File size: 48,585 Bytes
34097e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
import re
from sklearn.linear_model import PassiveAggressiveClassifier
import torch
import math
import os
import gc
import gradio as gr
from torchmetrics import Precision
import modules.shared as shared
import gc
from safetensors.torch import load_file, save_file
from typing import List
from tqdm import tqdm
from modules import  sd_models,scripts
from scripts.mergers.model_util import load_models_from_stable_diffusion_checkpoint,filenamecutter,savemodel
from modules.ui import create_refresh_button

def on_ui_tabs():
    import lora
    sml_path_root = scripts.basedir()
    LWEIGHTSPRESETS="\
    NONE:0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0\n\
    ALL:1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1\n\
    INS:1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0\n\
    IND:1,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0\n\
    INALL:1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0\n\
    MIDD:1,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0\n\
    OUTD:1,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,0\n\
    OUTS:1,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1\n\
    OUTALL:1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1\n\
    ALL0.5:0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5"
    sml_filepath = os.path.join(sml_path_root,"scripts", "lbwpresets.txt")
    sml_lbwpresets=""
    try:
        with open(sml_filepath,encoding="utf-8") as f:
            sml_lbwpresets = f.read()
    except OSError as e:
        sml_lbwpresets=LWEIGHTSPRESETS 

    with gr.Blocks(analytics_enabled=False) :
        sml_submit_result = gr.Textbox(label="Message")
        with gr.Row().style(equal_height=False):
            sml_cpmerge = gr.Button(elem_id="model_merger_merge", value="Merge to Checkpoint",variant='primary')
            sml_makelora = gr.Button(elem_id="model_merger_merge", value="Make LoRA (alpha * A - beta * B)",variant='primary')
            sml_model_a = gr.Dropdown(sd_models.checkpoint_tiles(),elem_id="model_converter_model_name",label="Checkpoint A",interactive=True)
            create_refresh_button(sml_model_a, sd_models.list_models,lambda: {"choices": sd_models.checkpoint_tiles()},"refresh_checkpoint_Z")
            sml_model_b = gr.Dropdown(sd_models.checkpoint_tiles(),elem_id="model_converter_model_name",label="Checkpoint B",interactive=True)
            create_refresh_button(sml_model_b, sd_models.list_models,lambda: {"choices": sd_models.checkpoint_tiles()},"refresh_checkpoint_Z")
        with gr.Row().style(equal_height=False):
            sml_merge = gr.Button(elem_id="model_merger_merge", value="Merge LoRAs",variant='primary')
            alpha = gr.Slider(label="alpha", minimum=-1.0, maximum=2, step=0.001, value=1)
            beta = gr.Slider(label="beta", minimum=-1.0, maximum=2, step=0.001, value=1)
        with gr.Row().style(equal_height=False):
            sml_settings = gr.CheckboxGroup(["same to Strength", "overwrite"], label="settings")
            precision = gr.Radio(label = "save precision",choices=["float","fp16","bf16"],value = "fp16",type="value")
        with gr.Row().style(equal_height=False):
          sml_dim = gr.Radio(label = "remake dimension",choices = ["no","auto",*[2**(x+2) for x in range(9)]],value = "no",type = "value") 
          sml_filename = gr.Textbox(label="filename(option)",lines=1,visible =True,interactive  = True)  
        sml_loranames = gr.Textbox(label='LoRAname1:ratio1:Blocks1,LoRAname2:ratio2:Blocks2,...(":blocks" is option, not necessary)',lines=1,value="",visible =True)
        sml_dims = gr.CheckboxGroup(label = "limit dimension",choices=[],value = [],type="value",interactive=True,visible = False)
        with gr.Row().style(equal_height=False):
          sml_calcdim = gr.Button(elem_id="calcloras", value="calculate dimension of LoRAs(It may take a few minutes if there are many LoRAs)",variant='primary')
          sml_update = gr.Button(elem_id="calcloras", value="update list",variant='primary')
        sml_loras = gr.CheckboxGroup(label = "Lora",choices=[x[0] for x in lora.available_loras.items()],type="value",interactive=True,visible = True)
        sml_loraratios = gr.TextArea(label="",value=sml_lbwpresets,visible =True,interactive  = True)  

        sml_merge.click(
            fn=lmerge,
            inputs=[sml_loranames,sml_loraratios,sml_settings,sml_filename,sml_dim,precision],
            outputs=[sml_submit_result]
        )

        sml_makelora.click(
            fn=makelora,
            inputs=[sml_model_a,sml_model_b,sml_dim,sml_filename,sml_settings,alpha,beta,precision],
            outputs=[sml_submit_result]
        )

        sml_cpmerge.click(
            fn=pluslora,
            inputs=[sml_loranames,sml_loraratios,sml_settings,sml_filename,sml_model_a,precision],
            outputs=[sml_submit_result]
        )
        llist ={}
        dlist =[]
        dn = []

        def updateloras():
          lora.list_available_loras()
          for n in  lora.available_loras.items():
            if n[0] not in llist:llist[n[0]] = ""
          return gr.update(choices = [f"{x[0]}({x[1]})" for x in llist.items()])

        sml_update.click(fn = updateloras,outputs = [sml_loras])

        def calculatedim():
          print("listing dimensions...")
          for n in  tqdm(lora.available_loras.items()):
              if n[0] in llist:
                if llist[n[0]] !="": continue
              c_lora = lora.available_loras.get(n[0], None) 
              d,t = dimgetter(c_lora.filename)
              if t == "LoCon" : d = f"{d}:{t}"
              if d not in dlist:
                if type(d) == int :dlist.append(d)
                elif d not in dn: dn.append(d)
              llist[n[0]] = d
          dlist.sort()
          return gr.update(choices = [f"{x[0]}({x[1]})" for x in llist.items()],value =[]),gr.update(visible =True,choices = [x for x in (dlist+dn)])

        sml_calcdim.click(
            fn=calculatedim,
            inputs=[],
            outputs=[sml_loras,sml_dims]
        )

        def dimselector(dims):
          if dims ==[]:return gr.update(choices = [f"{x[0]}({x[1]})" for x in llist.items()])
          rl=[]
          for d in dims:
            for i in llist.items():
              if d == i[1]:rl.append(f"{i[0]}({i[1]})")
          return gr.update(choices = [l for l in rl],value =[])

