File size: 6,756 Bytes
306918c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
import torch
import torch.nn as nn
import torch.functional as F

# Define the model
class FloweR(nn.Module):
  def __init__(self, input_size = (384, 384), window_size = 4):
    super(FloweR, self).__init__()

    self.input_size = input_size
    self.window_size = window_size

    # 2 channels for optical flow
    # 1 channel for occlusion mask
    # 3 channels for next frame prediction 
    self.out_channels = 6
    

    #INPUT: 384 x 384 x 4 * 3 

    ### DOWNSCALE ###
    self.conv_block_1 = nn.Sequential(
      nn.Conv2d(3 * self.window_size, 128, kernel_size=3, stride=1, padding='same'),
      nn.ReLU(),
    ) # 384 x 384 x 128

    self.conv_block_2 = nn.Sequential(
      nn.AvgPool2d(2),
      nn.Conv2d(128, 128, kernel_size=3, stride=1, padding='same'),
      nn.ReLU(),
    ) # 192 x 192 x 128

    self.conv_block_3 = nn.Sequential(
      nn.AvgPool2d(2),
      nn.Conv2d(128, 128, kernel_size=3, stride=1, padding='same'),
      nn.ReLU(),
    ) # 96 x 96 x 128

    self.conv_block_4 = nn.Sequential(
      nn.AvgPool2d(2),
      nn.Conv2d(128, 128, kernel_size=3, stride=1, padding='same'),
      nn.ReLU(),
    ) # 48 x 48 x 128

    self.conv_block_5 = nn.Sequential(
      nn.AvgPool2d(2),
      nn.Conv2d(128, 128, kernel_size=3, stride=1, padding='same'),
      nn.ReLU(),
    ) # 24 x 24 x 128

    self.conv_block_6 = nn.Sequential(
      nn.AvgPool2d(2),
      nn.Conv2d(128, 128, kernel_size=3, stride=1, padding='same'),
      nn.ReLU(),
    ) # 12 x 12 x 128

    self.conv_block_7 = nn.Sequential(
      nn.AvgPool2d(2),
      nn.Conv2d(128, 128, kernel_size=3, stride=1, padding='same'),
      nn.ReLU(),
    ) # 6 x 6 x 128

    self.conv_block_8 = nn.Sequential(
      nn.AvgPool2d(2),
      nn.Conv2d(128, 128, kernel_size=3, stride=1, padding='same'),
      nn.ReLU(),
    ) # 3 x 3 x 128 - 9 input tokens

    ### Transformer part ###
    # To be done

    ### UPSCALE ###
    self.conv_block_9 = nn.Sequential(
      nn.Upsample(scale_factor=2),
      nn.Conv2d(128, 128, kernel_size=3, stride=1, padding='same'),
      nn.ReLU(),
    ) # 6 x 6 x 128

    self.conv_block_10 = nn.Sequential(
      nn.Upsample(scale_factor=2),
      nn.Conv2d(128, 128, kernel_size=3, stride=1, padding='same'),
      nn.ReLU(),
    ) # 12 x 12 x 128

    self.conv_block_11 = nn.Sequential(
      nn.Upsample(scale_factor=2),
      nn.Conv2d(128, 128, kernel_size=3, stride=1, padding='same'),
      nn.ReLU(),
    ) # 24 x 24 x 128

    self.conv_block_12 = nn.Sequential(
      nn.Upsample(scale_factor=2),
      nn.Conv2d(128, 128, kernel_size=3, stride=1, padding='same'),
      nn.ReLU(),
    ) # 48 x 48 x 128

    self.conv_block_13 = nn.Sequential(
      nn.Upsample(scale_factor=2),
      nn.Conv2d(128, 128, kernel_size=3, stride=1, padding='same'),
      nn.ReLU(),
    ) # 96 x 96 x 128

    self.conv_block_14 = nn.Sequential(
      nn.Upsample(scale_factor=2),
      nn.Conv2d(128, 128, kernel_size=3, stride=1, padding='same'),
      nn.ReLU(),
    ) # 192 x 192 x 128
    
    self.conv_block_15 = nn.Sequential(
      nn.Upsample(scale_factor=2),
      nn.Conv2d(128, 128, kernel_size=3, stride=1, padding='same'),
      nn.ReLU(),
    ) # 384 x 384 x 128

    self.conv_block_16 = nn.Conv2d(128, self.out_channels, kernel_size=3, stride=1, padding='same')

  def forward(self, input_frames):

    if input_frames.size(1) != self.window_size: 
      raise Exception(f'Shape of the input is not compatable. There should be exactly {self.window_size} frames in an input video.')

