a3c6b89051a7c02aa0bd0ae169d7a0a36641797f6750fa736a8a768ec5056573
Browse files- repositories/BLIP/configs/med_config.json +21 -0
- repositories/BLIP/configs/nlvr.yaml +21 -0
- repositories/BLIP/configs/nocaps.yaml +15 -0
- repositories/BLIP/configs/pretrain.yaml +27 -0
- repositories/BLIP/configs/retrieval_coco.yaml +34 -0
- repositories/BLIP/configs/retrieval_flickr.yaml +34 -0
- repositories/BLIP/configs/retrieval_msrvtt.yaml +12 -0
- repositories/BLIP/configs/vqa.yaml +25 -0
- repositories/BLIP/data/__init__.py +101 -0
- repositories/BLIP/data/coco_karpathy_dataset.py +126 -0
- repositories/BLIP/data/flickr30k_dataset.py +93 -0
- repositories/BLIP/data/nlvr_dataset.py +78 -0
- repositories/BLIP/data/nocaps_dataset.py +32 -0
- repositories/BLIP/data/pretrain_dataset.py +59 -0
- repositories/BLIP/data/utils.py +112 -0
- repositories/BLIP/data/video_dataset.py +110 -0
- repositories/BLIP/data/vqa_dataset.py +88 -0
- repositories/BLIP/demo.ipynb +0 -0
- repositories/BLIP/eval_nocaps.py +118 -0
- repositories/BLIP/eval_retrieval_video.py +250 -0
- repositories/BLIP/models/__init__.py +0 -0
- repositories/BLIP/models/blip.py +238 -0
- repositories/BLIP/models/blip_itm.py +76 -0
- repositories/BLIP/models/blip_nlvr.py +103 -0
- repositories/BLIP/models/blip_pretrain.py +339 -0
- repositories/BLIP/models/blip_retrieval.py +319 -0
- repositories/BLIP/models/blip_vqa.py +186 -0
- repositories/BLIP/models/med.py +955 -0
- repositories/BLIP/models/nlvr_encoder.py +843 -0
- repositories/BLIP/models/vit.py +305 -0
- repositories/BLIP/predict.py +98 -0
- repositories/BLIP/pretrain.py +173 -0
- repositories/BLIP/requirements.txt +4 -0
- repositories/BLIP/train_caption.py +206 -0
- repositories/BLIP/train_nlvr.py +213 -0
- repositories/BLIP/train_retrieval.py +345 -0
- repositories/BLIP/train_vqa.py +202 -0
- repositories/BLIP/transform/randaugment.py +340 -0
- repositories/BLIP/utils.py +278 -0
- repositories/CodeFormer/.gitignore +128 -0
- repositories/CodeFormer/README.md +123 -0
- repositories/CodeFormer/assets/CodeFormer_logo.png +0 -0
- repositories/CodeFormer/assets/color_enhancement_result1.png +0 -0
- repositories/CodeFormer/assets/color_enhancement_result2.png +0 -0
- repositories/CodeFormer/assets/inpainting_result1.png +0 -0
- repositories/CodeFormer/assets/inpainting_result2.png +0 -0
- repositories/CodeFormer/assets/network.jpg +0 -0
- repositories/CodeFormer/assets/restoration_result1.png +0 -0
- repositories/CodeFormer/assets/restoration_result2.png +0 -0
- repositories/CodeFormer/assets/restoration_result3.png +0 -0
repositories/BLIP/configs/med_config.json
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"BertModel"
|
4 |
+
],
|
5 |
+
"attention_probs_dropout_prob": 0.1,
|
6 |
+
"hidden_act": "gelu",
|
7 |
+
"hidden_dropout_prob": 0.1,
|
8 |
+
"hidden_size": 768,
|
9 |
+
"initializer_range": 0.02,
|
10 |
+
"intermediate_size": 3072,
|
11 |
+
"layer_norm_eps": 1e-12,
|
12 |
+
"max_position_embeddings": 512,
|
13 |
+
"model_type": "bert",
|
14 |
+
"num_attention_heads": 12,
|
15 |
+
"num_hidden_layers": 12,
|
16 |
+
"pad_token_id": 0,
|
17 |
+
"type_vocab_size": 2,
|
18 |
+
"vocab_size": 30524,
|
19 |
+
"encoder_width": 768,
|
20 |
+
"add_cross_attention": true
|
21 |
+
}
|
repositories/BLIP/configs/nlvr.yaml
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
image_root: '/export/share/datasets/vision/NLVR2/'
|
2 |
+
ann_root: 'annotation'
|
3 |
+
|
4 |
+
# set pretrained as a file path or an url
|
5 |
+
pretrained: 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_nlvr.pth'
|
6 |
+
|
7 |
+
#size of vit model; base or large
|
8 |
+
vit: 'base'
|
9 |
+
batch_size_train: 16
|
10 |
+
batch_size_test: 64
|
11 |
+
vit_grad_ckpt: False
|
12 |
+
vit_ckpt_layer: 0
|
13 |
+
max_epoch: 15
|
14 |
+
|
15 |
+
image_size: 384
|
16 |
+
|
17 |
+
# optimizer
|
18 |
+
weight_decay: 0.05
|
19 |
+
init_lr: 3e-5
|
20 |
+
min_lr: 0
|
21 |
+
|
repositories/BLIP/configs/nocaps.yaml
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
image_root: '/export/share/datasets/vision/nocaps/'
|
2 |
+
ann_root: 'annotation'
|
3 |
+
|
4 |
+
# set pretrained as a file path or an url
|
5 |
+
pretrained: 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_caption_capfilt_large.pth'
|
6 |
+
|
7 |
+
vit: 'base'
|
8 |
+
batch_size: 32
|
9 |
+
|
10 |
+
image_size: 384
|
11 |
+
|
12 |
+
max_length: 20
|
13 |
+
min_length: 5
|
14 |
+
num_beams: 3
|
15 |
+
prompt: 'a picture of '
|
repositories/BLIP/configs/pretrain.yaml
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
train_file: ['/export/share/junnan-li/VL_pretrain/annotation/coco_karpathy_train.json',
|
2 |
+
'/export/share/junnan-li/VL_pretrain/annotation/vg_caption.json',
|
3 |
+
]
|
4 |
+
laion_path: ''
|
5 |
+
|
6 |
+
# size of vit model; base or large
|
7 |
+
vit: 'base'
|
8 |
+
vit_grad_ckpt: False
|
9 |
+
vit_ckpt_layer: 0
|
10 |
+
|
11 |
+
image_size: 224
|
12 |
+
batch_size: 75
|
13 |
+
|
14 |
+
queue_size: 57600
|
15 |
+
alpha: 0.4
|
16 |
+
|
17 |
+
# optimizer
|
18 |
+
weight_decay: 0.05
|
19 |
+
init_lr: 3e-4
|
20 |
+
min_lr: 1e-6
|
21 |
+
warmup_lr: 1e-6
|
22 |
+
lr_decay_rate: 0.9
|
23 |
+
max_epoch: 20
|
24 |
+
warmup_steps: 3000
|
25 |
+
|
26 |
+
|
27 |
+
|
repositories/BLIP/configs/retrieval_coco.yaml
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
image_root: '/export/share/datasets/vision/coco/images/'
|
2 |
+
ann_root: 'annotation'
|
3 |
+
dataset: 'coco'
|
4 |
+
|
5 |
+
# set pretrained as a file path or an url
|
6 |
+
pretrained: 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth'
|
7 |
+
|
8 |
+
# size of vit model; base or large
|
9 |
+
|
10 |
+
vit: 'base'
|
11 |
+
batch_size_train: 32
|
12 |
+
batch_size_test: 64
|
13 |
+
vit_grad_ckpt: True
|
14 |
+
vit_ckpt_layer: 4
|
15 |
+
init_lr: 1e-5
|
16 |
+
|
17 |
+
# vit: 'large'
|
18 |
+
# batch_size_train: 16
|
19 |
+
# batch_size_test: 32
|
20 |
+
# vit_grad_ckpt: True
|
21 |
+
# vit_ckpt_layer: 12
|
22 |
+
# init_lr: 5e-6
|
23 |
+
|
24 |
+
image_size: 384
|
25 |
+
queue_size: 57600
|
26 |
+
alpha: 0.4
|
27 |
+
k_test: 256
|
28 |
+
negative_all_rank: True
|
29 |
+
|
30 |
+
# optimizer
|
31 |
+
weight_decay: 0.05
|
32 |
+
min_lr: 0
|
33 |
+
max_epoch: 6
|
34 |
+
|
repositories/BLIP/configs/retrieval_flickr.yaml
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
image_root: '/export/share/datasets/vision/flickr30k/'
|
2 |
+
ann_root: 'annotation'
|
3 |
+
dataset: 'flickr'
|
4 |
+
|
5 |
+
# set pretrained as a file path or an url
|
6 |
+
pretrained: 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_flickr.pth'
|
7 |
+
|
8 |
+
# size of vit model; base or large
|
9 |
+
|
10 |
+
vit: 'base'
|
11 |
+
batch_size_train: 32
|
12 |
+
batch_size_test: 64
|
13 |
+
vit_grad_ckpt: True
|
14 |
+
vit_ckpt_layer: 4
|
15 |
+
init_lr: 1e-5
|
16 |
+
|
17 |
+
# vit: 'large'
|
18 |
+
# batch_size_train: 16
|
19 |
+
# batch_size_test: 32
|
20 |
+
# vit_grad_ckpt: True
|
21 |
+
# vit_ckpt_layer: 10
|
22 |
+
# init_lr: 5e-6
|
23 |
+
|
24 |
+
image_size: 384
|
25 |
+
queue_size: 57600
|
26 |
+
alpha: 0.4
|
27 |
+
k_test: 128
|
28 |
+
negative_all_rank: False
|
29 |
+
|
30 |
+
# optimizer
|
31 |
+
weight_decay: 0.05
|
32 |
+
min_lr: 0
|
33 |
+
max_epoch: 6
|
34 |
+
|
repositories/BLIP/configs/retrieval_msrvtt.yaml
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
video_root: '/export/share/dongxuli/data/msrvtt_retrieval/videos'
|
2 |
+
ann_root: 'annotation'
|
3 |
+
|
4 |
+
# set pretrained as a file path or an url
|
5 |
+
pretrained: 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth'
|
6 |
+
|
7 |
+
# size of vit model; base or large
|
8 |
+
vit: 'base'
|
9 |
+
batch_size: 64
|
10 |
+
k_test: 128
|
11 |
+
image_size: 384
|
12 |
+
num_frm_test: 8
|
repositories/BLIP/configs/vqa.yaml
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
vqa_root: '/export/share/datasets/vision/VQA/Images/mscoco/' #followed by train2014/
|
2 |
+
vg_root: '/export/share/datasets/vision/visual-genome/' #followed by image/
|
3 |
+