        def llister(names):
          if names ==[] : return ""
          else:
            for i,n in enumerate(names):
              if "(" in n:names[i] = n[:n.rfind("(")]
            return ":1.0,".join(names)+":1.0"
        sml_loras.change(fn=llister,inputs=[sml_loras],outputs=[sml_loranames])     
        sml_dims.change(fn=dimselector,inputs=[sml_dims],outputs=[sml_loras])  

def makelora(model_a,model_b,dim,saveto,settings,alpha,beta,precision):
    print("make LoRA start")
    if model_a == "" or model_b =="":
      return "ERROR: No model Selected"
    gc.collect()

    if saveto =="" : saveto = makeloraname(model_a,model_b)
    if not ".safetensors" in saveto :saveto  += ".safetensors"
    saveto = os.path.join(shared.cmd_opts.lora_dir,saveto)

    dim = 128 if type(dim) != int else int(dim)
    if os.path.isfile(saveto ) and not "overwrite" in settings:
        _err_msg = f"Output file ({saveto}) existed and was not saved"
        print(_err_msg)
        return _err_msg

    svd(fullpathfromname(model_a),fullpathfromname(model_b),False,dim,precision,saveto,alpha,beta)
    return f"saved to {saveto}"

def lmerge(loranames,loraratioss,settings,filename,dim,precision):
    import lora
    loras_on_disk = [lora.available_loras.get(name, None) for name in loranames]
    if any([x is None for x in loras_on_disk]):
        lora.list_available_loras()

        loras_on_disk = [lora.available_loras.get(name, None) for name in loranames]

    lnames = [loranames] if "," not in loranames else loranames.split(",")

    for i, n in enumerate(lnames):
        lnames[i] = n.split(":")

    loraratios=loraratioss.splitlines()
    ldict ={}

    for i,l in enumerate(loraratios):
        if ":" not in l or not (l.count(",") == 16 or l.count(",") == 25) : continue
        ldict[l.split(":")[0]]=l.split(":")[1]

    ln = []
    lr = []
    ld = []
    lt = []
    dmax = 1

    for i,n in enumerate(lnames):
        if len(n) ==3:
            if n[2].strip() in ldict:
                ratio = [float(r)*float(n[1]) for r in ldict[n[2]].split(",")]
            else:ratio = [float(n[1])]*17
        else:ratio = [float(n[1])]*17
        c_lora = lora.available_loras.get(n[0], None) 
        ln.append(c_lora.filename)
        lr.append(ratio)
        d,t = dimgetter(c_lora.filename)
        lt.append(t)
        ld.append(d)
        if d != "LyCORIS":
          if d > dmax : dmax = d

    if filename =="":filename =loranames.replace(",","+").replace(":","_")
    if not ".safetensors" in filename:filename += ".safetensors"
    filename = os.path.join(shared.cmd_opts.lora_dir,filename)
  
    dim = int(dim) if dim != "no" and dim != "auto" else 0

    if "LyCORIS" in ld or "LoCon" in lt:
      if len(ld) !=1:
        return "multiple merge of LyCORIS is not supported"
      sd = lycomerge(ln[0],lr[0])
    elif dim > 0:
      print("change demension to ", dim)
      sd = merge_lora_models_dim(ln, lr, dim,settings)
    elif "auto" in settings and ld.count(ld[0]) != len(ld):
      print("change demension to ",dmax)
      sd = merge_lora_models_dim(ln, lr, dmax,settings)
    else:
      sd = merge_lora_models(ln, lr,settings)

    if os.path.isfile(filename) and not "overwrite" in settings:
        _err_msg = f"Output file ({filename}) existed and was not saved"
        print(_err_msg)
        return _err_msg

    save_to_file(filename,sd,sd, str_to_dtype(precision))
    return "saved : "+filename

def pluslora(lnames,loraratios,settings,output,model,precision):
    if model == []:
      return "ERROR: No model Selected"
    if lnames == "":
      return "ERROR: No LoRA Selected"

    print("plus LoRA start")
    import lora
    lnames = [lnames] if "," not in lnames else lnames.split(",")

    for i, n in enumerate(lnames):
        lnames[i] = n.split(":")

    loraratios=loraratios.splitlines()
    ldict ={}

    for i,l in enumerate(loraratios):
        if ":" not in l or not (l.count(",") == 16 or l.count(",") == 25) : continue
        ldict[l.split(":")[0].strip()]=l.split(":")[1]

    names=[]
    filenames=[]
    loratypes=[]
    lweis=[]

    for n in lnames:
        if len(n) ==3:
            if n[2].strip() in ldict:
                ratio = [float(r)*float(n[1]) for r in ldict[n[2]].split(",")]
            else:ratio = [float(n[1])]*17
        else:ratio = [float(n[1])]*17
        c_lora = lora.available_loras.get(n[0], None) 
        names.append(n[0])
        filenames.append(c_lora.filename)
        _,t = dimgetter(c_lora.filename)
        if "LyCORIS" in t: return "LyCORIS merge is not supported"
        lweis.append(ratio)

    modeln=filenamecutter(model,True)   
    dname = modeln
    for n in names:
      dname = dname + "+"+n

    checkpoint_info = sd_models.get_closet_checkpoint_match(model)
    print(f"Loading {model}")
    theta_0 = sd_models.read_state_dict(checkpoint_info.filename,"cpu")

    keychanger = {}
    for key in theta_0.keys():
        if "model" in key:
            skey = key.replace(".","_").replace("_weight","")
            keychanger[skey.split("model_",1)[1]] = key

    for name,filename, lwei in zip(names,filenames, lweis):
      print(f"loading: {name}")
      lora_sd = load_state_dict(filename, torch.float)

      print(f"merging..." ,lwei)
      for key in lora_sd.keys():
        ratio = 1

        fullkey = convert_diffusers_name_to_compvis(key)

        for i,block in enumerate(LORABLOCKS):
            if block in fullkey:
                ratio = lwei[i]

        msd_key, lora_key = fullkey.split(".", 1)

        if "lora_down" in key:
          up_key = key.replace("lora_down", "lora_up")
          alpha_key = key[:key.index("lora_down")] + 'alpha'

