File size: 9,226 Bytes
306918c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 |
import os
import subprocess
import glob
import cv2
import re
from transformers import AutoProcessor, CLIPSegForImageSegmentation
from PIL import Image
import torch
import numpy as np
def resize_img(img, w, h):
if img.shape[0] + img.shape[1] < h + w:
interpolation = interpolation=cv2.INTER_CUBIC
else:
interpolation = interpolation=cv2.INTER_AREA
return cv2.resize(img, (w, h), interpolation=interpolation)
def resize_all_img(path, frame_width, frame_height):
if not os.path.isdir(path):
return
pngs = glob.glob( os.path.join(path, "*.png") )
img = cv2.imread(pngs[0])
org_h,org_w = img.shape[0],img.shape[1]
if frame_width == -1 and frame_height == -1:
return
elif frame_width == -1 and frame_height != -1:
frame_width = int(frame_height * org_w / org_h)
elif frame_width != -1 and frame_height == -1:
frame_height = int(frame_width * org_h / org_w)
else:
pass
print("({0},{1}) resize to ({2},{3})".format(org_w, org_h, frame_width, frame_height))
for png in pngs:
img = cv2.imread(png)
img = resize_img(img, frame_width, frame_height)
cv2.imwrite(png, img)
def remove_pngs_in_dir(path):
if not os.path.isdir(path):
return
pngs = glob.glob( os.path.join(path, "*.png") )
for png in pngs:
os.remove(png)
def create_and_mask(mask_dir1, mask_dir2, output_dir):
masks = glob.glob( os.path.join(mask_dir1, "*.png") )
for mask1 in masks:
base_name = os.path.basename(mask1)
print("combine {0}".format(base_name))
mask2 = os.path.join(mask_dir2, base_name)
if not os.path.isfile(mask2):
print("{0} not found!!! -> skip".format(mask2))
continue
img_1 = cv2.imread(mask1)
img_2 = cv2.imread(mask2)
img_1 = np.minimum(img_1,img_2)
out_path = os.path.join(output_dir, base_name)
cv2.imwrite(out_path, img_1)
def create_mask_clipseg(input_dir, output_dir, clipseg_mask_prompt, clipseg_exclude_prompt, clipseg_mask_threshold, mask_blur_size, mask_blur_size2):
from modules import devices
devices.torch_gc()
device = devices.get_optimal_device_name()
processor = AutoProcessor.from_pretrained("CIDAS/clipseg-rd64-refined")
model = CLIPSegForImageSegmentation.from_pretrained("CIDAS/clipseg-rd64-refined")
model.to(device)
imgs = glob.glob( os.path.join(input_dir, "*.png") )
texts = [x.strip() for x in clipseg_mask_prompt.split(',')]
exclude_texts = [x.strip() for x in clipseg_exclude_prompt.split(',')] if clipseg_exclude_prompt else None
if exclude_texts:
all_texts = texts + exclude_texts
else:
all_texts = texts
for img_count,img in enumerate(imgs):
image = Image.open(img)
base_name = os.path.basename(img)
inputs = processor(text=all_texts, images=[image] * len(all_texts), padding="max_length", return_tensors="pt")
inputs = inputs.to(device)
with torch.no_grad(), devices.autocast():
outputs = model(**inputs)
if len(all_texts) == 1:
preds = outputs.logits.unsqueeze(0)
else:
preds = outputs.logits
mask_img = None
for i in range(len(all_texts)):
x = torch.sigmoid(preds[i])
x = x.to('cpu').detach().numpy()
# x[x < clipseg_mask_threshold] = 0
x = x > clipseg_mask_threshold
if i < len(texts):
if mask_img is None:
mask_img = x
else:
mask_img = np.maximum(mask_img,x)
else:
mask_img[x > 0] = 0
mask_img = mask_img*255
mask_img = mask_img.astype(np.uint8)
if mask_blur_size > 0:
mask_blur_size = mask_blur_size//2 * 2 + 1
mask_img = cv2.medianBlur(mask_img, mask_blur_size)
if mask_blur_size2 > 0:
mask_blur_size2 = mask_blur_size2//2 * 2 + 1
mask_img = cv2.GaussianBlur(mask_img, (mask_blur_size2, mask_blur_size2), 0)
mask_img = resize_img(mask_img, image.width, image.height)
mask_img = cv2.cvtColor(mask_img, cv2.COLOR_GRAY2RGB)
save_path = os.path.join(output_dir, base_name)
cv2.imwrite(save_path, mask_img)
print("{0} / {1}".format( img_count+1,len(imgs) ))
devices.torch_gc()
def create_mask_transparent_background(input_dir, output_dir, tb_use_fast_mode, tb_use_jit, st1_mask_threshold):
fast_str = " --fast" if tb_use_fast_mode else ""
jit_str = " --jit" if tb_use_jit else ""