train_files: ['vqa_train','vqa_val','vg_qa']
|
4 |
+
ann_root: 'annotation'
|
5 |
+
|
6 |
+
# set pretrained as a file path or an url
|
7 |
+
pretrained: 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_vqa_capfilt_large.pth'
|
8 |
+
|
9 |
+
# size of vit model; base or large
|
10 |
+
vit: 'base'
|
11 |
+
batch_size_train: 16
|
12 |
+
batch_size_test: 32
|
13 |
+
vit_grad_ckpt: False
|
14 |
+
vit_ckpt_layer: 0
|
15 |
+
init_lr: 2e-5
|
16 |
+
|
17 |
+
image_size: 480
|
18 |
+
|
19 |
+
k_test: 128
|
20 |
+
inference: 'rank'
|
21 |
+
|
22 |
+
# optimizer
|
23 |
+
weight_decay: 0.05
|
24 |
+
min_lr: 0
|
25 |
+
max_epoch: 10
|
repositories/BLIP/data/__init__.py
ADDED
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch.utils.data import DataLoader
|
3 |
+
from torchvision import transforms
|
4 |
+
from torchvision.transforms.functional import InterpolationMode
|
5 |
+
|
6 |
+
from data.coco_karpathy_dataset import coco_karpathy_train, coco_karpathy_caption_eval, coco_karpathy_retrieval_eval
|
7 |
+
from data.nocaps_dataset import nocaps_eval
|
8 |
+
from data.flickr30k_dataset import flickr30k_train, flickr30k_retrieval_eval
|
9 |
+
from data.vqa_dataset import vqa_dataset
|
10 |
+
from data.nlvr_dataset import nlvr_dataset
|
11 |
+
from data.pretrain_dataset import pretrain_dataset
|
12 |
+
from transform.randaugment import RandomAugment
|
13 |
+
|
14 |
+
def create_dataset(dataset, config, min_scale=0.5):
|
15 |
+
|
16 |
+
normalize = transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711))
|
17 |
+
|
18 |
+
transform_train = transforms.Compose([
|
19 |
+
transforms.RandomResizedCrop(config['image_size'],scale=(min_scale, 1.0),interpolation=InterpolationMode.BICUBIC),
|
20 |
+
transforms.RandomHorizontalFlip(),
|
21 |
+
RandomAugment(2,5,isPIL=True,augs=['Identity','AutoContrast','Brightness','Sharpness','Equalize',
|
22 |
+
'ShearX', 'ShearY', 'TranslateX', 'TranslateY', 'Rotate']),
|
23 |
+
transforms.ToTensor(),
|
24 |
+
normalize,
|
25 |
+
])
|
26 |
+
transform_test = transforms.Compose([
|
27 |
+
transforms.Resize((config['image_size'],config['image_size']),interpolation=InterpolationMode.BICUBIC),
|
28 |
+
transforms.ToTensor(),
|
29 |
+
normalize,
|
30 |
+
])
|
31 |
+
|
32 |
+
if dataset=='pretrain':
|
33 |
+
dataset = pretrain_dataset(config['train_file'], config['laion_path'], transform_train)
|
34 |
+
return dataset
|
35 |
+
|
36 |
+
elif dataset=='caption_coco':
|
37 |
+
train_dataset = coco_karpathy_train(transform_train, config['image_root'], config['ann_root'], prompt=config['prompt'])
|
38 |
+
val_dataset = coco_karpathy_caption_eval(transform_test, config['image_root'], config['ann_root'], 'val')
|
39 |
+
test_dataset = coco_karpathy_caption_eval(transform_test, config['image_root'], config['ann_root'], 'test')
|
40 |
+
return train_dataset, val_dataset, test_dataset
|
41 |
+
|
42 |
+
elif dataset=='nocaps':
|
43 |
+
val_dataset = nocaps_eval(transform_test, config['image_root'], config['ann_root'], 'val')
|
44 |
+
test_dataset = nocaps_eval(transform_test, config['image_root'], config['ann_root'], 'test')
|
45 |
+
return val_dataset, test_dataset
|
46 |
+
|
47 |
+
elif dataset=='retrieval_coco':
|
48 |
+
train_dataset = coco_karpathy_train(transform_train, config['image_root'], config['ann_root'])
|
49 |
+
val_dataset = coco_karpathy_retrieval_eval(transform_test, config['image_root'], config['ann_root'], 'val')
|
50 |
+
test_dataset = coco_karpathy_retrieval_eval(transform_test, config['image_root'], config['ann_root'], 'test')
|
51 |
+
return train_dataset, val_dataset, test_dataset
|
52 |
+
|
53 |
+
elif dataset=='retrieval_flickr':
|
54 |
+
train_dataset = flickr30k_train(transform_train, config['image_root'], config['ann_root'])
|
55 |
+
val_dataset = flickr30k_retrieval_eval(transform_test, config['image_root'], config['ann_root'], 'val')
|
56 |
+
test_dataset = flickr30k_retrieval_eval(transform_test, config['image_root'], config['ann_root'], 'test')
|
57 |
+
return train_dataset, val_dataset, test_dataset
|
58 |
+
|
59 |
+
elif dataset=='vqa':
|
60 |
+
train_dataset = vqa_dataset(transform_train, config['ann_root'], config['vqa_root'], config['vg_root'],
|
61 |
+
train_files = config['train_files'], split='train')
|
62 |
+
test_dataset = vqa_dataset(transform_test, config['ann_root'], config['vqa_root'], config['vg_root'], split='test')
|
63 |
+
return train_dataset, test_dataset
|
64 |
+
|
65 |
+
elif dataset=='nlvr':
|
66 |
+
train_dataset = nlvr_dataset(transform_train, config['image_root'], config['ann_root'],'train')
|
67 |
+
val_dataset = nlvr_dataset(transform_test, config['image_root'], config['ann_root'],'val')
|
68 |
+
test_dataset = nlvr_dataset(transform_test, config['image_root'], config['ann_root'],'test')
|
69 |
+
return train_dataset, val_dataset, test_dataset
|
70 |
+
|
71 |
+
|
72 |
+
def create_sampler(datasets, shuffles, num_tasks, global_rank):
|
73 |
+
samplers = []
|
74 |
+
for dataset,shuffle in zip(datasets,shuffles):
|
75 |
+
sampler = torch.utils.data.DistributedSampler(dataset, num_replicas=num_tasks, rank=global_rank, shuffle=shuffle)
|
76 |
+
samplers.append(sampler)
|
77 |
+
return samplers
|
78 |
+
|
79 |
+
|
80 |
+
def create_loader(datasets, samplers, batch_size, num_workers, is_trains, collate_fns):
|
81 |
+
loaders = []
|
82 |
+
for dataset,sampler,bs,n_worker,is_train,collate_fn in zip(datasets,samplers,batch_size,num_workers,is_trains,collate_fns):
|
83 |
+
if is_train:
|
84 |
+
shuffle = (sampler is None)
|
85 |
+
drop_last = True
|
86 |
+
else:
|
87 |
+
shuffle = False
|
88 |
+
drop_last = False
|
89 |
+
loader = DataLoader(
|
90 |
+
dataset,
|
91 |
+
batch_size=bs,
|
92 |
+
num_workers=n_worker,
|
93 |
+
pin_memory=True,
|
94 |
+
sampler=sampler,
|
95 |
+
shuffle=shuffle,
|
96 |
+
collate_fn=collate_fn,
|
97 |
+
drop_last=drop_last,
|
98 |
+
)
|
99 |
+
loaders.append(loader)
|
100 |
+
return loaders
|
101 |
+
|
repositories/BLIP/data/coco_karpathy_dataset.py
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
|
4 |
+
from torch.utils.data import Dataset
|
5 |
+
from torchvision.datasets.utils import download_url
|
6 |
+
|
7 |
+
from PIL import Image
|
8 |
+
|
9 |
+
from data.utils import pre_caption
|
10 |
+
|
11 |
+
class coco_karpathy_train(Dataset):
|
12 |
+
def __init__(self, transform, image_root, ann_root, max_words=30, prompt=''):
|
13 |
+
'''
|
14 |
+
image_root (string): Root directory of images (e.g. coco/images/)
|
15 |
+
ann_root (string): directory to store the annotation file
|
16 |
+
'''
|
17 |
+
url = 'https://storage.googleapis.com/sfr-vision-language-research/datasets/coco_karpathy_train.json'
|
18 |
+
filename = 'coco_karpathy_train.json'
|
19 |
+
|
20 |
+
download_url(url,ann_root)
|
21 |
+
|
22 |
+
self.annotation = json.load(open(os.path.join(ann_root,filename),'r'))
|
23 |
+
self.transform = transform
|
24 |
+
self.image_root = image_root
|
25 |
+
self.max_words = max_words
|
26 |
+
self.prompt = prompt
|
27 |
+
|
28 |
+
self.img_ids = {}
|
29 |
+
n = 0
|
30 |
+
for ann in self.annotation:
|
31 |
+
img_id = ann['image_id']
|
32 |
+
if img_id not in self.img_ids.keys():
|
33 |
+
self.img_ids[img_id] = n
|
34 |
+
n += 1
|
35 |
+
|
36 |
+
def __len__(self):
|
37 |
+
return len(self.annotation)
|
38 |
+
|
39 |
+
def __getitem__(self, index):
|
40 |
+
|
41 |
+
ann = self.annotation[index]
|
42 |
+
|
43 |
+
image_path = os.path.join(self.image_root,ann['image'])
|
44 |
+
image = Image.open(image_path).convert('RGB')
|
45 |
+
image = self.transform(image)
|
46 |
+
|
47 |
+
caption = self.prompt+pre_caption(ann['caption'], self.max_words)
|
48 |
+
|
49 |
+
return image, caption, self.img_ids[ann['image_id']]
|
50 |
+
|
51 |
+
|
52 |
+
class coco_karpathy_caption_eval(Dataset):
|
53 |
+
def __init__(self, transform, image_root, ann_root, split):
|
54 |
+
'''
|
55 |
+
image_root (string): Root directory of images (e.g. coco/images/)
|
56 |
+
ann_root (string): directory to store the annotation file
|
57 |
+
split (string): val or test
