File size: 20,021 Bytes
34097e9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 |
from __future__ import annotations
import os
import platform
import re
import sys
import traceback
from contextlib import contextmanager, suppress
from copy import copy, deepcopy
from pathlib import Path
from textwrap import dedent
from typing import Any
import gradio as gr
import torch
import modules # noqa: F401
from adetailer import (
AFTER_DETAILER,
__version__,
get_models,
mediapipe_predict,
ultralytics_predict,
)
from adetailer.args import ALL_ARGS, BBOX_SORTBY, ADetailerArgs, EnableChecker
from adetailer.common import PredictOutput
from adetailer.mask import filter_by_ratio, mask_preprocess, sort_bboxes
from adetailer.ui import adui, ordinal, suffix
from controlnet_ext import ControlNetExt, controlnet_exists
from controlnet_ext.restore import (
CNHijackRestore,
cn_allow_script_control,
cn_restore_unet_hook,
)
from sd_webui import images, safe, script_callbacks, scripts, shared
from sd_webui.paths import data_path, models_path
from sd_webui.processing import (
StableDiffusionProcessingImg2Img,
create_infotext,
process_images,
)
from sd_webui.shared import cmd_opts, opts, state
with suppress(ImportError):
from rich import print
no_huggingface = getattr(cmd_opts, "ad_no_huggingface", False)
adetailer_dir = Path(models_path, "adetailer")
model_mapping = get_models(adetailer_dir, huggingface=not no_huggingface)
txt2img_submit_button = img2img_submit_button = None
SCRIPT_DEFAULT = "dynamic_prompting,dynamic_thresholding,wildcard_recursive,wildcards"
if (
not adetailer_dir.exists()
and adetailer_dir.parent.exists()
and os.access(adetailer_dir.parent, os.W_OK)
):
adetailer_dir.mkdir()
print(
f"[-] ADetailer initialized. version: {__version__}, num models: {len(model_mapping)}"
)
@contextmanager
def change_torch_load():
orig = torch.load
try:
torch.load = safe.unsafe_torch_load
yield
finally:
torch.load = orig
@contextmanager
def pause_total_tqdm():
orig = opts.data.get("multiple_tqdm", True)
try:
opts.data["multiple_tqdm"] = False
yield
finally:
opts.data["multiple_tqdm"] = orig
class AfterDetailerScript(scripts.Script):
def __init__(self):
super().__init__()
self.ultralytics_device = self.get_ultralytics_device()
self.controlnet_ext = None
self.cn_script = None
self.cn_latest_network = None
def title(self):
return AFTER_DETAILER
def show(self, is_img2img):
return scripts.AlwaysVisible
def ui(self, is_img2img):
num_models = opts.data.get("ad_max_models", 2)
model_list = list(model_mapping.keys())
components, infotext_fields = adui(
num_models,
is_img2img,
model_list,
txt2img_submit_button,
img2img_submit_button,
)
self.infotext_fields = infotext_fields
return components
def init_controlnet_ext(self) -> None:
if self.controlnet_ext is not None:
return
self.controlnet_ext = ControlNetExt()
if controlnet_exists:
try:
self.controlnet_ext.init_controlnet()
except ImportError:
error = traceback.format_exc()
print(
f"[-] ADetailer: ControlNetExt init failed:\n{error}",
file=sys.stderr,
)
def update_controlnet_args(self, p, args: ADetailerArgs) -> None:
if self.controlnet_ext is None:
self.init_controlnet_ext()
if (
self.controlnet_ext is not None
and self.controlnet_ext.cn_available
and args.ad_controlnet_model != "None"
):
self.controlnet_ext.update_scripts_args(
p,
model=args.ad_controlnet_model,
weight=args.ad_controlnet_weight,
guidance_start=args.ad_controlnet_guidance_start,
guidance_end=args.ad_controlnet_guidance_end,
)
def is_ad_enabled(self, *args_) -> bool:
if len(args_) == 0 or (len(args_) == 1 and isinstance(args_[0], bool)):
message = f"""
[-] ADetailer: Not enough arguments passed to ADetailer.