venv = "venv"
if 'VIRTUAL_ENV' in os.environ:
venv = os.environ['VIRTUAL_ENV']
bin_path = os.path.join(venv, "Scripts")
bin_path = os.path.join(bin_path, "transparent-background")
if os.path.isfile(bin_path) or os.path.isfile(bin_path + ".exe"):
subprocess.call(bin_path + " --source " + input_dir + " --dest " + output_dir + " --type map" + fast_str + jit_str, shell=True)
else:
subprocess.call("transparent-background --source " + input_dir + " --dest " + output_dir + " --type map" + fast_str + jit_str, shell=True)
mask_imgs = glob.glob( os.path.join(output_dir, "*.png") )
for m in mask_imgs:
img = cv2.imread(m)
img[img < int( 255 * st1_mask_threshold )] = 0
cv2.imwrite(m, img)
p = re.compile(r'([0-9]+)_[a-z]*\.png')
for mask in mask_imgs:
base_name = os.path.basename(mask)
m = p.fullmatch(base_name)
if m:
os.rename(mask, os.path.join(output_dir, m.group(1) + ".png"))
def ebsynth_utility_stage1(dbg, project_args, frame_width, frame_height, st1_masking_method_index, st1_mask_threshold, tb_use_fast_mode, tb_use_jit, clipseg_mask_prompt, clipseg_exclude_prompt, clipseg_mask_threshold, clipseg_mask_blur_size, clipseg_mask_blur_size2, is_invert_mask):
dbg.print("stage1")
dbg.print("")
if st1_masking_method_index == 1 and (not clipseg_mask_prompt):
dbg.print("Error: clipseg_mask_prompt is Empty")
return
project_dir, original_movie_path, frame_path, frame_mask_path, _, _, _ = project_args
if is_invert_mask:
if os.path.isdir( frame_path ) and os.path.isdir( frame_mask_path ):
dbg.print("Skip as it appears that the frame and normal masks have already been generated.")
return
# remove_pngs_in_dir(frame_path)
if frame_mask_path:
remove_pngs_in_dir(frame_mask_path)
if frame_mask_path:
os.makedirs(frame_mask_path, exist_ok=True)
if os.path.isdir( frame_path ):
dbg.print("Skip frame extraction")
else:
os.makedirs(frame_path, exist_ok=True)
png_path = os.path.join(frame_path , "%05d.png")
# ffmpeg.exe -ss 00:00:00 -y -i %1 -qscale 0 -f image2 -c:v png "%05d.png"
subprocess.call("ffmpeg -ss 00:00:00 -y -i " + original_movie_path + " -qscale 0 -f image2 -c:v png " + png_path, shell=True)
dbg.print("frame extracted")
frame_width = max(frame_width,-1)
frame_height = max(frame_height,-1)
if frame_width != -1 or frame_height != -1:
resize_all_img(frame_path, frame_width, frame_height)
if frame_mask_path:
if st1_masking_method_index == 0:
create_mask_transparent_background(frame_path, frame_mask_path, tb_use_fast_mode, tb_use_jit, st1_mask_threshold)
elif st1_masking_method_index == 1:
create_mask_clipseg(frame_path, frame_mask_path, clipseg_mask_prompt, clipseg_exclude_prompt, clipseg_mask_threshold, clipseg_mask_blur_size, clipseg_mask_blur_size2)
elif st1_masking_method_index == 2:
tb_tmp_path = os.path.join(project_dir , "tb_mask_tmp")
if not os.path.isdir( tb_tmp_path ):
os.makedirs(tb_tmp_path, exist_ok=True)
create_mask_transparent_background(frame_path, tb_tmp_path, tb_use_fast_mode, tb_use_jit, st1_mask_threshold)
create_mask_clipseg(frame_path, frame_mask_path, clipseg_mask_prompt, clipseg_exclude_prompt, clipseg_mask_threshold, clipseg_mask_blur_size, clipseg_mask_blur_size2)
create_and_mask(tb_tmp_path,frame_mask_path,frame_mask_path)
dbg.print("mask created")
dbg.print("")
dbg.print("completed.")
def ebsynth_utility_stage1_invert(dbg, frame_mask_path, inv_mask_path):
dbg.print("stage 1 create_invert_mask")
dbg.print("")
if not os.path.isdir( frame_mask_path ):
dbg.print( frame_mask_path + " not found")
dbg.print("Normal masks must be generated previously.")
dbg.print("Do stage 1 with [Ebsynth Utility] Tab -> [configuration] -> [etc]-> [Mask Mode] = Normal setting first")
return
os.makedirs(inv_mask_path, exist_ok=True)
mask_imgs = glob.glob( os.path.join(frame_mask_path, "*.png") )
for m in mask_imgs:
img = cv2.imread(m)
inv = cv2.bitwise_not(img)
base_name = os.path.basename(m)
cv2.imwrite(os.path.join(inv_mask_path,base_name), inv)
dbg.print("")
dbg.print("completed.")
|