|
58 |
+
'''
|
59 |
+
urls = {'val':'https://storage.googleapis.com/sfr-vision-language-research/datasets/coco_karpathy_val.json',
|
60 |
+
'test':'https://storage.googleapis.com/sfr-vision-language-research/datasets/coco_karpathy_test.json'}
|
61 |
+
filenames = {'val':'coco_karpathy_val.json','test':'coco_karpathy_test.json'}
|
62 |
+
|
63 |
+
download_url(urls[split],ann_root)
|
64 |
+
|
65 |
+
self.annotation = json.load(open(os.path.join(ann_root,filenames[split]),'r'))
|
66 |
+
self.transform = transform
|
67 |
+
self.image_root = image_root
|
68 |
+
|
69 |
+
def __len__(self):
|
70 |
+
return len(self.annotation)
|
71 |
+
|
72 |
+
def __getitem__(self, index):
|
73 |
+
|
74 |
+
ann = self.annotation[index]
|
75 |
+
|
76 |
+
image_path = os.path.join(self.image_root,ann['image'])
|
77 |
+
image = Image.open(image_path).convert('RGB')
|
78 |
+
image = self.transform(image)
|
79 |
+
|
80 |
+
img_id = ann['image'].split('/')[-1].strip('.jpg').split('_')[-1]
|
81 |
+
|
82 |
+
return image, int(img_id)
|
83 |
+
|
84 |
+
|
85 |
+
class coco_karpathy_retrieval_eval(Dataset):
|
86 |
+
def __init__(self, transform, image_root, ann_root, split, max_words=30):
|
87 |
+
'''
|
88 |
+
image_root (string): Root directory of images (e.g. coco/images/)
|
89 |
+
ann_root (string): directory to store the annotation file
|
90 |
+
split (string): val or test
|
91 |
+
'''
|
92 |
+
urls = {'val':'https://storage.googleapis.com/sfr-vision-language-research/datasets/coco_karpathy_val.json',
|
93 |
+
'test':'https://storage.googleapis.com/sfr-vision-language-research/datasets/coco_karpathy_test.json'}
|
94 |
+
filenames = {'val':'coco_karpathy_val.json','test':'coco_karpathy_test.json'}
|
95 |
+
|
96 |
+
download_url(urls[split],ann_root)
|
97 |
+
|
98 |
+
self.annotation = json.load(open(os.path.join(ann_root,filenames[split]),'r'))
|
99 |
+
self.transform = transform
|
100 |
+
self.image_root = image_root
|
101 |
+
|
102 |
+
self.text = []
|
103 |
+
self.image = []
|
104 |
+
self.txt2img = {}
|
105 |
+
self.img2txt = {}
|
106 |
+
|
107 |
+
txt_id = 0
|
108 |
+
for img_id, ann in enumerate(self.annotation):
|
109 |
+
self.image.append(ann['image'])
|
110 |
+
self.img2txt[img_id] = []
|
111 |
+
for i, caption in enumerate(ann['caption']):
|
112 |
+
self.text.append(pre_caption(caption,max_words))
|
113 |
+
self.img2txt[img_id].append(txt_id)
|
114 |
+
self.txt2img[txt_id] = img_id
|
115 |
+
txt_id += 1
|
116 |
+
|
117 |
+
def __len__(self):
|
118 |
+
return len(self.annotation)
|
119 |
+
|
120 |
+
def __getitem__(self, index):
|
121 |
+
|
122 |
+
image_path = os.path.join(self.image_root, self.annotation[index]['image'])
|
123 |
+
image = Image.open(image_path).convert('RGB')
|
124 |
+
image = self.transform(image)
|
125 |
+
|
126 |
+
return image, index
|
repositories/BLIP/data/flickr30k_dataset.py
ADDED
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
|
4 |
+
from torch.utils.data import Dataset
|
5 |
+
from torchvision.datasets.utils import download_url
|
6 |
+
|
7 |
+
from PIL import Image
|
8 |
+
|
9 |
+
from data.utils import pre_caption
|
10 |
+
|
11 |
+
class flickr30k_train(Dataset):
|
12 |
+
def __init__(self, transform, image_root, ann_root, max_words=30, prompt=''):
|
13 |
+
'''
|
14 |
+
image_root (string): Root directory of images (e.g. flickr30k/)
|
15 |
+
ann_root (string): directory to store the annotation file
|
16 |
+
'''
|
17 |
+
url = 'https://storage.googleapis.com/sfr-vision-language-research/datasets/flickr30k_train.json'
|
18 |
+
filename = 'flickr30k_train.json'
|
19 |
+
|
20 |
+
download_url(url,ann_root)
|
21 |
+
|
22 |
+
self.annotation = json.load(open(os.path.join(ann_root,filename),'r'))
|
23 |
+
self.transform = transform
|
24 |
+
self.image_root = image_root
|
25 |
+
self.max_words = max_words
|
26 |
+
self.prompt = prompt
|
27 |
+
|
28 |
+
self.img_ids = {}
|
29 |
+
n = 0
|
30 |
+
for ann in self.annotation:
|
31 |
+
img_id = ann['image_id']
|
32 |
+
if img_id not in self.img_ids.keys():
|
33 |
+
self.img_ids[img_id] = n
|
34 |
+
n += 1
|
35 |
+
|
36 |
+
def __len__(self):
|
37 |
+
return len(self.annotation)
|
38 |
+
|
39 |
+
def __getitem__(self, index):
|
40 |
+
|
41 |
+
ann = self.annotation[index]
|
42 |
+
|
43 |
+
image_path = os.path.join(self.image_root,ann['image'])
|
44 |
+
image = Image.open(image_path).convert('RGB')
|
45 |
+
image = self.transform(image)
|
46 |
+
|
47 |
+
caption = self.prompt+pre_caption(ann['caption'], self.max_words)
|
48 |
+
|
49 |
+
return image, caption, self.img_ids[ann['image_id']]
|
50 |
+
|
51 |
+
|
52 |
+
class flickr30k_retrieval_eval(Dataset):
|
53 |
+
def __init__(self, transform, image_root, ann_root, split, max_words=30):
|
54 |
+
'''
|
55 |
+
image_root (string): Root directory of images (e.g. flickr30k/)
|
56 |
+
ann_root (string): directory to store the annotation file
|
57 |
+
split (string): val or test
|
58 |
+
'''
|
59 |
+
urls = {'val':'https://storage.googleapis.com/sfr-vision-language-research/datasets/flickr30k_val.json',
|
60 |
+
'test':'https://storage.googleapis.com/sfr-vision-language-research/datasets/flickr30k_test.json'}
|
61 |
+
filenames = {'val':'flickr30k_val.json','test':'flickr30k_test.json'}
|
62 |
+
|
63 |
+
download_url(urls[split],ann_root)
|
64 |
+
|
65 |
+
self.annotation = json.load(open(os.path.join(ann_root,filenames[split]),'r'))
|
66 |
+
self.transform = transform
|
67 |
+
self.image_root = image_root
|
68 |
+
|
69 |
+
self.text = []
|
70 |
+
self.image = []
|
71 |
+
self.txt2img = {}
|
72 |
+
self.img2txt = {}
|
73 |
+
|
74 |
+
txt_id = 0
|
75 |
+
for img_id, ann in enumerate(self.annotation):
|
76 |
+
self.image.append(ann['image'])
|
77 |
+
self.img2txt[img_id] = []
|
78 |
+
for i, caption in enumerate(ann['caption']):
|
79 |
+
self.text.append(pre_caption(caption,max_words))
|
80 |
+
self.img2txt[img_id].append(txt_id)
|
81 |
+
self.txt2img[txt_id] = img_id
|
82 |
+
txt_id += 1
|
83 |
+
|
84 |
+
def __len__(self):
|
85 |
+
return len(self.annotation)
|
86 |
+
|
87 |
+
def __getitem__(self, index):
|
88 |
+
|
89 |
+
image_path = os.path.join(self.image_root, self.annotation[index]['image'])
|
90 |
+
image = Image.open(image_path).convert('RGB')
|
91 |
+
image = self.transform(image)
|
92 |
+
|
93 |
+
return image, index
|
repositories/BLIP/data/nlvr_dataset.py
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
import random
|
4 |
+
|
5 |
+
from torch.utils.data import Dataset
|
6 |
+
from torchvision.datasets.utils import download_url
|
7 |
+
|
8 |
+
from PIL import Image
|
9 |
+
|
10 |
+
from data.utils import pre_caption
|
11 |
+
|
12 |
+
class nlvr_dataset(Dataset):
|
13 |
+
def __init__(self, transform, image_root, ann_root, split):
|
14 |
+
'''
|
15 |
+
image_root (string): Root directory of images
|
16 |
+
ann_root (string): directory to store the annotation file
|
17 |
+
split (string): train, val or test
|
18 |
+
'''
|
19 |
+
urls = {'train':'https://storage.googleapis.com/sfr-vision-language-research/datasets/nlvr_train.json',
|
20 |
+
'val':'https://storage.googleapis.com/sfr-vision-language-research/datasets/nlvr_dev.json',
|
21 |
+
'test':'https://storage.googleapis.com/sfr-vision-language-research/datasets/nlvr_test.json'}
|
22 |
+
filenames = {'train':'nlvr_train.json','val':'nlvr_dev.json','test':'nlvr_test.json'}
|
23 |
+
|
24 |
+
download_url(urls[split],ann_root)
|
25 |
+
self.annotation = json.load(open(os.path.join(ann_root,filenames[split]),'r'))
|
26 |
+
|
27 |
+
self.transform = transform
|
28 |
+
self.image_root = image_root
|
29 |
+
|
30 |
+
|
31 |
+
def __len__(self):
|
32 |
+
return len(self.annotation)
|
33 |
+
|
34 |
+
|
35 |
+
def __getitem__(self, index):
|
36 |
+
|
37 |
+
ann = self.annotation[index]
|
38 |
+
|
39 |
+
image0_path = os.path.join(self.image_root,ann['images'][0])
|
40 |
+
image0 = Image.open(image0_path).convert('RGB')
|
41 |
+
image0 = self.transform(image0)
|
42 |
+
|
43 |
+
image1_path = os.path.join(self.image_root,ann['images'][1])
|
44 |
+