input: {args_!r}
"""
raise ValueError(dedent(message))
a0 = args_[0]
a1 = args_[1] if len(args_) > 1 else None
checker = EnableChecker(a0=a0, a1=a1)
return checker.is_enabled()
def get_args(self, *args_) -> list[ADetailerArgs]:
"""
`args_` is at least 1 in length by `is_ad_enabled` immediately above
"""
args = [arg for arg in args_ if isinstance(arg, dict)]
if not args:
message = f"[-] ADetailer: Invalid arguments passed to ADetailer: {args_!r}"
raise ValueError(message)
all_inputs = []
for n, arg_dict in enumerate(args, 1):
try:
inp = ADetailerArgs(**arg_dict)
except ValueError as e:
msgs = [
f"[-] ADetailer: ValidationError when validating {ordinal(n)} arguments: {e}\n"
]
for attr in ALL_ARGS.attrs:
arg = arg_dict.get(attr)
dtype = type(arg)
arg = "DEFAULT" if arg is None else repr(arg)
msgs.append(f" {attr}: {arg} ({dtype})")
raise ValueError("\n".join(msgs)) from e
all_inputs.append(inp)
return all_inputs
def extra_params(self, arg_list: list[ADetailerArgs]) -> dict:
params = {}
for n, args in enumerate(arg_list):
params.update(args.extra_params(suffix=suffix(n)))
params["ADetailer version"] = __version__
return params
@staticmethod
def get_ultralytics_device() -> str:
'`device = ""` means autodetect'
device = ""
if platform.system() == "Darwin":
return device
if any(getattr(cmd_opts, vram, False) for vram in ["lowvram", "medvram"]):
device = "cpu"
return device
def prompt_blank_replacement(
self, all_prompts: list[str], i: int, default: str
) -> str:
if not all_prompts:
return default
if i < len(all_prompts):
return all_prompts[i]
j = i % len(all_prompts)
return all_prompts[j]
def _get_prompt(
self, ad_prompt: str, all_prompts: list[str], i: int, default: str
) -> list[str]:
prompts = re.split(r"\s*\[SEP\]\s*", ad_prompt)
blank_replacement = self.prompt_blank_replacement(all_prompts, i, default)
for n in range(len(prompts)):
if not prompts[n]:
prompts[n] = blank_replacement
return prompts
def get_prompt(self, p, args: ADetailerArgs) -> tuple[list[str], list[str]]:
i = p._idx
prompt = self._get_prompt(args.ad_prompt, p.all_prompts, i, p.prompt)
negative_prompt = self._get_prompt(
args.ad_negative_prompt, p.all_negative_prompts, i, p.negative_prompt
)
return prompt, negative_prompt
def get_seed(self, p) -> tuple[int, int]:
i = p._idx
if not p.all_seeds:
seed = p.seed
elif i < len(p.all_seeds):
seed = p.all_seeds[i]
else:
j = i % len(p.all_seeds)
seed = p.all_seeds[j]
if not p.all_subseeds:
subseed = p.subseed
elif i < len(p.all_subseeds):
subseed = p.all_subseeds[i]
else:
j = i % len(p.all_subseeds)
subseed = p.all_subseeds[j]
return seed, subseed
def get_width_height(self, p, args: ADetailerArgs) -> tuple[int, int]:
if args.ad_use_inpaint_width_height:
width = args.ad_inpaint_width
height = args.ad_inpaint_height
else:
width = p.width
height = p.height
return width, height
def get_steps(self, p, args: ADetailerArgs) -> int:
if args.ad_use_steps:
return args.ad_steps
return p.steps
def get_cfg_scale(self, p, args: ADetailerArgs) -> float:
if args.ad_use_cfg_scale:
return args.ad_cfg_scale
return p.cfg_scale
def infotext(self, p) -> str:
return create_infotext(
p, p.all_prompts, p.all_seeds, p.all_subseeds, None, 0, 0
)
def write_params_txt(self, p) -> None:
infotext = self.infotext(p)
params_txt = Path(data_path, "params.txt")
params_txt.write_text(infotext, encoding="utf-8")
def script_filter(self, p, args: ADetailerArgs):
script_runner = copy(p.scripts)
script_args = deepcopy(p.script_args)
self.disable_controlnet_units(script_args)
ad_only_seleted_scripts = opts.data.get("ad_only_seleted_scripts", True)
if not ad_only_seleted_scripts:
return script_runner, script_args
ad_script_names = opts.data.get("ad_script_names", SCRIPT_DEFAULT)
script_names_set = {
name
for script_name in ad_script_names.split(",")
for name in (script_name, script_name.strip())
}
if args.ad_controlnet_model != "None":
script_names_set.add("controlnet")
filtered_alwayson = []
for script_object in script_runner.alwayson_scripts:
filepath = script_object.filename