          # print(f"apply {key} to {module}")

          down_weight = lora_sd[key].to(device="cpu")
          up_weight = lora_sd[up_key].to(device="cpu")

          dim = down_weight.size()[0]
          alpha = lora_sd.get(alpha_key, dim)
          scale = alpha / dim
          # W <- W + U * D
          weight = theta_0[keychanger[msd_key]].to(device="cpu")

          if not len(down_weight.size()) == 4:
            # linear
            weight = weight  + ratio * (up_weight @ down_weight) * scale
          else:
            # conv2d
            weight = weight  + ratio * (up_weight.squeeze(3).squeeze(2) @ down_weight.squeeze(3).squeeze(2)
                                        ).unsqueeze(2).unsqueeze(3) * scale
          theta_0[keychanger[msd_key]] = torch.nn.Parameter(weight)
    #usemodelgen(theta_0,model)
    settings.append(precision)
    result = savemodel(theta_0,dname,output,settings,model)
    del theta_0
    gc.collect()
    return result

def save_to_file(file_name, model, state_dict, dtype):
    if dtype is not None:
        for key in list(state_dict.keys()):
            if type(state_dict[key]) == torch.Tensor:
                state_dict[key] = state_dict[key].to(dtype)

    if os.path.splitext(file_name)[1] == '.safetensors':
        save_file(model, file_name)
    else:
        torch.save(model, file_name)

re_digits = re.compile(r"\d+")

re_unet_down_blocks = re.compile(r"lora_unet_down_blocks_(\d+)_attentions_(\d+)_(.+)")
re_unet_mid_blocks = re.compile(r"lora_unet_mid_block_attentions_(\d+)_(.+)")
re_unet_up_blocks = re.compile(r"lora_unet_up_blocks_(\d+)_attentions_(\d+)_(.+)")

re_unet_down_blocks_res = re.compile(r"lora_unet_down_blocks_(\d+)_resnets_(\d+)_(.+)")
re_unet_mid_blocks_res = re.compile(r"lora_unet_mid_block_resnets_(\d+)_(.+)")
re_unet_up_blocks_res = re.compile(r"lora_unet_up_blocks_(\d+)_resnets_(\d+)_(.+)")

re_unet_downsample = re.compile(r"lora_unet_down_blocks_(\d+)_downsamplers_0_conv(.+)")
re_unet_upsample = re.compile(r"lora_unet_up_blocks_(\d+)_upsamplers_0_conv(.+)")

re_text_block = re.compile(r"lora_te_text_model_encoder_layers_(\d+)_(.+)")


def convert_diffusers_name_to_compvis(key):
    def match(match_list, regex):
        r = re.match(regex, key)
        if not r:
            return False

        match_list.clear()
        match_list.extend([int(x) if re.match(re_digits, x) else x for x in r.groups()])
        return True

    m = []

    if match(m, re_unet_down_blocks):
        return f"diffusion_model_input_blocks_{1 + m[0] * 3 + m[1]}_1_{m[2]}"

    if match(m, re_unet_mid_blocks):
        return f"diffusion_model_middle_block_1_{m[1]}"

    if match(m, re_unet_up_blocks):
        return f"diffusion_model_output_blocks_{m[0] * 3 + m[1]}_1_{m[2]}"

    if match(m, re_unet_down_blocks_res):
        block = f"diffusion_model_input_blocks_{1 + m[0] * 3 + m[1]}_0_"
        if m[2].startswith('conv1'):
            return f"{block}in_layers_2{m[2][len('conv1'):]}"
        elif m[2].startswith('conv2'):
            return f"{block}out_layers_3{m[2][len('conv2'):]}"
        elif m[2].startswith('time_emb_proj'):
            return f"{block}emb_layers_1{m[2][len('time_emb_proj'):]}"
        elif m[2].startswith('conv_shortcut'):
            return f"{block}skip_connection{m[2][len('conv_shortcut'):]}"

    if match(m, re_unet_mid_blocks_res):
        block = f"diffusion_model_middle_block_{m[0]*2}_"
        if m[1].startswith('conv1'):
            return f"{block}in_layers_2{m[1][len('conv1'):]}"
        elif m[1].startswith('conv2'):
            return f"{block}out_layers_3{m[1][len('conv2'):]}"
        elif m[1].startswith('time_emb_proj'):
            return f"{block}emb_layers_1{m[1][len('time_emb_proj'):]}"
        elif m[1].startswith('conv_shortcut'):
            return f"{block}skip_connection{m[1][len('conv_shortcut'):]}"

    if match(m, re_unet_up_blocks_res):
        block = f"diffusion_model_output_blocks_{m[0] * 3 + m[1]}_0_"
        if m[2].startswith('conv1'):
            return f"{block}in_layers_2{m[2][len('conv1'):]}"
        elif m[2].startswith('conv2'):
            return f"{block}out_layers_3{m[2][len('conv2'):]}"
        elif m[2].startswith('time_emb_proj'):
            return f"{block}emb_layers_1{m[2][len('time_emb_proj'):]}"
        elif m[2].startswith('conv_shortcut'):
            return f"{block}skip_connection{m[2][len('conv_shortcut'):]}"

    if match(m, re_unet_downsample):
        return f"diffusion_model_input_blocks_{m[0]*3+3}_0_op{m[1]}"

    if match(m, re_unet_upsample):
        return f"diffusion_model_output_blocks_{m[0]*3 + 2}_{1+(m[0]!=0)}_conv{m[1]}"

    if match(m, re_text_block):
        return f"transformer_text_model_encoder_layers_{m[0]}_{m[1]}"

    return key

CLAMP_QUANTILE = 0.99
MIN_DIFF = 1e-6

def str_to_dtype(p):
  if p == 'float':
    return torch.float
  if p == 'fp16':
    return torch.float16
  if p == 'bf16':
    return torch.bfloat16
  return None

def svd(model_a,model_b,v2,dim,save_precision,save_to,alpha,beta):
  save_dtype = str_to_dtype(save_precision)

  if model_a == model_b:
    text_encoder_t, _, unet_t = load_models_from_stable_diffusion_checkpoint(v2, model_a)
    text_encoder_o, _, unet_o = text_encoder_t, _, unet_t
  else:
    print(f"loading SD model : {model_b}")
    text_encoder_o, _, unet_o = load_models_from_stable_diffusion_checkpoint(v2, model_b)
    
    print(f"loading SD model : {model_a}")
    text_encoder_t, _, unet_t = load_models_from_stable_diffusion_checkpoint(v2, model_a)