image1 = Image.open(image1_path).convert('RGB')
|
45 |
+
image1 = self.transform(image1)
|
46 |
+
|
47 |
+
sentence = pre_caption(ann['sentence'], 40)
|
48 |
+
|
49 |
+
if ann['label']=='True':
|
50 |
+
label = 1
|
51 |
+
else:
|
52 |
+
label = 0
|
53 |
+
|
54 |
+
words = sentence.split(' ')
|
55 |
+
|
56 |
+
if 'left' not in words and 'right' not in words:
|
57 |
+
if random.random()<0.5:
|
58 |
+
return image0, image1, sentence, label
|
59 |
+
else:
|
60 |
+
return image1, image0, sentence, label
|
61 |
+
else:
|
62 |
+
if random.random()<0.5:
|
63 |
+
return image0, image1, sentence, label
|
64 |
+
else:
|
65 |
+
new_words = []
|
66 |
+
for word in words:
|
67 |
+
if word=='left':
|
68 |
+
new_words.append('right')
|
69 |
+
elif word=='right':
|
70 |
+
new_words.append('left')
|
71 |
+
else:
|
72 |
+
new_words.append(word)
|
73 |
+
|
74 |
+
sentence = ' '.join(new_words)
|
75 |
+
return image1, image0, sentence, label
|
76 |
+
|
77 |
+
|
78 |
+
|
repositories/BLIP/data/nocaps_dataset.py
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
|
4 |
+
from torch.utils.data import Dataset
|
5 |
+
from torchvision.datasets.utils import download_url
|
6 |
+
|
7 |
+
from PIL import Image
|
8 |
+
|
9 |
+
class nocaps_eval(Dataset):
|
10 |
+
def __init__(self, transform, image_root, ann_root, split):
|
11 |
+
urls = {'val':'https://storage.googleapis.com/sfr-vision-language-research/datasets/nocaps_val.json',
|
12 |
+
'test':'https://storage.googleapis.com/sfr-vision-language-research/datasets/nocaps_test.json'}
|
13 |
+
filenames = {'val':'nocaps_val.json','test':'nocaps_test.json'}
|
14 |
+
|
15 |
+
download_url(urls[split],ann_root)
|
16 |
+
|
17 |
+
self.annotation = json.load(open(os.path.join(ann_root,filenames[split]),'r'))
|
18 |
+
self.transform = transform
|
19 |
+
self.image_root = image_root
|
20 |
+
|
21 |
+
def __len__(self):
|
22 |
+
return len(self.annotation)
|
23 |
+
|
24 |
+
def __getitem__(self, index):
|
25 |
+
|
26 |
+
ann = self.annotation[index]
|
27 |
+
|
28 |
+
image_path = os.path.join(self.image_root,ann['image'])
|
29 |
+
image = Image.open(image_path).convert('RGB')
|
30 |
+
image = self.transform(image)
|
31 |
+
|
32 |
+
return image, int(ann['img_id'])
|
repositories/BLIP/data/pretrain_dataset.py
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
import random
|
4 |
+
|
5 |
+
from torch.utils.data import Dataset
|
6 |
+
|
7 |
+
from PIL import Image
|
8 |
+
from PIL import ImageFile
|
9 |
+
ImageFile.LOAD_TRUNCATED_IMAGES = True
|
10 |
+
Image.MAX_IMAGE_PIXELS = None
|
11 |
+
|
12 |
+
from data.utils import pre_caption
|
13 |
+
import os,glob
|
14 |
+
|
15 |
+
class pretrain_dataset(Dataset):
|
16 |
+
def __init__(self, ann_file, laion_path, transform):
|
17 |
+
|
18 |
+
self.ann_pretrain = []
|
19 |
+
for f in ann_file:
|
20 |
+
print('loading '+f)
|
21 |
+
ann = json.load(open(f,'r'))
|
22 |
+
self.ann_pretrain += ann
|
23 |
+
|
24 |
+
self.laion_path = laion_path
|
25 |
+
if self.laion_path:
|
26 |
+
self.laion_files = glob.glob(os.path.join(laion_path,'*.json'))
|
27 |
+
|
28 |
+
print('loading '+self.laion_files[0])
|
29 |
+
with open(self.laion_files[0],'r') as f:
|
30 |
+
self.ann_laion = json.load(f)
|
31 |
+
|
32 |
+
self.annotation = self.ann_pretrain + self.ann_laion
|
33 |
+
else:
|
34 |
+
self.annotation = self.ann_pretrain
|
35 |
+
|
36 |
+
self.transform = transform
|
37 |
+
|
38 |
+
|
39 |
+
def reload_laion(self, epoch):
|
40 |
+
n = epoch%len(self.laion_files)
|
41 |
+
print('loading '+self.laion_files[n])
|
42 |
+
with open(self.laion_files[n],'r') as f:
|
43 |
+
self.ann_laion = json.load(f)
|
44 |
+
|
45 |
+
self.annotation = self.ann_pretrain + self.ann_laion
|
46 |
+
|
47 |
+
|
48 |
+
def __len__(self):
|
49 |
+
return len(self.annotation)
|
50 |
+
|
51 |
+
def __getitem__(self, index):
|
52 |
+
|
53 |
+
ann = self.annotation[index]
|
54 |
+
|
55 |
+
image = Image.open(ann['image']).convert('RGB')
|
56 |
+
image = self.transform(image)
|
57 |
+
caption = pre_caption(ann['caption'],30)
|
58 |
+
|
59 |
+
return image, caption
|
repositories/BLIP/data/utils.py
ADDED
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
import json
|
3 |
+
import os
|
4 |
+
|
5 |
+
import torch
|
6 |
+
import torch.distributed as dist
|
7 |
+
|
8 |
+
import utils
|
9 |
+
|
10 |
+
def pre_caption(caption,max_words=50):
|
11 |
+
caption = re.sub(
|
12 |
+
r"([.!\"()*#:;~])",
|
13 |
+
' ',
|
14 |
+
caption.lower(),
|
15 |
+
)
|
16 |
+
caption = re.sub(
|
17 |
+
r"\s{2,}",
|
18 |
+
' ',
|
19 |
+
caption,
|
20 |
+
)
|
21 |
+
caption = caption.rstrip('\n')
|
22 |
+
caption = caption.strip(' ')
|
23 |
+
|
24 |
+
#truncate caption
|
25 |
+
caption_words = caption.split(' ')
|
26 |
+
if len(caption_words)>max_words:
|
27 |
+
caption = ' '.join(caption_words[:max_words])
|
28 |
+
|
29 |
+
return caption
|
30 |
+
|
31 |
+
def pre_question(question,max_ques_words=50):
|
32 |
+
question = re.sub(
|
33 |
+
r"([.!\"()*#:;~])",
|
34 |
+
'',
|
35 |
+
question.lower(),
|
36 |
+
)
|
37 |
+
question = question.rstrip(' ')
|
38 |
+
|
39 |
+
#truncate question
|
40 |
+
question_words = question.split(' ')
|
41 |
+
if len(question_words)>max_ques_words:
|
42 |
+
question = ' '.join(question_words[:max_ques_words])
|
43 |
+
|
44 |
+
return question
|
45 |
+
|
46 |
+
|
47 |
+
def save_result(result, result_dir, filename, remove_duplicate=''):
|
48 |
+
result_file = os.path.join(result_dir, '%s_rank%d.json'%(filename,utils.get_rank()))
|
49 |
+
final_result_file = os.path.join(result_dir, '%s.json'%filename)
|
50 |
+
|
51 |
+
json.dump(result,open(result_file,'w'))
|
52 |
+
|
53 |
+
dist.barrier()
|
54 |
+
|
55 |
+
if utils.is_main_process():
|
56 |
+
# combine results from all processes
|
57 |
+
result = []
|
58 |
+
|
59 |
+
for rank in range(utils.get_world_size()):
|
60 |
+
result_file = os.path.join(result_dir, '%s_rank%d.json'%(filename,rank))
|
61 |
+
res = json.load(open(result_file,'r'))
|
62 |
+
result += res
|
63 |
+
|
64 |
+
if remove_duplicate:
|
65 |
+
result_new = []
|
66 |
+
id_list = []
|
67 |
+
for res in result:
|
68 |
+
if res[remove_duplicate] not in id_list:
|
69 |
+
id_list.append(res[remove_duplicate])
|
70 |
+
result_new.append(res)
|
71 |
+
result = result_new
|
72 |
+
|
73 |
+
json.dump(result,open(final_result_file,'w'))
|
74 |
+
print('result file saved to %s'%final_result_file)
|
75 |
+
|
76 |
+
return final_result_file
|
77 |
+
|
78 |
+
|
79 |
+
|
80 |
+
from pycocotools.coco import COCO
|
81 |
+
from pycocoevalcap.eval import COCOEvalCap
|
82 |
+
from torchvision.datasets.utils import download_url
|
83 |
+
|
84 |
+
def coco_caption_eval(coco_gt_root, results_file, split):
|
85 |
+
urls = {'val':'https://storage.googleapis.com/sfr-vision-language-research/datasets/coco_karpathy_val_gt.json',
|
86 |
+
'test':'https://storage.googleapis.com/sfr-vision-language-research/datasets/coco_karpathy_test_gt.json'}
|
87 |
+
filenames = {'val':'coco_karpathy_val_gt.json','test':'coco_karpathy_test_gt.json'}
|
88 |
+
|
89 |
+
download_url(urls[split],coco_gt_root)
|
90 |
+
annotation_file = os.path.join(coco_gt_root,filenames[split])
|
91 |
+
|
92 |
+
# create coco object and coco_result object
|
93 |
+
coco = COCO(annotation_file)
|
94 |
+
coco_result = coco.loadRes(results_file)
|
95 |
+
|
96 |
+
# create coco_eval object by taking coco and coco_result
|
97 |
+
coco_eval = COCOEvalCap(coco, coco_result)
|
98 |
+
|
99 |
+
# evaluate on a subset of images by setting
|
100 |
+
# coco_eval.params['image_id'] = coco_result.getImgIds()
|
101 |
+
# please remove this line when evaluating the full validation set
|
102 |
+
# coco_eval.params['image_id'] = coco_result.getImgIds()
|
103 |
+
|
104 |
+
# evaluate results
|
105 |
+
# SPICE will take a few minutes the first time, but speeds up due to caching
|
106 |
+
coco_eval.evaluate()
|
107 |
+
|
108 |
+
# print output evaluation scores
|
109 |
+
for metric, score in coco_eval.eval.items():
|
110 |
+
print(f'{metric}: {score:.3f}')
|
111 |
+
|
112 |
+
return coco_eval