filename = Path(filepath).stem
if filename in script_names_set:
filtered_alwayson.append(script_object)
if filename == "controlnet":
self.cn_script = script_object
self.cn_latest_network = script_object.latest_network
script_runner.alwayson_scripts = filtered_alwayson
return script_runner, script_args
def disable_controlnet_units(self, script_args: list[Any]) -> None:
for obj in script_args:
if "controlnet" in obj.__class__.__name__.lower():
if hasattr(obj, "enabled"):
obj.enabled = False
if hasattr(obj, "input_mode"):
obj.input_mode = getattr(obj.input_mode, "SIMPLE", "simple")
elif isinstance(obj, dict) and "module" in obj:
obj["enabled"] = False
def get_i2i_p(self, p, args: ADetailerArgs, image):
seed, subseed = self.get_seed(p)
width, height = self.get_width_height(p, args)
steps = self.get_steps(p, args)
cfg_scale = self.get_cfg_scale(p, args)
sampler_name = p.sampler_name
if sampler_name in ["PLMS", "UniPC"]:
sampler_name = "Euler"
i2i = StableDiffusionProcessingImg2Img(
init_images=[image],
resize_mode=0,
denoising_strength=args.ad_denoising_strength,
mask=None,
mask_blur=args.ad_mask_blur,
inpainting_fill=1,
inpaint_full_res=args.ad_inpaint_only_masked,
inpaint_full_res_padding=args.ad_inpaint_only_masked_padding,
inpainting_mask_invert=0,
sd_model=p.sd_model,
outpath_samples=p.outpath_samples,
outpath_grids=p.outpath_grids,
prompt="", # replace later
negative_prompt="",
styles=p.styles,
seed=seed,
subseed=subseed,
subseed_strength=p.subseed_strength,
seed_resize_from_h=p.seed_resize_from_h,
seed_resize_from_w=p.seed_resize_from_w,
sampler_name=sampler_name,
batch_size=1,
n_iter=1,
steps=steps,
cfg_scale=cfg_scale,
width=width,
height=height,
restore_faces=args.ad_restore_face,
tiling=p.tiling,
extra_generation_params=p.extra_generation_params,
do_not_save_samples=True,
do_not_save_grid=True,
)
i2i.scripts, i2i.script_args = self.script_filter(p, args)
i2i._disable_adetailer = True
if args.ad_controlnet_model != "None":
self.update_controlnet_args(i2i, args)
else:
i2i.control_net_enabled = False
return i2i
def save_image(self, p, image, *, condition: str, suffix: str) -> None:
i = p._idx
seed, _ = self.get_seed(p)
if opts.data.get(condition, False):
images.save_image(
image=image,
path=p.outpath_samples,
basename="",
seed=seed,
prompt=p.all_prompts[i] if i < len(p.all_prompts) else p.prompt,
extension=opts.samples_format,
info=self.infotext(p),
p=p,
suffix=suffix,
)
def get_ad_model(self, name: str):
if name not in model_mapping:
msg = f"[-] ADetailer: Model {name!r} not found. Available models: {list(model_mapping.keys())}"
raise ValueError(msg)
return model_mapping[name]
def sort_bboxes(self, pred: PredictOutput) -> PredictOutput:
sortby = opts.data.get("ad_bbox_sortby", BBOX_SORTBY[0])
sortby_idx = BBOX_SORTBY.index(sortby)
pred = sort_bboxes(pred, sortby_idx)
return pred
def pred_preprocessing(self, pred: PredictOutput, args: ADetailerArgs):
pred = filter_by_ratio(
pred, low=args.ad_mask_min_ratio, high=args.ad_mask_max_ratio
)
pred = self.sort_bboxes(pred)
return mask_preprocess(
pred.masks,
kernel=args.ad_dilate_erode,
x_offset=args.ad_x_offset,
y_offset=args.ad_y_offset,
merge_invert=args.ad_mask_merge_invert,
)
def i2i_prompts_replace(
self, i2i, prompts: list[str], negative_prompts: list[str], j: int
) -> None:
i1 = min(j, len(prompts) - 1)
i2 = min(j, len(negative_prompts) - 1)
prompt = prompts[i1]
negative_prompt = negative_prompts[i2]
i2i.prompt = prompt
i2i.negative_prompt = negative_prompt
def is_need_call_process(self, p) -> bool:
i = p._idx
n_iter = p.iteration
bs = p.batch_size
return (i == (n_iter + 1) * bs - 1) and (i != len(p.all_prompts) - 1)
def process(self, p, *args_):
if getattr(p, "_disable_adetailer", False):
return
if self.is_ad_enabled(*args_):
arg_list = self.get_args(*args_)
extra_params = self.extra_params(arg_list)
p.extra_generation_params.update(extra_params)
p._idx = -1
def _postprocess_image(self, p, pp, args: ADetailerArgs, *, n: int = 0) -> bool:
"""
Returns
-------
bool
`True` if image was processed, `False` otherwise.