  # create LoRA network to extract weights: Use dim (rank) as alpha
  lora_network_o = create_network(1.0, dim, dim, None, text_encoder_o, unet_o)
  lora_network_t = create_network(1.0, dim, dim, None, text_encoder_t, unet_t)
  assert len(lora_network_o.text_encoder_loras) == len(
      lora_network_t.text_encoder_loras), f"model version is different (SD1.x vs SD2.x) / それぞれのモデルのバージョンが違います(SD1.xベースとSD2.xベース) "
  # get diffs
  diffs = {}
  text_encoder_different = False
  for i, (lora_o, lora_t) in enumerate(zip(lora_network_o.text_encoder_loras, lora_network_t.text_encoder_loras)):
    lora_name = lora_o.lora_name
    module_o = lora_o.org_module
    module_t = lora_t.org_module
    diff = alpha*module_t.weight - beta*module_o.weight

    # Text Encoder might be same
    if torch.max(torch.abs(diff)) > MIN_DIFF:
      text_encoder_different = True

    diff = diff.float()
    diffs[lora_name] = diff

  if not text_encoder_different:
    print("Text encoder is same. Extract U-Net only.")
    lora_network_o.text_encoder_loras = []
    diffs = {}

  for i, (lora_o, lora_t) in enumerate(zip(lora_network_o.unet_loras, lora_network_t.unet_loras)):
    lora_name = lora_o.lora_name
    module_o = lora_o.org_module
    module_t = lora_t.org_module
    diff = alpha*module_t.weight - beta*module_o.weight
    diff = diff.float()

    diffs[lora_name] = diff

  # make LoRA with svd
  print("calculating by svd")
  rank = dim
  lora_weights = {}
  with torch.no_grad():
    for lora_name, mat in tqdm(list(diffs.items())):
      conv2d = (len(mat.size()) == 4)
      if conv2d:
        mat = mat.squeeze()

      U, S, Vh = torch.linalg.svd(mat)

      U = U[:, :rank]
      S = S[:rank]
      U = U @ torch.diag(S)

      Vh = Vh[:rank, :]

      dist = torch.cat([U.flatten(), Vh.flatten()])
      hi_val = torch.quantile(dist, CLAMP_QUANTILE)
      low_val = -hi_val

      U = U.clamp(low_val, hi_val)
      Vh = Vh.clamp(low_val, hi_val)

      lora_weights[lora_name] = (U, Vh)

  # make state dict for LoRA
  lora_network_o.apply_to(text_encoder_o, unet_o, text_encoder_different, True)   # to make state dict
  lora_sd = lora_network_o.state_dict()
  print(f"LoRA has {len(lora_sd)} weights.")

  for key in list(lora_sd.keys()):
    if "alpha" in key:
      continue

    lora_name = key.split('.')[0]
    i = 0 if "lora_up" in key else 1

    weights = lora_weights[lora_name][i]
    # print(key, i, weights.size(), lora_sd[key].size())
    if len(lora_sd[key].size()) == 4:
      weights = weights.unsqueeze(2).unsqueeze(3)

    assert weights.size() == lora_sd[key].size(), f"size unmatch: {key}"
    lora_sd[key] = weights

  # load state dict to LoRA and save it
  info = lora_network_o.load_state_dict(lora_sd)
  print(f"Loading extracted LoRA weights: {info}")

  dir_name = os.path.dirname(save_to)
  if dir_name and not os.path.exists(dir_name):
    os.makedirs(dir_name, exist_ok=True)

  # minimum metadata
  metadata = {"ss_network_dim": str(dim), "ss_network_alpha": str(dim)}

  lora_network_o.save_weights(save_to, save_dtype, metadata)
  print(f"LoRA weights are saved to: {save_to}")
  return save_to  

def load_state_dict(file_name, dtype):
  if os.path.splitext(file_name)[1] == '.safetensors':
    sd = load_file(file_name)
  else:
    sd = torch.load(file_name, map_location='cpu')
  for key in list(sd.keys()):
    if type(sd[key]) == torch.Tensor:
      sd[key] = sd[key].to(dtype)
  return sd

def dimgetter(filename):
    lora_sd = load_state_dict(filename, torch.float)
    alpha = None
    dim = None
    type = None

    if "lora_unet_down_blocks_0_resnets_0_conv1.lora_down.weight" in lora_sd.keys():
      type = "LoCon"

    for key, value in lora_sd.items():
  
        if alpha is None and 'alpha' in key:
            alpha = value
        if dim is None and 'lora_down' in key and len(value.size()) == 2:
            dim = value.size()[0]
        if "hada_" in key:
            dim,type = "LyCORIS","LyCORIS"
        if alpha is not None and dim is not None:
            break
    if alpha is None:
        alpha = dim
    if type == None:type = "LoRA"
    if dim :
      return dim,type
    else:
      return "unknown","unknown"

def blockfromkey(key):
    fullkey = convert_diffusers_name_to_compvis(key)
    for i,n in enumerate(LORABLOCKS):
      if n in  fullkey: return i
    return 0

def merge_lora_models_dim(models, ratios, new_rank,sets):
  merged_sd = {}
  fugou = 1
  for model, ratios in zip(models, ratios):
    merge_dtype = torch.float
    lora_sd = load_state_dict(model, merge_dtype)

    # merge
    print(f"merging {model}: {ratios}")
    for key in tqdm(list(lora_sd.keys())):
      if 'lora_down' not in key:
        continue
      lora_module_name = key[:key.rfind(".lora_down")]

      down_weight = lora_sd[key]
      network_dim = down_weight.size()[0]

      up_weight = lora_sd[lora_module_name + '.lora_up.weight']
      alpha = lora_sd.get(lora_module_name + '.alpha', network_dim)

      in_dim = down_weight.size()[1]
      out_dim = up_weight.size()[0]
      conv2d = len(down_weight.size()) == 4
     # print(lora_module_name, network_dim, alpha, in_dim, out_dim)

      # make original weight if not exist
      if lora_module_name not in merged_sd:
        weight = torch.zeros((out_dim, in_dim, 1, 1) if conv2d else (out_dim, in_dim), dtype=merge_dtype)
      else:
        weight = merged_sd[lora_module_name]

      ratio = ratios[blockfromkey(key)]
      if "same to Strength" in sets:
        ratio, fugou = (ratio**0.5,1) if ratio > 0 else (abs(ratio)**0.5,-1)
      #print(lora_module_name, ratio)
      # W <- W + U * D
      scale = (alpha / network_dim)
      if not conv2d:        # linear
        weight = weight + ratio * (up_weight @ down_weight) * scale * fugou
      else:
        weight = weight + ratio * (up_weight.squeeze(3).squeeze(2) @ down_weight.squeeze(3).squeeze(2)
                                   ).unsqueeze(2).unsqueeze(3) * scale * fugou

      merged_sd[lora_module_name] = weight

  # extract from merged weights
  print("extract new lora...")
  merged_lora_sd = {}
  with torch.no_grad():
    for lora_module_name, mat in tqdm(list(merged_sd.items())):
      conv2d = (len(mat.size()) == 4)
      if conv2d:
        mat = mat.squeeze()