|
repositories/BLIP/data/video_dataset.py
ADDED
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from torch.utils.data import Dataset
|
2 |
+
from torchvision.datasets.utils import download_url
|
3 |
+
|
4 |
+
from PIL import Image
|
5 |
+
import torch
|
6 |
+
import numpy as np
|
7 |
+
import random
|
8 |
+
import decord
|
9 |
+
from decord import VideoReader
|
10 |
+
import json
|
11 |
+
import os
|
12 |
+
from data.utils import pre_caption
|
13 |
+
|
14 |
+
decord.bridge.set_bridge("torch")
|
15 |
+
|
16 |
+
class ImageNorm(object):
|
17 |
+
"""Apply Normalization to Image Pixels on GPU
|
18 |
+
"""
|
19 |
+
def __init__(self, mean, std):
|
20 |
+
self.mean = torch.tensor(mean).view(1, 3, 1, 1)
|
21 |
+
self.std = torch.tensor(std).view(1, 3, 1, 1)
|
22 |
+
|
23 |
+
def __call__(self, img):
|
24 |
+
|
25 |
+
if torch.max(img) > 1 and self.mean.max() <= 1:
|
26 |
+
img.div_(255.)
|
27 |
+
return img.sub_(self.mean).div_(self.std)
|
28 |
+
|
29 |
+
def load_jsonl(filename):
|
30 |
+
with open(filename, "r") as f:
|
31 |
+
return [json.loads(l.strip("\n")) for l in f.readlines()]
|
32 |
+
|
33 |
+
|
34 |
+
class VideoDataset(Dataset):
|
35 |
+
|
36 |
+
def __init__(self, video_root, ann_root, num_frm=4, frm_sampling_strategy="rand", max_img_size=384, video_fmt='.mp4'):
|
37 |
+
'''
|
38 |
+
image_root (string): Root directory of video
|
39 |
+
ann_root (string): directory to store the annotation file
|
40 |
+
'''
|
41 |
+
url = 'https://storage.googleapis.com/sfr-vision-language-research/datasets/msrvtt_test.jsonl'
|
42 |
+
filename = 'msrvtt_test.jsonl'
|
43 |
+
|
44 |
+
download_url(url,ann_root)
|
45 |
+
self.annotation = load_jsonl(os.path.join(ann_root,filename))
|
46 |
+
|
47 |
+
self.num_frm = num_frm
|
48 |
+
self.frm_sampling_strategy = frm_sampling_strategy
|
49 |
+
self.max_img_size = max_img_size
|
50 |
+
self.video_root = video_root
|
51 |
+
self.video_fmt = video_fmt
|
52 |
+
self.img_norm = ImageNorm(mean=(0.48145466, 0.4578275, 0.40821073), std=(0.26862954, 0.26130258, 0.27577711))
|
53 |
+
|
54 |
+
self.text = [pre_caption(ann['caption'],40) for ann in self.annotation]
|
55 |
+
self.txt2video = [i for i in range(len(self.annotation))]
|
56 |
+
self.video2txt = self.txt2video
|
57 |
+
|
58 |
+
|
59 |
+
def __len__(self):
|
60 |
+
return len(self.annotation)
|
61 |
+
|
62 |
+
def __getitem__(self, index):
|
63 |
+
|
64 |
+
ann = self.annotation[index]
|
65 |
+
|
66 |
+
video_path = os.path.join(self.video_root, ann['clip_name'] + self.video_fmt)
|
67 |
+
|
68 |
+
vid_frm_array = self._load_video_from_path_decord(video_path, height=self.max_img_size, width=self.max_img_size)
|
69 |
+
|
70 |
+
video = self.img_norm(vid_frm_array.float())
|
71 |
+
|
72 |
+
return video, ann['clip_name']
|
73 |
+
|
74 |
+
|
75 |
+
|
76 |
+
def _load_video_from_path_decord(self, video_path, height=None, width=None, start_time=None, end_time=None, fps=-1):
|
77 |
+
try:
|
78 |
+
if not height or not width:
|
79 |
+
vr = VideoReader(video_path)
|
80 |
+
else:
|
81 |
+
vr = VideoReader(video_path, width=width, height=height)
|
82 |
+
|
83 |
+
vlen = len(vr)
|
84 |
+
|
85 |
+
if start_time or end_time:
|
86 |
+
assert fps > 0, 'must provide video fps if specifying start and end time.'
|
87 |
+
|
88 |
+
start_idx = min(int(start_time * fps), vlen)
|
89 |
+
end_idx = min(int(end_time * fps), vlen)
|
90 |
+
else:
|
91 |
+
start_idx, end_idx = 0, vlen
|
92 |
+
|
93 |
+
if self.frm_sampling_strategy == 'uniform':
|
94 |
+
frame_indices = np.arange(start_idx, end_idx, vlen / self.num_frm, dtype=int)
|
95 |
+
elif self.frm_sampling_strategy == 'rand':
|
96 |
+
frame_indices = sorted(random.sample(range(vlen), self.num_frm))
|
97 |
+
elif self.frm_sampling_strategy == 'headtail':
|
98 |
+
frame_indices_head = sorted(random.sample(range(vlen // 2), self.num_frm // 2))
|
99 |
+
frame_indices_tail = sorted(random.sample(range(vlen // 2, vlen), self.num_frm // 2))
|
100 |
+
frame_indices = frame_indices_head + frame_indices_tail
|
101 |
+
else:
|
102 |
+
raise NotImplementedError('Invalid sampling strategy {} '.format(self.frm_sampling_strategy))
|
103 |
+
|
104 |
+
raw_sample_frms = vr.get_batch(frame_indices)
|
105 |
+
except Exception as e:
|
106 |
+
return None
|
107 |
+
|
108 |
+
raw_sample_frms = raw_sample_frms.permute(0, 3, 1, 2)
|
109 |
+
|
110 |
+
return raw_sample_frms
|
repositories/BLIP/data/vqa_dataset.py
ADDED
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
import random
|
4 |
+
from PIL import Image
|
5 |
+
|
6 |
+
import torch
|
7 |
+
from torch.utils.data import Dataset
|
8 |
+
from data.utils import pre_question
|
9 |
+
|
10 |
+
from torchvision.datasets.utils import download_url
|
11 |
+
|
12 |
+
class vqa_dataset(Dataset):
|
13 |
+
def __init__(self, transform, ann_root, vqa_root, vg_root, train_files=[], split="train"):
|
14 |
+
self.split = split
|
15 |
+
|
16 |
+
self.transform = transform
|
17 |
+
self.vqa_root = vqa_root
|
18 |
+
self.vg_root = vg_root
|
19 |
+
|
20 |
+
if split=='train':
|
21 |
+
urls = {'vqa_train':'https://storage.googleapis.com/sfr-vision-language-research/datasets/vqa_train.json',
|
22 |
+
'vqa_val':'https://storage.googleapis.com/sfr-vision-language-research/datasets/vqa_val.json',
|
23 |
+
'vg_qa':'https://storage.googleapis.com/sfr-vision-language-research/datasets/vg_qa.json'}
|
24 |
+
|
25 |
+
self.annotation = []
|
26 |
+
for f in train_files:
|
27 |
+
download_url(urls[f],ann_root)
|
28 |
+
self.annotation += json.load(open(os.path.join(ann_root,'%s.json'%f),'r'))
|
29 |
+
else:
|
30 |
+
download_url('https://storage.googleapis.com/sfr-vision-language-research/datasets/vqa_test.json',ann_root)
|
31 |
+
self.annotation = json.load(open(os.path.join(ann_root,'vqa_test.json'),'r'))
|
32 |
+
|
33 |
+
download_url('https://storage.googleapis.com/sfr-vision-language-research/datasets/answer_list.json',ann_root)
|
34 |
+
self.answer_list = json.load(open(os.path.join(ann_root,'answer_list.json'),'r'))
|
35 |
+
|
36 |
+
|
37 |
+
def __len__(self):
|
38 |
+
return len(self.annotation)
|
39 |
+
|
40 |
+
def __getitem__(self, index):
|
41 |
+
|
42 |
+
ann = self.annotation[index]
|
43 |
+
|
44 |
+
if ann['dataset']=='vqa':
|
45 |
+
image_path = os.path.join(self.vqa_root,ann['image'])
|
46 |
+
elif ann['dataset']=='vg':
|
47 |
+
image_path = os.path.join(self.vg_root,ann['image'])
|
48 |
+
|
49 |
+
image = Image.open(image_path).convert('RGB')
|
50 |
+
image = self.transform(image)
|
51 |
+
|
52 |
+
if self.split == 'test':
|
53 |
+
question = pre_question(ann['question'])
|
54 |
+
question_id = ann['question_id']
|
55 |
+
return image, question, question_id
|
56 |
+
|
57 |
+
|
58 |
+
elif self.split=='train':
|
59 |
+
|
60 |
+
question = pre_question(ann['question'])
|
61 |
+
|
62 |
+
if ann['dataset']=='vqa':
|
63 |
+
answer_weight = {}
|
64 |
+
for answer in ann['answer']:
|
65 |
+
if answer in answer_weight.keys():
|
66 |
+
answer_weight[answer] += 1/len(ann['answer'])
|
67 |
+
else:
|
68 |
+
answer_weight[answer] = 1/len(ann['answer'])
|
69 |
+
|
70 |
+
answers = list(answer_weight.keys())
|
71 |
+
weights = list(answer_weight.values())
|
72 |
+
|
73 |
+
elif ann['dataset']=='vg':
|
74 |
+
answers = [ann['answer']]
|
75 |
+
weights = [0.2]
|
76 |
+
|
77 |
+
return image, question, answers, weights
|
78 |
+
|
79 |
+
|
80 |
+
def vqa_collate_fn(batch):
|
81 |
+
image_list, question_list, answer_list, weight_list, n = [], [], [], [], []
|
82 |
+
for image, question, answer, weights in batch:
|
83 |
+
image_list.append(image)
|
84 |
+
question_list.append(question)
|
85 |
+
weight_list += weights
|
86 |
+
answer_list += answer
|
87 |
+
n.append(len(answer))
|
88 |
+
return torch.stack(image_list,dim=0), question_list, answer_list, torch.Tensor(weight_list), n
|
repositories/BLIP/demo.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
repositories/BLIP/eval_nocaps.py
ADDED
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
'''
|
2 |
+
* Copyright (c) 2022, salesforce.com, inc.