"""
if state.interrupted:
return False
i = p._idx
i2i = self.get_i2i_p(p, args, pp.image)
seed, subseed = self.get_seed(p)
ad_prompts, ad_negatives = self.get_prompt(p, args)
is_mediapipe = args.ad_model.lower().startswith("mediapipe")
kwargs = {}
if is_mediapipe:
predictor = mediapipe_predict
ad_model = args.ad_model
else:
predictor = ultralytics_predict
ad_model = self.get_ad_model(args.ad_model)
kwargs["device"] = self.ultralytics_device
with change_torch_load():
pred = predictor(ad_model, pp.image, args.ad_confidence, **kwargs)
masks = self.pred_preprocessing(pred, args)
if not masks:
print(
f"[-] ADetailer: nothing detected on image {i + 1} with {ordinal(n + 1)} settings."
)
return False
self.save_image(
p,
pred.preview,
condition="ad_save_previews",
suffix="-ad-preview" + suffix(n, "-"),
)
steps = len(masks)
processed = None
state.job_count += steps
if is_mediapipe:
print(f"mediapipe: {steps} detected.")
p2 = copy(i2i)
for j in range(steps):
p2.image_mask = masks[j]
self.i2i_prompts_replace(p2, ad_prompts, ad_negatives, j)
if not re.match(r"^\s*\[SKIP\]\s*$", p2.prompt):
if args.ad_controlnet_model == "None":
cn_restore_unet_hook(p2, self.cn_latest_network)
processed = process_images(p2)
p2 = copy(i2i)
p2.init_images = [processed.images[0]]
p2.seed = seed + j + 1
p2.subseed = subseed + j + 1
if processed is not None:
pp.image = processed.images[0]
return True
return False
def postprocess_image(self, p, pp, *args_):
if getattr(p, "_disable_adetailer", False):
return
if not self.is_ad_enabled(*args_):
return
p._idx = getattr(p, "_idx", -1) + 1
init_image = copy(pp.image)
arg_list = self.get_args(*args_)
is_processed = False
with CNHijackRestore(), pause_total_tqdm(), cn_allow_script_control():
for n, args in enumerate(arg_list):
if args.ad_model == "None":
continue
is_processed |= self._postprocess_image(p, pp, args, n=n)
if is_processed:
self.save_image(
p, init_image, condition="ad_save_images_before", suffix="-ad-before"
)
if self.cn_script is not None and self.is_need_call_process(p):
self.cn_script.process(p)
try:
if p._idx == len(p.all_prompts) - 1:
self.write_params_txt(p)
except Exception:
pass
def on_after_component(component, **_kwargs):
global txt2img_submit_button, img2img_submit_button
if getattr(component, "elem_id", None) == "txt2img_generate":
txt2img_submit_button = component
return
if getattr(component, "elem_id", None) == "img2img_generate":
img2img_submit_button = component
def on_ui_settings():
section = ("ADetailer", AFTER_DETAILER)
shared.opts.add_option(
"ad_max_models",
shared.OptionInfo(
default=2,
label="Max models",
component=gr.Slider,
component_args={"minimum": 1, "maximum": 5, "step": 1},
section=section,
),
)
shared.opts.add_option(
"ad_save_previews",
shared.OptionInfo(False, "Save mask previews", section=section),
)
shared.opts.add_option(
"ad_save_images_before",
shared.OptionInfo(False, "Save images before ADetailer", section=section),
)
shared.opts.add_option(
"ad_only_seleted_scripts",
shared.OptionInfo(
True, "Apply only selected scripts to ADetailer", section=section
),
)
textbox_args = {
"placeholder": "comma-separated list of script names",
"interactive": True,
}
shared.opts.add_option(
"ad_script_names",
shared.OptionInfo(
default=SCRIPT_DEFAULT,
label="Script names to apply to ADetailer (separated by comma)",
component=gr.Textbox,
component_args=textbox_args,
section=section,
),
)
shared.opts.add_option(
"ad_bbox_sortby",
shared.OptionInfo(
default="None",
label="Sort bounding boxes by",
component=gr.Radio,
component_args={"choices": BBOX_SORTBY},
section=section,
),
)
script_callbacks.on_ui_settings(on_ui_settings)
script_callbacks.on_after_component(on_after_component)
|