      U, S, Vh = torch.linalg.svd(mat)

      U = U[:, :new_rank]
      S = S[:new_rank]
      U = U @ torch.diag(S)

      Vh = Vh[:new_rank, :]

      dist = torch.cat([U.flatten(), Vh.flatten()])
      hi_val = torch.quantile(dist, CLAMP_QUANTILE)
      low_val = -hi_val

      U = U.clamp(low_val, hi_val)
      Vh = Vh.clamp(low_val, hi_val)

      up_weight = U
      down_weight = Vh

      if conv2d:
        up_weight = up_weight.unsqueeze(2).unsqueeze(3)
        down_weight = down_weight.unsqueeze(2).unsqueeze(3)

      merged_lora_sd[lora_module_name + '.lora_up.weight'] = up_weight.to("cpu").contiguous()
      merged_lora_sd[lora_module_name + '.lora_down.weight'] = down_weight.to("cpu").contiguous()
      merged_lora_sd[lora_module_name + '.alpha'] = torch.tensor(new_rank)

  return merged_lora_sd

def merge_lora_models(models, ratios,sets):
  base_alphas = {}                          # alpha for merged model
  base_dims = {}
  merge_dtype = torch.float
  merged_sd = {}
  fugou = 1
  for model, ratios in zip(models, ratios):
    print(f"merging {model}: {ratios}")
    lora_sd = load_state_dict(model, merge_dtype)

    # get alpha and dim
    alphas = {}                             # alpha for current model
    dims = {}                               # dims for current model
    for key in lora_sd.keys():
      if 'alpha' in key:
        lora_module_name = key[:key.rfind(".alpha")]
        alpha = float(lora_sd[key].detach().numpy())
        alphas[lora_module_name] = alpha
        if lora_module_name not in base_alphas:
          base_alphas[lora_module_name] = alpha
      elif "lora_down" in key:
        lora_module_name = key[:key.rfind(".lora_down")]
        dim = lora_sd[key].size()[0]
        dims[lora_module_name] = dim
        if lora_module_name not in base_dims:
          base_dims[lora_module_name] = dim

    for lora_module_name in dims.keys():
      if lora_module_name not in alphas:
        alpha = dims[lora_module_name]
        alphas[lora_module_name] = alpha
        if lora_module_name not in base_alphas:
          base_alphas[lora_module_name] = alpha
    
    print(f"dim: {list(set(dims.values()))}, alpha: {list(set(alphas.values()))}")

    # merge
    print(f"merging...")
    for key in lora_sd.keys():
      if 'alpha' in key:
        continue
      if "lora_down" in key: dwon = True
      lora_module_name = key[:key.rfind(".lora_")]

      base_alpha = base_alphas[lora_module_name]
      alpha = alphas[lora_module_name]

      ratio = ratios[blockfromkey(key)]
      if "same to Strength" in sets:
        ratio, fugou = (ratio**0.5,1) if ratio > 0 else (abs(ratio)**0.5,-1)

      if "lora_down" in key:
        ratio = ratio * fugou

      scale = math.sqrt(alpha / base_alpha) * ratio

      if key in merged_sd:
        assert merged_sd[key].size() == lora_sd[key].size(
        ), f"weights shape mismatch merging v1 and v2, different dims? / 重みのサイズが合いません。v1とv2、または次元数の異なるモデルはマージできません"
        merged_sd[key] = merged_sd[key] + lora_sd[key] * scale
      else:
        merged_sd[key] = lora_sd[key] * scale
  
  # set alpha to sd
  for lora_module_name, alpha in base_alphas.items():
    key = lora_module_name + ".alpha"
    merged_sd[key] = torch.tensor(alpha)

  print("merged model")
  print(f"dim: {list(set(base_dims.values()))}, alpha: {list(set(base_alphas.values()))}")

  return merged_sd

def fullpathfromname(name):
    if hash == "" or hash ==[]: return ""
    checkpoint_info = sd_models.get_closet_checkpoint_match(name)
    return checkpoint_info.filename

def makeloraname(model_a,model_b):
    model_a=filenamecutter(model_a)
    model_b=filenamecutter(model_b)
    return "lora_"+model_a+"-"+model_b

def lycomerge(filename,ratios):
    sd = load_state_dict(filename, torch.float)

    if len(ratios) == 17:
      r0 = 1
      ratios = [ratios[0]] + [r0] + ratios[1:3]+ [r0] + ratios[3:5]+[r0] + ratios[5:7]+[r0,r0,r0] + [ratios[7]] + [r0,r0,r0] + ratios[8:]

    print("LyCORIS: " , ratios)

    keys_failed_to_match = []

    for lkey, weight in sd.items():
        ratio = 1
        picked = False
        if 'alpha' in lkey:
          continue
        
        fullkey = convert_diffusers_name_to_compvis(lkey)
        key, lora_key = fullkey.split(".", 1)

        for i,block in enumerate(LYCOBLOCKS):
            if block in key:
                ratio = ratios[i]
                picked = True
        if not picked: keys_failed_to_match.append(key)

        sd[lkey] = weight * math.sqrt(abs(float(ratio)))

        if "down" in lkey and ratio < 0:
          sd[key] = sd[key] * -1
        
    if len(keys_failed_to_match) > 0:
      print(keys_failed_to_match)
  
    return sd 

LORABLOCKS=["encoder",
"diffusion_model_input_blocks_1_",
"diffusion_model_input_blocks_2_",
"diffusion_model_input_blocks_4_",
"diffusion_model_input_blocks_5_",
"diffusion_model_input_blocks_7_",
"diffusion_model_input_blocks_8_",
"diffusion_model_middle_block_",
"diffusion_model_output_blocks_3_",
"diffusion_model_output_blocks_4_",
"diffusion_model_output_blocks_5_",
"diffusion_model_output_blocks_6_",
"diffusion_model_output_blocks_7_",
"diffusion_model_output_blocks_8_",
"diffusion_model_output_blocks_9_",
"diffusion_model_output_blocks_10_",
"diffusion_model_output_blocks_11_"]

