File size: 7,524 Bytes
34097e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
"""
Copyright (C) 2019 NVIDIA Corporation.  All rights reserved.
Licensed under the CC BY-NC-SA 4.0 license (https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode).
"""

import re
import torch
import torch.nn as nn

from ldm.modules.diffusionmodules.util import normalization, checkpoint
from ldm.modules.diffusionmodules.openaimodel import ResBlock, UNetModel


class SPADE(nn.Module):
    def __init__(self, norm_nc, label_nc=256, config_text='spadeinstance3x3'):
        super().__init__()
        assert config_text.startswith('spade')
        parsed = re.search('spade(\D+)(\d)x\d', config_text)
        ks = int(parsed.group(2))
        self.param_free_norm = normalization(norm_nc)

        # The dimension of the intermediate embedding space. Yes, hardcoded.
        nhidden = 128

        pw = ks // 2
        self.mlp_shared = nn.Sequential(
            nn.Conv2d(label_nc, nhidden, kernel_size=ks, padding=pw),
            nn.ReLU()
        )
        self.mlp_gamma = nn.Conv2d(nhidden, norm_nc, kernel_size=ks, padding=pw)
        self.mlp_beta = nn.Conv2d(nhidden, norm_nc, kernel_size=ks, padding=pw)

    def forward(self, x_dic, segmap_dic):
        return checkpoint(
            self._forward, (x_dic, segmap_dic), self.parameters(), True
        )

    def _forward(self, x_dic, segmap_dic):
        segmap = segmap_dic[str(x_dic.size(-1))]
        x = x_dic

        # Part 1. generate parameter-free normalized activations
        normalized = self.param_free_norm(x)

        # Part 2. produce scaling and bias conditioned on semantic map
        # segmap = F.interpolate(segmap, size=x.size()[2:], mode='nearest')
        actv = self.mlp_shared(segmap)

        repeat_factor = normalized.shape[0]//segmap.shape[0]
        if repeat_factor > 1:
            out = normalized
            out *= (1 + self.mlp_gamma(actv).repeat_interleave(repeat_factor, dim=0))
            out += self.mlp_beta(actv).repeat_interleave(repeat_factor, dim=0)
        else:
            out = normalized
            out *= (1 + self.mlp_gamma(actv))
            out += self.mlp_beta(actv)
        return out
    
def dual_resblock_forward(self: ResBlock, x, emb, spade: SPADE, get_struct_cond):
    if self.updown:
        in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
        h = in_rest(x)
        h = self.h_upd(h)
        x = self.x_upd(x)
        h = in_conv(h)
    else:
        h = self.in_layers(x)
    emb_out = self.emb_layers(emb).type(h.dtype)
    while len(emb_out.shape) < len(h.shape):
        emb_out = emb_out[..., None]
    if self.use_scale_shift_norm:
        out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
        scale, shift = torch.chunk(emb_out, 2, dim=1)
        h = out_norm(h) * (1 + scale) + shift
        h = out_rest(h)
    else:
        h = h + emb_out
        h = self.out_layers(h)
    h = spade(h, get_struct_cond())
    return self.skip_connection(x) + h

    
class SPADELayers(nn.Module):
    def __init__(self):
        '''
        A container class for fast SPADE layer loading.
        params inferred from the official checkpoint
        '''
        super().__init__()
        self.input_blocks = nn.ModuleList([
            nn.Identity(),
            SPADE(320),
            SPADE(320),
            nn.Identity(),
            SPADE(640),
            SPADE(640),
            nn.Identity(),
            SPADE(1280),
            SPADE(1280),
            nn.Identity(),
            SPADE(1280),
            SPADE(1280),
        ])
        self.middle_block = nn.ModuleList([
            SPADE(1280),
            nn.Identity(),
            SPADE(1280),
        ])
        self.output_blocks = nn.ModuleList([
            SPADE(1280),
            SPADE(1280),
            SPADE(1280),
            SPADE(1280),
            SPADE(1280),
            SPADE(1280),
            SPADE(640),
            SPADE(640),
            SPADE(640),
            SPADE(320),
            SPADE(320),
            SPADE(320),
        ])
        self.input_ids = [1,2,4,5,7,8,10,11]
        self.output_ids = list(range(12))
        self.mid_ids = [0,2]
        self.forward_cache_name = 'org_forward_stablesr'
        self.unet = None


    def hook(self, unet: UNetModel, get_struct_cond):
        # hook all resblocks
        self.unet = unet
        resblock: ResBlock = None
        for i in self.input_ids:
            resblock = unet.input_blocks[i][0]
            # debug
            # assert isinstance(resblock, ResBlock)
            if not hasattr(resblock, self.forward_cache_name):
                setattr(resblock, self.forward_cache_name, resblock._forward)
            resblock._forward = lambda x, timesteps, resblock=resblock, spade=self.input_blocks[i]: dual_resblock_forward(resblock, x, timesteps, spade, get_struct_cond)

        for i in self.output_ids:
            resblock = unet.output_blocks[i][0]
            # debug
            # assert isinstance(resblock, ResBlock)
            if not hasattr(resblock, self.forward_cache_name):
                setattr(resblock, self.forward_cache_name, resblock._forward)
            resblock._forward = lambda x, timesteps, resblock=resblock, spade=self.output_blocks[i]: dual_resblock_forward(resblock, x, timesteps, spade, get_struct_cond)

        for i in self.mid_ids:
            resblock = unet.middle_block[i]
            # debug
            # assert isinstance(resblock, ResBlock)
            if not hasattr(resblock, self.forward_cache_name):
                setattr(resblock, self.forward_cache_name, resblock._forward)
            resblock._forward = lambda x, timesteps, resblock=resblock, spade=self.middle_block[i]: dual_resblock_forward(resblock, x, timesteps, spade, get_struct_cond)

    def unhook(self):
        unet = self.unet
        if unet is None: return
        resblock: ResBlock = None
        for i in self.input_ids:
            resblock = unet.input_blocks[i][0]
            if hasattr(resblock, self.forward_cache_name):
                resblock._forward = getattr(resblock, self.forward_cache_name)
                delattr(resblock, self.forward_cache_name)

        for i in self.output_ids:
            resblock = unet.output_blocks[i][0]
            if hasattr(resblock, self.forward_cache_name):
                resblock._forward = getattr(resblock, self.forward_cache_name)
                delattr(resblock, self.forward_cache_name)

        for i in self.mid_ids:
            resblock = unet.middle_block[i]
            if hasattr(resblock, self.forward_cache_name):
                resblock._forward = getattr(resblock, self.forward_cache_name)
                delattr(resblock, self.forward_cache_name)
        self.unet = None


    def load_from_dict(self, state_dict):
        """
        Load model weights from a dictionary.
        :param state_dict: a dict of parameters.
        """
        filtered_dict = {}
        for k, v in state_dict.items():
            if k.startswith("model.diffusion_model."):
                key = k[len("model.diffusion_model.") :]
                # remove the '.0.spade' within the key
                if 'middle_block' not in key:
                    key = key.replace('.0.spade', '')
                else:
                    key = key.replace('.spade', '')
                filtered_dict[key] = v
        self.load_state_dict(filtered_dict)


if __name__ == '__main__':
    path = '../models/stablesr_sd21.ckpt'
    state_dict = torch.load(path)
    model = SPADELayers()
    model.load_from_dict(state_dict)
    print(model)