    h, w = self.input_size
    # batch, frames, height, width, colors
    input_frames_permuted = input_frames.permute((0, 1, 4, 2, 3))
    # batch, frames, colors, height, width

    in_x = input_frames_permuted.reshape(-1, self.window_size * 3, self.input_size[0], self.input_size[1])

    ### DOWNSCALE ###
    block_1_out = self.conv_block_1(in_x)        # 384 x 384 x 128
    block_2_out = self.conv_block_2(block_1_out) # 192 x 192 x 128
    block_3_out = self.conv_block_3(block_2_out) # 96 x 96 x 128
    block_4_out = self.conv_block_4(block_3_out) # 48 x 48 x 128
    block_5_out = self.conv_block_5(block_4_out) # 24 x 24 x 128
    block_6_out = self.conv_block_6(block_5_out) # 12 x 12 x 128
    block_7_out = self.conv_block_7(block_6_out) # 6 x 6 x 128
    block_8_out = self.conv_block_8(block_7_out) # 3 x 3 x 128

    ### UPSCALE ###
    block_9_out = block_7_out + self.conv_block_9(block_8_out)    # 6 x 6 x 128
    block_10_out = block_6_out + self.conv_block_10(block_9_out)  # 12 x 12 x 128
    block_11_out = block_5_out + self.conv_block_11(block_10_out) # 24 x 24 x 128
    block_12_out = block_4_out + self.conv_block_12(block_11_out) # 48 x 48 x 128
    block_13_out = block_3_out + self.conv_block_13(block_12_out) # 96 x 96 x 128
    block_14_out = block_2_out + self.conv_block_14(block_13_out) # 192 x 192 x 128
    block_15_out = block_1_out + self.conv_block_15(block_14_out) # 384 x 384 x 128

    block_16_out = self.conv_block_16(block_15_out) # 384 x 384 x (2 + 1 + 3)
    out = block_16_out.reshape(-1, self.out_channels, self.input_size[0], self.input_size[1])

    ### for future model training ###
    device = out.get_device()

    pred_flow = out[:,:2,:,:] * 255  # (-255, 255)
    pred_occl = (out[:,2:3,:,:] + 1) / 2 # [0, 1]
    pred_next = out[:,3:6,:,:]

    # Generate sampling grids

    # Create grid to upsample input
    '''    
    d = torch.linspace(-1, 1, 8)
    meshx, meshy = torch.meshgrid((d, d))
    grid = torch.stack((meshy, meshx), 2)
    grid = grid.unsqueeze(0) '''
    
    grid_y, grid_x = torch.meshgrid(torch.arange(0, h), torch.arange(0, w))
    flow_grid = torch.stack((grid_x, grid_y), dim=0).float()
    flow_grid = flow_grid.unsqueeze(0).to(device=device)
    flow_grid = flow_grid + pred_flow

    flow_grid[:, 0, :, :] = 2 * flow_grid[:, 0, :, :] / (w - 1) - 1
    flow_grid[:, 1, :, :] = 2 * flow_grid[:, 1, :, :] / (h - 1) - 1
    # batch, flow_chanels, height, width
    flow_grid = flow_grid.permute(0, 2, 3, 1)
    # batch, height, width, flow_chanels

    previous_frame = input_frames_permuted[:, -1, :, :, :]
    sampling_mode = "bilinear" if self.training else "nearest" 
    warped_frame = torch.nn.functional.grid_sample(previous_frame, flow_grid, mode=sampling_mode, padding_mode="reflection", align_corners=False)
    alpha_mask = torch.clip(pred_occl * 10, 0, 1) * 0.04
    pred_next = torch.clip(pred_next, -1, 1)
    warped_frame = torch.clip(warped_frame, -1, 1)
    next_frame = pred_next * alpha_mask + warped_frame * (1 - alpha_mask)

    res = torch.cat((pred_flow / 255, pred_occl * 2 - 1, next_frame), dim=1)

    # batch, channels, height, width
    res = res.permute((0, 2, 3, 1))
    # batch, height, width, channels
    return res