LYCOBLOCKS=["encoder",
"diffusion_model_input_blocks_0_",
"diffusion_model_input_blocks_1_",
"diffusion_model_input_blocks_2_",
"diffusion_model_input_blocks_3_",
"diffusion_model_input_blocks_4_",
"diffusion_model_input_blocks_5_",
"diffusion_model_input_blocks_6_",
"diffusion_model_input_blocks_7_",
"diffusion_model_input_blocks_8_",
"diffusion_model_input_blocks_9_",
"diffusion_model_input_blocks_10_",
"diffusion_model_input_blocks_11_",
"diffusion_model_middle_block_",
"diffusion_model_output_blocks_0_",
"diffusion_model_output_blocks_1_",
"diffusion_model_output_blocks_2_",
"diffusion_model_output_blocks_3_",
"diffusion_model_output_blocks_4_",
"diffusion_model_output_blocks_5_",
"diffusion_model_output_blocks_6_",
"diffusion_model_output_blocks_7_",
"diffusion_model_output_blocks_8_",
"diffusion_model_output_blocks_9_",
"diffusion_model_output_blocks_10_",
"diffusion_model_output_blocks_11_"]

class LoRAModule(torch.nn.Module):
    """
    replaces forward method of the original Linear, instead of replacing the original Linear module.
    """

    def __init__(self, lora_name, org_module: torch.nn.Module, multiplier=1.0, lora_dim=4, alpha=1):
        """if alpha == 0 or None, alpha is rank (no scaling)."""
        super().__init__()
        self.lora_name = lora_name

        if org_module.__class__.__name__ == "Conv2d":
            in_dim = org_module.in_channels
            out_dim = org_module.out_channels
        else:
            in_dim = org_module.in_features
            out_dim = org_module.out_features

        # if limit_rank:
        #   self.lora_dim = min(lora_dim, in_dim, out_dim)
        #   if self.lora_dim != lora_dim:
        #     print(f"{lora_name} dim (rank) is changed to: {self.lora_dim}")
        # else:
        self.lora_dim = lora_dim

        if org_module.__class__.__name__ == "Conv2d":
            kernel_size = org_module.kernel_size
            stride = org_module.stride
            padding = org_module.padding
            self.lora_down = torch.nn.Conv2d(in_dim, self.lora_dim, kernel_size, stride, padding, bias=False)
            self.lora_up = torch.nn.Conv2d(self.lora_dim, out_dim, (1, 1), (1, 1), bias=False)
        else:
            self.lora_down = torch.nn.Linear(in_dim, self.lora_dim, bias=False)
            self.lora_up = torch.nn.Linear(self.lora_dim, out_dim, bias=False)

        if type(alpha) == torch.Tensor:
            alpha = alpha.detach().float().numpy()  # without casting, bf16 causes error
        alpha = self.lora_dim if alpha is None or alpha == 0 else alpha
        self.scale = alpha / self.lora_dim
        self.register_buffer("alpha", torch.tensor(alpha))  # 定数として扱える

        # same as microsoft's
        torch.nn.init.kaiming_uniform_(self.lora_down.weight, a=math.sqrt(5))
        torch.nn.init.zeros_(self.lora_up.weight)

        self.multiplier = multiplier
        self.org_module = org_module  # remove in applying
        self.region = None
        self.region_mask = None

    def apply_to(self):
        self.org_forward = self.org_module.forward
        self.org_module.forward = self.forward
        del self.org_module

    def merge_to(self, sd, dtype, device):
        # get up/down weight
        up_weight = sd["lora_up.weight"].to(torch.float).to(device)
        down_weight = sd["lora_down.weight"].to(torch.float).to(device)

        # extract weight from org_module
        org_sd = self.org_module.state_dict()
        weight = org_sd["weight"].to(torch.float)

        # merge weight
        if len(weight.size()) == 2:
            # linear
            weight = weight + self.multiplier * (up_weight @ down_weight) * self.scale
        elif down_weight.size()[2:4] == (1, 1):
            # conv2d 1x1
            weight = (
                weight
                + self.multiplier
                * (up_weight.squeeze(3).squeeze(2) @ down_weight.squeeze(3).squeeze(2)).unsqueeze(2).unsqueeze(3)
                * self.scale
            )
        else:
            # conv2d 3x3
            conved = torch.nn.functional.conv2d(down_weight.permute(1, 0, 2, 3), up_weight).permute(1, 0, 2, 3)
            # print(conved.size(), weight.size(), module.stride, module.padding)
            weight = weight + self.multiplier * conved * self.scale

        # set weight to org_module
        org_sd["weight"] = weight.to(dtype)
        self.org_module.load_state_dict(org_sd)

    def set_region(self, region):
        self.region = region
        self.region_mask = None

    def forward(self, x):
        if self.region is None:
            return self.org_forward(x) + self.lora_up(self.lora_down(x)) * self.multiplier * self.scale

        # regional LoRA   FIXME same as additional-network extension
        if x.size()[1] % 77 == 0:
            # print(f"LoRA for context: {self.lora_name}")
            self.region = None
            return self.org_forward(x) + self.lora_up(self.lora_down(x)) * self.multiplier * self.scale

        # calculate region mask first time
        if self.region_mask is None:
            if len(x.size()) == 4:
                h, w = x.size()[2:4]
            else:
                seq_len = x.size()[1]
                ratio = math.sqrt((self.region.size()[0] * self.region.size()[1]) / seq_len)
                h = int(self.region.size()[0] / ratio + 0.5)
                w = seq_len // h

            r = self.region.to(x.device)
            if r.dtype == torch.bfloat16:
                r = r.to(torch.float)
            r = r.unsqueeze(0).unsqueeze(1)
            # print(self.lora_name, self.region.size(), x.size(), r.size(), h, w)
            r = torch.nn.functional.interpolate(r, (h, w), mode="bilinear")
            r = r.to(x.dtype)

            if len(x.size()) == 3:
                r = torch.reshape(r, (1, x.size()[1], -1))

            self.region_mask = r

        return self.org_forward(x) + self.lora_up(self.lora_down(x)) * self.multiplier * self.scale * self.region_mask

def create_network(multiplier, network_dim, network_alpha, vae, text_encoder, unet, **kwargs):
    if network_dim is None:
        network_dim = 4  # default

