_b)
    dir = os.path.join(opts.outdir_txt2img_samples,f"{model_a+model_b}","difgif")

    if "gif" in esettings:
        try:
            os.makedirs(dir)
        except FileExistsError:
            pass

    ls,ss = (xs.copy(),ys.copy()) if len(xs) > len(ys) else (ys.copy(),xs.copy())

    for i in range(len(imgs)-1):
        im2 = np.array(imgs[i+1])

        abs_diff = cv2.absdiff(im2 ,  im1)

        abs_diff_t = cv2.threshold(abs_diff, 5, 255, cv2.THRESH_BINARY)[1]        
        res = abs_diff_t.astype(np.uint8)
        percentage = (np.count_nonzero(res) * 100)/ res.size
        abs_diff = cv2.bitwise_not(abs_diff)
        outnum.append(percentage)

        abs_diff = Image.fromarray(abs_diff)     

        diffs.append(abs_diff)

        if "gif" in esettings:
            gifpath = gifpath_t = os.path.join(dir,ls[i+1].replace(":","_")+".gif")
            
            is_file = os.path.isfile(gifpath)
            j = 0
            while is_file:
                gifpath = gifpath_t.replace(".gif",f"_{j}.gif")
                print(gifpath)
                is_file = os.path.isfile(gifpath)
                j = j + 1

            imgs[0].save(gifpath, save_all=True, append_images=[imgs[i+1]], optimize=False, duration=1000, loop=0)

    nums = []
    outs = []

    ls = ls[1:]
    for i in range(len(ls)):
        nums.append([ls[i],outnum[i]])
        ls[i] = ls[i] + "\n Diff : " + str(round(outnum[i],3)) + "%"    

    if "csv" in esettings:
        try:
            os.makedirs(dir)
        except FileExistsError:
            pass
        filepath = os.path.join(dir, f"{model_a+model_b}.csv")
        with open(filepath, "a", newline="") as f:
            writer = csv.writer(f)
            writer.writerows(nums)

    if len(ys) > len (xs):
        for diff,img in zip(diffs,imgs[1:]):
            outs.append(diff)
            outs.append(img)
            outs.append(imgs[0])
        ss = ["diff",ss[0],"source"]
        return outs,ss,ls
    else:
        outs = [imgs[0]]*len(diffs)  + imgs[1:]+ diffs
        ss = ["source",ss[0],"diff"]
        return outs,ls,ss