|
3 |
+
* All rights reserved.
|
4 |
+
* SPDX-License-Identifier: BSD-3-Clause
|
5 |
+
* For full license text, see LICENSE.txt file in the repo root or https://opensource.org/licenses/BSD-3-Clause
|
6 |
+
* By Junnan Li
|
7 |
+
'''
|
8 |
+
import argparse
|
9 |
+
import os
|
10 |
+
import ruamel_yaml as yaml
|
11 |
+
import numpy as np
|
12 |
+
import random
|
13 |
+
import time
|
14 |
+
import datetime
|
15 |
+
import json
|
16 |
+
from pathlib import Path
|
17 |
+
|
18 |
+
import torch
|
19 |
+
import torch.nn as nn
|
20 |
+
import torch.nn.functional as F
|
21 |
+
import torch.backends.cudnn as cudnn
|
22 |
+
import torch.distributed as dist
|
23 |
+
from torch.utils.data import DataLoader
|
24 |
+
|
25 |
+
from models.blip import blip_decoder
|
26 |
+
import utils
|
27 |
+
from data import create_dataset, create_sampler, create_loader
|
28 |
+
from data.utils import save_result
|
29 |
+
|
30 |
+
@torch.no_grad()
|
31 |
+
def evaluate(model, data_loader, device, config):
|
32 |
+
# evaluate
|
33 |
+
model.eval()
|
34 |
+
|
35 |
+
metric_logger = utils.MetricLogger(delimiter=" ")
|
36 |
+
header = 'Evaluation:'
|
37 |
+
print_freq = 10
|
38 |
+
|
39 |
+
result = []
|
40 |
+
for image, image_id in metric_logger.log_every(data_loader, print_freq, header):
|
41 |
+
|
42 |
+
image = image.to(device)
|
43 |
+
|
44 |
+
captions = model.generate(image, sample=False, num_beams=config['num_beams'], max_length=config['max_length'],
|
45 |
+
min_length=config['min_length'], repetition_penalty=1.1)
|
46 |
+
|
47 |
+
for caption, img_id in zip(captions, image_id):
|
48 |
+
result.append({"image_id": img_id.item(), "caption": caption})
|
49 |
+
|
50 |
+
return result
|
51 |
+
|
52 |
+
|
53 |
+
def main(args, config):
|
54 |
+
utils.init_distributed_mode(args)
|
55 |
+
|
56 |
+
device = torch.device(args.device)
|
57 |
+
|
58 |
+
# fix the seed for reproducibility
|
59 |
+
seed = args.seed + utils.get_rank()
|
60 |
+
torch.manual_seed(seed)
|
61 |
+
np.random.seed(seed)
|
62 |
+
random.seed(seed)
|
63 |
+
cudnn.benchmark = True
|
64 |
+
|
65 |
+
#### Dataset ####
|
66 |
+
print("Creating captioning dataset")
|
67 |
+
val_dataset, test_dataset = create_dataset('nocaps', config)
|
68 |
+
|
69 |
+
if args.distributed:
|
70 |
+
num_tasks = utils.get_world_size()
|
71 |
+
global_rank = utils.get_rank()
|
72 |
+
samplers = create_sampler([val_dataset,test_dataset], [False,False], num_tasks, global_rank)
|
73 |
+
else:
|
74 |
+
samplers = [None,None]
|
75 |
+
|
76 |
+
val_loader, test_loader = create_loader([val_dataset, test_dataset],samplers,
|
77 |
+
batch_size=[config['batch_size']]*2,num_workers=[4,4],
|
78 |
+
is_trains=[False, False], collate_fns=[None,None])
|
79 |
+
|
80 |
+
#### Model ####
|
81 |
+
print("Creating model")
|
82 |
+
model = blip_decoder(pretrained=config['pretrained'], image_size=config['image_size'], vit=config['vit'],
|
83 |
+
prompt=config['prompt'])
|
84 |
+
|
85 |
+
model = model.to(device)
|
86 |
+
|
87 |
+
model_without_ddp = model
|
88 |
+
if args.distributed:
|
89 |
+
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
|
90 |
+
model_without_ddp = model.module
|
91 |
+
|
92 |
+
val_result = evaluate(model_without_ddp, val_loader, device, config)
|
93 |
+
val_result_file = save_result(val_result, args.result_dir, 'val', remove_duplicate='image_id')
|
94 |
+
test_result = evaluate(model_without_ddp, test_loader, device, config)
|
95 |
+
test_result_file = save_result(test_result, args.result_dir, 'test', remove_duplicate='image_id')
|
96 |
+
|
97 |
+
|
98 |
+
if __name__ == '__main__':
|
99 |
+
parser = argparse.ArgumentParser()
|
100 |
+
parser.add_argument('--config', default='./configs/nocaps.yaml')
|
101 |
+
parser.add_argument('--output_dir', default='output/NoCaps')
|
102 |
+
parser.add_argument('--device', default='cuda')
|
103 |
+
parser.add_argument('--seed', default=42, type=int)
|
104 |
+
parser.add_argument('--world_size', default=1, type=int, help='number of distributed processes')
|
105 |
+
parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
|
106 |
+
parser.add_argument('--distributed', default=True, type=bool)
|
107 |
+
args = parser.parse_args()
|
108 |
+
|
109 |
+
config = yaml.load(open(args.config, 'r'), Loader=yaml.Loader)
|
110 |
+
|
111 |
+
args.result_dir = os.path.join(args.output_dir, 'result')
|
112 |
+
|
113 |
+
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
|
114 |
+
Path(args.result_dir).mkdir(parents=True, exist_ok=True)
|
115 |
+
|
116 |
+
yaml.dump(config, open(os.path.join(args.output_dir, 'config.yaml'), 'w'))
|
117 |
+
|
118 |
+
main(args, config)
|
repositories/BLIP/eval_retrieval_video.py
ADDED
@@ -0,0 +1,250 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
'''
|
2 |
+
* Copyright (c) 2022, salesforce.com, inc.
|
3 |
+
* All rights reserved.
|
4 |
+
* SPDX-License-Identifier: BSD-3-Clause
|
5 |
+
* For full license text, see LICENSE.txt file in the repo root or https://opensource.org/licenses/BSD-3-Clause
|
6 |
+
* By Junnan Li
|
7 |
+
'''
|
8 |
+
import argparse
|
9 |
+
import os
|
10 |
+
import ruamel_yaml as yaml
|
11 |
+
import numpy as np
|
12 |
+
import random
|
13 |
+
import time
|
14 |
+
import datetime
|
15 |
+
import json
|
16 |
+
from pathlib import Path
|
17 |
+
|
18 |
+
import torch
|
19 |
+
import torch.nn as nn
|
20 |
+
import torch.nn.functional as F
|
21 |
+
import torch.backends.cudnn as cudnn
|
22 |
+
import torch.distributed as dist
|
23 |
+
from torch.utils.data import DataLoader
|
24 |
+
|
25 |
+
from models.blip_retrieval import blip_retrieval
|
26 |
+
import utils
|
27 |
+
from data.video_dataset import VideoDataset
|
28 |
+
|
29 |
+
|
30 |
+
@torch.no_grad()
|
31 |
+
def evaluation(model, data_loader, tokenizer, device, config):
|
32 |
+
# test
|
33 |
+
model.eval()
|
34 |
+
|
35 |
+
metric_logger = utils.MetricLogger(delimiter=" ")
|
36 |
+
header = 'Evaluation:'
|
37 |
+
|
38 |
+
print('Computing features for evaluation...')