    # extract dim/alpha for conv2d, and block dim
    conv_dim = kwargs.get("conv_dim", None)
    conv_alpha = kwargs.get("conv_alpha", None)
    if conv_dim is not None:
        conv_dim = int(conv_dim)
        if conv_alpha is None:
            conv_alpha = 1.0
        else:
            conv_alpha = float(conv_alpha)

    """
    block_dims = kwargs.get("block_dims")
    block_alphas = None
    if block_dims is not None:
    block_dims = [int(d) for d in block_dims.split(',')]
    assert len(block_dims) == NUM_BLOCKS, f"Number of block dimensions is not same to {NUM_BLOCKS}"
    block_alphas = kwargs.get("block_alphas")
    if block_alphas is None:
        block_alphas = [1] * len(block_dims)
    else:
        block_alphas = [int(a) for a in block_alphas(',')]
    assert len(block_alphas) == NUM_BLOCKS, f"Number of block alphas is not same to {NUM_BLOCKS}"
    conv_block_dims = kwargs.get("conv_block_dims")
    conv_block_alphas = None
    if conv_block_dims is not None:
    conv_block_dims = [int(d) for d in conv_block_dims.split(',')]
    assert len(conv_block_dims) == NUM_BLOCKS, f"Number of block dimensions is not same to {NUM_BLOCKS}"
    conv_block_alphas = kwargs.get("conv_block_alphas")
    if conv_block_alphas is None:
        conv_block_alphas = [1] * len(conv_block_dims)
    else:
        conv_block_alphas = [int(a) for a in conv_block_alphas(',')]
    assert len(conv_block_alphas) == NUM_BLOCKS, f"Number of block alphas is not same to {NUM_BLOCKS}"
  """

    network = LoRANetwork(
        text_encoder,
        unet,
        multiplier=multiplier,
        lora_dim=network_dim,
        alpha=network_alpha,
        conv_lora_dim=conv_dim,
        conv_alpha=conv_alpha,
    )
    return network



class LoRANetwork(torch.nn.Module):
    # is it possible to apply conv_in and conv_out?
    UNET_TARGET_REPLACE_MODULE = ["Transformer2DModel", "Attention"]
    UNET_TARGET_REPLACE_MODULE_CONV2D_3X3 = ["ResnetBlock2D", "Downsample2D", "Upsample2D"]
    TEXT_ENCODER_TARGET_REPLACE_MODULE = ["CLIPAttention", "CLIPMLP"]
    LORA_PREFIX_UNET = "lora_unet"
    LORA_PREFIX_TEXT_ENCODER = "lora_te"

    def __init__(
        self,
        text_encoder,
        unet,
        multiplier=1.0,
        lora_dim=4,
        alpha=1,
        conv_lora_dim=None,
        conv_alpha=None,
        modules_dim=None,
        modules_alpha=None,
    ) -> None:
        super().__init__()
        self.multiplier = multiplier

        self.lora_dim = lora_dim
        self.alpha = alpha
        self.conv_lora_dim = conv_lora_dim
        self.conv_alpha = conv_alpha

        if modules_dim is not None:
            print(f"create LoRA network from weights")
        else:
            print(f"create LoRA network. base dim (rank): {lora_dim}, alpha: {alpha}")

        self.apply_to_conv2d_3x3 = self.conv_lora_dim is not None
        if self.apply_to_conv2d_3x3:
            if self.conv_alpha is None:
                self.conv_alpha = self.alpha
            print(f"apply LoRA to Conv2d with kernel size (3,3). dim (rank): {self.conv_lora_dim}, alpha: {self.conv_alpha}")

        # create module instances
        def create_modules(prefix, root_module: torch.nn.Module, target_replace_modules) -> List[LoRAModule]:
            loras = []
            for name, module in root_module.named_modules():
                if module.__class__.__name__ in target_replace_modules:
                    # TODO get block index here
                    for child_name, child_module in module.named_modules():
                        is_linear = child_module.__class__.__name__ == "Linear"
                        is_conv2d = child_module.__class__.__name__ == "Conv2d"
                        is_conv2d_1x1 = is_conv2d and child_module.kernel_size == (1, 1)
                        if is_linear or is_conv2d:
                            lora_name = prefix + "." + name + "." + child_name
                            lora_name = lora_name.replace(".", "_")

                            if modules_dim is not None:
                                if lora_name not in modules_dim:
                                    continue  # no LoRA module in this weights file
                                dim = modules_dim[lora_name]
                                alpha = modules_alpha[lora_name]
                            else:
                                if is_linear or is_conv2d_1x1:
                                    dim = self.lora_dim
                                    alpha = self.alpha
                                elif self.apply_to_conv2d_3x3:
                                    dim = self.conv_lora_dim
                                    alpha = self.conv_alpha
                                else:
                                    continue

                            lora = LoRAModule(lora_name, child_module, self.multiplier, dim, alpha)
                            loras.append(lora)
            return loras

        self.text_encoder_loras = create_modules(
            LoRANetwork.LORA_PREFIX_TEXT_ENCODER, text_encoder, LoRANetwork.TEXT_ENCODER_TARGET_REPLACE_MODULE
        )
        print(f"create LoRA for Text Encoder: {len(self.text_encoder_loras)} modules.")

        # extend U-Net target modules if conv2d 3x3 is enabled, or load from weights
        target_modules = LoRANetwork.UNET_TARGET_REPLACE_MODULE
        if modules_dim is not None or self.conv_lora_dim is not None:
            target_modules += LoRANetwork.UNET_TARGET_REPLACE_MODULE_CONV2D_3X3

        self.unet_loras = create_modules(LoRANetwork.LORA_PREFIX_UNET, unet, target_modules)
        print(f"create LoRA for U-Net: {len(self.unet_loras)} modules.")