|
39 |
+
start_time = time.time()
|
40 |
+
|
41 |
+
texts = data_loader.dataset.text
|
42 |
+
num_text = len(texts)
|
43 |
+
text_bs = 256
|
44 |
+
text_ids = []
|
45 |
+
text_embeds = []
|
46 |
+
text_atts = []
|
47 |
+
for i in range(0, num_text, text_bs):
|
48 |
+
text = texts[i: min(num_text, i+text_bs)]
|
49 |
+
text_input = tokenizer(text, padding='max_length', truncation=True, max_length=35, return_tensors="pt").to(device)
|
50 |
+
text_output = model.text_encoder(text_input.input_ids, attention_mask = text_input.attention_mask, mode='text')
|
51 |
+
text_embed = F.normalize(model.text_proj(text_output.last_hidden_state[:,0,:]))
|
52 |
+
text_embeds.append(text_embed)
|
53 |
+
text_ids.append(text_input.input_ids)
|
54 |
+
text_atts.append(text_input.attention_mask)
|
55 |
+
|
56 |
+
text_embeds = torch.cat(text_embeds,dim=0)
|
57 |
+
text_ids = torch.cat(text_ids,dim=0)
|
58 |
+
text_atts = torch.cat(text_atts,dim=0)
|
59 |
+
text_ids[:,0] = tokenizer.additional_special_tokens_ids[0]
|
60 |
+
|
61 |
+
video_feats = []
|
62 |
+
video_embeds = []
|
63 |
+
for video, video_id in data_loader:
|
64 |
+
|
65 |
+
B,N,C,W,H = video.size()
|
66 |
+
video = video.view(-1,C,W,H)
|
67 |
+
video = video.to(device,non_blocking=True)
|
68 |
+
video_feat = model.visual_encoder(video)
|
69 |
+
video_embed = model.vision_proj(video_feat[:,0,:])
|
70 |
+
video_embed = video_embed.view(B,N,-1).mean(dim=1)
|
71 |
+
video_embed = F.normalize(video_embed,dim=-1)
|
72 |
+
|
73 |
+
video_feat = video_feat.view(B,-1,video_feat.shape[-1])
|
74 |
+
video_feats.append(video_feat.cpu())
|
75 |
+
video_embeds.append(video_embed)
|
76 |
+
|
77 |
+
video_feats = torch.cat(video_feats,dim=0)
|
78 |
+
video_embeds = torch.cat(video_embeds,dim=0)
|
79 |
+
|
80 |
+
sims_matrix = video_embeds @ text_embeds.t()
|
81 |
+
score_matrix_v2t = torch.full((len(texts),len(texts)),-100.0).to(device)
|
82 |
+
|
83 |
+
num_tasks = utils.get_world_size()
|
84 |
+
rank = utils.get_rank()
|
85 |
+
step = sims_matrix.size(0)//num_tasks + 1
|
86 |
+
start = rank*step
|
87 |
+
end = min(sims_matrix.size(0),start+step)
|
88 |
+
|
89 |
+
for i,sims in enumerate(metric_logger.log_every(sims_matrix[start:end], 50, header)):
|
90 |
+
topk_sim, topk_idx = sims.topk(k=config['k_test'], dim=0)
|
91 |
+
|
92 |
+
encoder_output = video_feats[start+i].repeat(config['k_test'],1,1).to(device,non_blocking=True)
|
93 |
+
encoder_att = torch.ones(encoder_output.size()[:-1],dtype=torch.long).to(device,non_blocking=True)
|
94 |
+
output = model.text_encoder(text_ids[topk_idx],
|
95 |
+
attention_mask = text_atts[topk_idx],
|
96 |
+
encoder_hidden_states = encoder_output,
|
97 |
+
encoder_attention_mask = encoder_att,
|
98 |
+
return_dict = True,
|
99 |
+
)
|
100 |
+
score = model.itm_head(output.last_hidden_state[:,0,:])[:,1]
|
101 |
+
score_matrix_v2t[start+i,topk_idx] = score + topk_sim
|
102 |
+
|
103 |
+
sims_matrix = sims_matrix.t()
|
104 |
+
score_matrix_t2v = torch.full((len(texts),len(texts)),-100.0).to(device)
|
105 |
+
|
106 |
+
step = sims_matrix.size(0)//num_tasks + 1
|
107 |
+
start = rank*step
|
108 |
+
end = min(sims_matrix.size(0),start+step)
|
109 |
+
|
110 |
+
for i,sims in enumerate(metric_logger.log_every(sims_matrix[start:end], 50, header)):
|
111 |
+
|
112 |
+
topk_sim, topk_idx = sims.topk(k=config['k_test'], dim=0)
|
113 |
+
encoder_output = video_feats[topk_idx].to(device,non_blocking=True)
|
114 |
+
encoder_att = torch.ones(encoder_output.size()[:-1],dtype=torch.long).to(device,non_blocking=True)
|
115 |
+
output = model.text_encoder(text_ids[start+i].repeat(config['k_test'],1),
|
116 |
+
attention_mask = text_atts[start+i].repeat(config['k_test'],1),
|
117 |
+
encoder_hidden_states = encoder_output,
|
118 |
+
encoder_attention_mask = encoder_att,
|
119 |
+
return_dict = True,
|
120 |
+
)
|
121 |
+
score = model.itm_head(output.last_hidden_state[:,0,:])[:,1]
|
122 |
+
score_matrix_t2v[start+i,topk_idx] = score + topk_sim
|
123 |
+
|
124 |
+
if args.distributed:
|
125 |
+
dist.barrier()
|
126 |
+
torch.distributed.all_reduce(score_matrix_v2t, op=torch.distributed.ReduceOp.SUM)
|
127 |
+
torch.distributed.all_reduce(score_matrix_t2v, op=torch.distributed.ReduceOp.SUM)
|
128 |
+
|
129 |
+
total_time = time.time() - start_time
|
130 |
+
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
|
131 |
+
print('Evaluation time {}'.format(total_time_str))
|
132 |
+
|
133 |
+
return score_matrix_v2t.cpu().numpy(), score_matrix_t2v.cpu().numpy()
|
134 |
+
|
135 |
+
|
136 |
+
|
137 |
+
@torch.no_grad()
|
138 |
+
def itm_eval(scores_v2t, scores_t2v, txt2vmg, vid2txt):
|
139 |
+
|
140 |
+
#Video->Text
|
141 |
+
ranks = np.zeros(scores_v2t.shape[0])
|
142 |
+
for index,score in enumerate(scores_v2t):
|
143 |
+
inds = np.argsort(score)[::-1]
|
144 |
+
ranks[index] = np.where(inds == vid2txt[index])[0][0]
|
145 |
+
|
146 |
+
# Compute metrics
|
147 |
+
tr1 = 100.0 * len(np.where(ranks < 1)[0]) / len(ranks)
|
148 |
+
tr5 = 100.0 * len(np.where(ranks < 5)[0]) / len(ranks)
|
149 |
+
tr10 = 100.0 * len(np.where(ranks < 10)[0]) / len(ranks)
|
150 |
+
|
151 |
+
#Text->Video
|
152 |
+
ranks = np.zeros(scores_t2v.shape[0])
|
153 |
+
|
154 |
+
for index,score in enumerate(scores_t2v):
|
155 |
+
inds = np.argsort(score)[::-1]
|
156 |
+
ranks[index] = np.where(inds == txt2vmg[index])[0][0]
|
157 |
+
|
158 |
+
mdR = np.median(ranks+1)
|
159 |
+
|
160 |
+
# Compute metrics
|
161 |
+
vr1 = 100.0 * len(np.where(ranks < 1)[0]) / len(ranks)
|
162 |
+
vr5 = 100.0 * len(np.where(ranks < 5)[0]) / len(ranks)
|
163 |
+
vr10 = 100.0 * len(np.where(ranks < 10)[0]) / len(ranks)
|
164 |
+
|
165 |
+
tr_mean = (tr1 + tr5 + tr10) / 3
|
166 |
+
vr_mean = (vr1 + vr5 + vr10) / 3
|
167 |
+
r_mean = (tr_mean + vr_mean) / 2
|
168 |
+
|
169 |
+
eval_result = {'txt_r1': tr1,
|
170 |
+
'txt_r5': tr5,
|
171 |
+
'txt_r10': tr10,
|
172 |
+
'txt_r_mean': tr_mean,
|
173 |
+
'vid_r1': vr1,
|
174 |
+
'vid_r5': vr5,
|
175 |
+
'vid_r10': vr10,
|
176 |
+
'vid_r_mean': vr_mean,
|
177 |
+
'vid_mdR': mdR,
|
178 |
+
'r_mean': r_mean}
|
179 |
+
return eval_result
|
180 |
+
|
181 |
+
|
182 |
+
|
183 |
+
|
184 |
+
def main(args, config):
|
185 |
+
utils.init_distributed_mode(args)
|
186 |
+
|
187 |
+
device = torch.device(args.device)
|
188 |
+
|
189 |
+
# fix the seed for reproducibility
|
190 |
+
seed = args.seed + utils.get_rank()
|
191 |
+
torch.manual_seed(seed)
|
192 |
+
np.random.seed(seed)
|
193 |
+
random.seed(seed)
|
194 |
+
cudnn.benchmark = True
|
195 |
+
|
196 |
+
#### Dataset ####
|
197 |
+
print("Creating retrieval dataset")
|
198 |
+
test_dataset = VideoDataset(config['video_root'],config['ann_root'],num_frm=config['num_frm_test'],
|
199 |
+
max_img_size=config['image_size'], frm_sampling_strategy='uniform')
|
200 |
+
|
201 |
+
test_loader = DataLoader(
|
202 |
+
test_dataset,
|
203 |
+
batch_size=config['batch_size'],
|
204 |
+
num_workers=4,
|
205 |
+
pin_memory=True,
|
206 |
+
drop_last=False,
|
207 |
+
shuffle=False,
|
208 |
+
)
|
209 |
+
|
210 |
+
#### Model ####
|
211 |
+
print("Creating model")
|
212 |
+
model = blip_retrieval(pretrained=config['pretrained'], image_size=config['image_size'], vit=config['vit'])
|
213 |
+
|
214 |
+
model = model.to(device)
|
215 |
+
|
216 |
+
model_without_ddp = model
|
217 |
+
if args.distributed:
|
218 |
+
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
|
219 |
+
model_without_ddp = model.module
|
220 |
+
|
221 |
+
score_v2t, score_t2v, = evaluation(model_without_ddp, test_loader, model_without_ddp.tokenizer, device, config)
|
222 |
+
|
223 |
+
if utils.is_main_process():
|
224 |
+
|
225 |
+
test_result = itm_eval(score_v2t, score_t2v, test_loader.dataset.txt2video, test_loader.dataset.video2txt)
|
226 |
+
print(test_result)
|
227 |
+
|
228 |
+
log_stats = {**{f'{k}': v for k, v in test_result.items()},}
|
229 |
+
with open(os.path.join(args.output_dir, "test_result.txt"),"a") as f:
|
230 |
+
f.write(json.dumps(log_stats) + "\n")
|
231 |
+
|
232 |
+
|
233 |
+
if __name__ == '__main__':
|
234 |
+
parser = argparse.ArgumentParser()
|
235 |
+
parser.add_argument('--config', default='./configs/retrieval_msrvtt.yaml')
|
236 |
+
parser.add_argument('--output_dir', default='output/Retrieval_msrvtt')
|
237 |
+
parser.add_argument('--device', default='cuda')
|
238 |
+
parser.add_argument('--seed', default=42, type=int)
|
239 |
+
parser.add_argument('--world_size', default=1, type=int, help='number of distributed processes')
|
240 |
+
parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
|
241 |
+
parser.add_argument('--distributed', default=True, type=bool)
|
242 |
+
args = parser.parse_args()
|
243 |
+
|
244 |
+
config = yaml.load(open(args.config, 'r'), Loader=yaml.Loader)
|
245 |
+
|
246 |
+
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
|
247 |
+
|
248 |
+
yaml.dump(config, open(os.path.join(args.output_dir, 'config.yaml'), 'w'))
|
249 |
+
|
250 |
+
main(args, config)
|
repositories/BLIP/models/__init__.py
ADDED
File without changes
|
repositories/BLIP/models/blip.py
ADDED
@@ -0,0 +1,238 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
'''
|
2 |
+
* Copyright (c) 2022, salesforce.com, inc.