        self.weights_sd = None

        # assertion
        names = set()
        for lora in self.text_encoder_loras + self.unet_loras:
            assert lora.lora_name not in names, f"duplicated lora name: {lora.lora_name}"
            names.add(lora.lora_name)

    def set_multiplier(self, multiplier):
        self.multiplier = multiplier
        for lora in self.text_encoder_loras + self.unet_loras:
            lora.multiplier = self.multiplier

    def load_weights(self, file):
        if os.path.splitext(file)[1] == ".safetensors":
            from safetensors.torch import load_file, safe_open

            self.weights_sd = load_file(file)
        else:
            self.weights_sd = torch.load(file, map_location="cpu")

    def apply_to(self, text_encoder, unet, apply_text_encoder=None, apply_unet=None):
        if self.weights_sd:
            weights_has_text_encoder = weights_has_unet = False
            for key in self.weights_sd.keys():
                if key.startswith(LoRANetwork.LORA_PREFIX_TEXT_ENCODER):
                    weights_has_text_encoder = True
                elif key.startswith(LoRANetwork.LORA_PREFIX_UNET):
                    weights_has_unet = True

            if apply_text_encoder is None:
                apply_text_encoder = weights_has_text_encoder
            else:
                assert (
                    apply_text_encoder == weights_has_text_encoder
                ), f"text encoder weights: {weights_has_text_encoder} but text encoder flag: {apply_text_encoder} / 重みとText Encoderのフラグが矛盾しています"

            if apply_unet is None:
                apply_unet = weights_has_unet
            else:
                assert (
                    apply_unet == weights_has_unet
                ), f"u-net weights: {weights_has_unet} but u-net flag: {apply_unet} / 重みとU-Netのフラグが矛盾しています"
        else:
            assert apply_text_encoder is not None and apply_unet is not None, f"internal error: flag not set"

        if apply_text_encoder:
            print("enable LoRA for text encoder")
        else:
            self.text_encoder_loras = []

        if apply_unet:
            print("enable LoRA for U-Net")
        else:
            self.unet_loras = []

        for lora in self.text_encoder_loras + self.unet_loras:
            lora.apply_to()
            self.add_module(lora.lora_name, lora)

        if self.weights_sd:
            # if some weights are not in state dict, it is ok because initial LoRA does nothing (lora_up is initialized by zeros)
            info = self.load_state_dict(self.weights_sd, False)
            print(f"weights are loaded: {info}")

    # TODO refactor to common function with apply_to
    def merge_to(self, text_encoder, unet, dtype, device):
        assert self.weights_sd is not None, "weights are not loaded"

        apply_text_encoder = apply_unet = False
        for key in self.weights_sd.keys():
            if key.startswith(LoRANetwork.LORA_PREFIX_TEXT_ENCODER):
                apply_text_encoder = True
            elif key.startswith(LoRANetwork.LORA_PREFIX_UNET):
                apply_unet = True

        if apply_text_encoder:
            print("enable LoRA for text encoder")
        else:
            self.text_encoder_loras = []

        if apply_unet:
            print("enable LoRA for U-Net")
        else:
            self.unet_loras = []

        for lora in self.text_encoder_loras + self.unet_loras:
            sd_for_lora = {}
            for key in self.weights_sd.keys():
                if key.startswith(lora.lora_name):
                    sd_for_lora[key[len(lora.lora_name) + 1 :]] = self.weights_sd[key]
            lora.merge_to(sd_for_lora, dtype, device)
        print(f"weights are merged")

    def enable_gradient_checkpointing(self):
        # not supported
        pass

    def prepare_optimizer_params(self, text_encoder_lr, unet_lr):
        def enumerate_params(loras):
            params = []
            for lora in loras:
                params.extend(lora.parameters())
            return params

        self.requires_grad_(True)
        all_params = []

        if self.text_encoder_loras:
            param_data = {"params": enumerate_params(self.text_encoder_loras)}
            if text_encoder_lr is not None:
                param_data["lr"] = text_encoder_lr
            all_params.append(param_data)

        if self.unet_loras:
            param_data = {"params": enumerate_params(self.unet_loras)}
            if unet_lr is not None:
                param_data["lr"] = unet_lr
            all_params.append(param_data)

        return all_params

    def prepare_grad_etc(self, text_encoder, unet):
        self.requires_grad_(True)

    def on_epoch_start(self, text_encoder, unet):
        self.train()

    def get_trainable_params(self):
        return self.parameters()

    def save_weights(self, file, dtype, metadata):
        if metadata is not None and len(metadata) == 0:
            metadata = None

        state_dict = self.state_dict()

        if dtype is not None:
            for key in list(state_dict.keys()):
                v = state_dict[key]
                v = v.detach().clone().to("cpu").to(dtype)
                state_dict[key] = v

        if os.path.splitext(file)[1] == ".safetensors":
            from safetensors.torch import save_file

            # Precalculate model hashes to save time on indexing
            if metadata is None:
                metadata = {}
            model_hash, legacy_hash = precalculate_safetensors_hashes(state_dict, metadata)
            metadata["sshs_model_hash"] = model_hash
            metadata["sshs_legacy_hash"] = legacy_hash

            save_file(state_dict, file, metadata)
        else:
            torch.save(state_dict, file)

    @staticmethod
    def set_regions(networks, image):
        image = image.astype(np.float32) / 255.0
        for i, network in enumerate(networks[:3]):
            # NOTE: consider averaging overwrapping area
            region = image[:, :, i]
            if region.max() == 0:
                continue
            region = torch.tensor(region)
            network.set_region(region)

    def set_region(self, region):
        for lora in self.unet_loras:
            lora.set_region(region)

from io import BytesIO
import safetensors.torch
import hashlib

def precalculate_safetensors_hashes(tensors, metadata):
    """Precalculate the model hashes needed by sd-webui-additional-networks to
    save time on indexing the model later."""

    # Because writing user metadata to the file can change the result of
    # sd_models.model_hash(), only retain the training metadata for purposes of
    # calculating the hash, as they are meant to be immutable
    metadata = {k: v for k, v in metadata.items() if k.startswith("ss_")}

    bytes = safetensors.torch.save(tensors, metadata)
    b = BytesIO(bytes)

    model_hash = addnet_hash_safetensors(b)
    legacy_hash = addnet_hash_legacy(b)
    return model_hash, legacy_hash

def addnet_hash_safetensors(b):
    """New model hash used by sd-webui-additional-networks for .safetensors format files"""
    hash_sha256 = hashlib.sha256()
    blksize = 1024 * 1024

    b.seek(0)
    header = b.read(8)
    n = int.from_bytes(header, "little")

    offset = n + 8
    b.seek(offset)
    for chunk in iter(lambda: b.read(blksize), b""):
        hash_sha256.update(chunk)

    return hash_sha256.hexdigest()

def addnet_hash_legacy(b):
    """Old model hash used by sd-webui-additional-networks for .safetensors format files"""
    m = hashlib.sha256()

    b.seek(0x100000)
    m.update(b.read(0x10000))
    return m.hexdigest()[0:8]