|
3 |
+
* All rights reserved.
|
4 |
+
* SPDX-License-Identifier: BSD-3-Clause
|
5 |
+
* For full license text, see LICENSE.txt file in the repo root or https://opensource.org/licenses/BSD-3-Clause
|
6 |
+
* By Junnan Li
|
7 |
+
'''
|
8 |
+
import warnings
|
9 |
+
warnings.filterwarnings("ignore")
|
10 |
+
|
11 |
+
from models.vit import VisionTransformer, interpolate_pos_embed
|
12 |
+
from models.med import BertConfig, BertModel, BertLMHeadModel
|
13 |
+
from transformers import BertTokenizer
|
14 |
+
|
15 |
+
import torch
|
16 |
+
from torch import nn
|
17 |
+
import torch.nn.functional as F
|
18 |
+
|
19 |
+
import os
|
20 |
+
from urllib.parse import urlparse
|
21 |
+
from timm.models.hub import download_cached_file
|
22 |
+
|
23 |
+
class BLIP_Base(nn.Module):
|
24 |
+
def __init__(self,
|
25 |
+
med_config = 'configs/med_config.json',
|
26 |
+
image_size = 224,
|
27 |
+
vit = 'base',
|
28 |
+
vit_grad_ckpt = False,
|
29 |
+
vit_ckpt_layer = 0,
|
30 |
+
):
|
31 |
+
"""
|
32 |
+
Args:
|
33 |
+
med_config (str): path for the mixture of encoder-decoder model's configuration file
|
34 |
+
image_size (int): input image size
|
35 |
+
vit (str): model size of vision transformer
|
36 |
+
"""
|
37 |
+
super().__init__()
|
38 |
+
|
39 |
+
self.visual_encoder, vision_width = create_vit(vit,image_size, vit_grad_ckpt, vit_ckpt_layer)
|
40 |
+
self.tokenizer = init_tokenizer()
|
41 |
+
med_config = BertConfig.from_json_file(med_config)
|
42 |
+
med_config.encoder_width = vision_width
|
43 |
+
self.text_encoder = BertModel(config=med_config, add_pooling_layer=False)
|
44 |
+
|
45 |
+
|
46 |
+
def forward(self, image, caption, mode):
|
47 |
+
|
48 |
+
assert mode in ['image', 'text', 'multimodal'], "mode parameter must be image, text, or multimodal"
|
49 |
+
text = self.tokenizer(caption, return_tensors="pt").to(image.device)
|
50 |
+
|
51 |
+
if mode=='image':
|
52 |
+
# return image features
|
53 |
+
image_embeds = self.visual_encoder(image)
|
54 |
+
return image_embeds
|
55 |
+
|
56 |
+
elif mode=='text':
|
57 |
+
# return text features
|
58 |
+
text_output = self.text_encoder(text.input_ids, attention_mask = text.attention_mask,
|
59 |
+
return_dict = True, mode = 'text')
|
60 |
+
return text_output.last_hidden_state
|
61 |
+
|
62 |
+
elif mode=='multimodal':
|
63 |
+
# return multimodel features
|
64 |
+
image_embeds = self.visual_encoder(image)
|
65 |
+
image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(image.device)
|
66 |
+
|
67 |
+
text.input_ids[:,0] = self.tokenizer.enc_token_id
|
68 |
+
output = self.text_encoder(text.input_ids,
|
69 |
+
attention_mask = text.attention_mask,
|
70 |
+
encoder_hidden_states = image_embeds,
|
71 |
+
encoder_attention_mask = image_atts,
|
72 |
+
return_dict = True,
|
73 |
+
)
|
74 |
+
return output.last_hidden_state
|
75 |
+
|
76 |
+
|
77 |
+
|
78 |
+
class BLIP_Decoder(nn.Module):
|
79 |
+
def __init__(self,
|
80 |
+
med_config = 'configs/med_config.json',
|
81 |
+
image_size = 384,
|
82 |
+
vit = 'base',
|
83 |
+
vit_grad_ckpt = False,
|
84 |
+
vit_ckpt_layer = 0,
|
85 |
+
prompt = 'a picture of ',
|
86 |
+
):
|
87 |
+
"""
|
88 |
+
Args:
|
89 |
+
med_config (str): path for the mixture of encoder-decoder model's configuration file
|
90 |
+
image_size (int): input image size
|
91 |
+
vit (str): model size of vision transformer
|
92 |
+
"""
|
93 |
+
super().__init__()
|
94 |
+
|
95 |
+
self.visual_encoder, vision_width = create_vit(vit,image_size, vit_grad_ckpt, vit_ckpt_layer)
|
96 |
+
self.tokenizer = init_tokenizer()
|
97 |
+
med_config = BertConfig.from_json_file(med_config)
|
98 |
+
med_config.encoder_width = vision_width
|
99 |
+
self.text_decoder = BertLMHeadModel(config=med_config)
|
100 |
+
|
101 |
+
self.prompt = prompt
|
102 |
+
self.prompt_length = len(self.tokenizer(self.prompt).input_ids)-1
|
103 |
+
|
104 |
+
|
105 |
+
def forward(self, image, caption):
|
106 |
+
|
107 |
+
image_embeds = self.visual_encoder(image)
|
108 |
+
image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(image.device)
|
109 |
+
|
110 |
+
text = self.tokenizer(caption, padding='longest', truncation=True, max_length=40, return_tensors="pt").to(image.device)
|
111 |
+
|
112 |
+
text.input_ids[:,0] = self.tokenizer.bos_token_id
|
113 |
+
|
114 |
+
decoder_targets = text.input_ids.masked_fill(text.input_ids == self.tokenizer.pad_token_id, -100)
|
115 |
+
decoder_targets[:,:self.prompt_length] = -100
|
116 |
+
|
117 |
+
decoder_output = self.text_decoder(text.input_ids,
|
118 |
+
attention_mask = text.attention_mask,
|
119 |
+
encoder_hidden_states = image_embeds,
|
120 |
+
encoder_attention_mask = image_atts,
|
121 |
+
labels = decoder_targets,
|
122 |
+
return_dict = True,
|
123 |
+
)
|
124 |
+
loss_lm = decoder_output.loss
|
125 |
+
|
126 |
+
return loss_lm
|
127 |
+
|
128 |
+
def generate(self, image, sample=False, num_beams=3, max_length=30, min_length=10, top_p=0.9, repetition_penalty=1.0):
|
129 |
+
image_embeds = self.visual_encoder(image)
|
130 |
+
|
131 |
+
if not sample:
|
132 |
+
image_embeds = image_embeds.repeat_interleave(num_beams,dim=0)
|
133 |
+
|
134 |
+
image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(image.device)
|
135 |
+
model_kwargs = {"encoder_hidden_states": image_embeds, "encoder_attention_mask":image_atts}
|
136 |
+
|
137 |
+
prompt = [self.prompt] * image.size(0)
|
138 |
+
input_ids = self.tokenizer(prompt, return_tensors="pt").input_ids.to(image.device)
|
139 |
+
input_ids[:,0] = self.tokenizer.bos_token_id
|
140 |
+
input_ids = input_ids[:, :-1]
|
141 |
+
|
142 |
+
if sample:
|
143 |
+
#nucleus sampling
|
144 |
+
outputs = self.text_decoder.generate(input_ids=input_ids,
|
145 |
+
max_length=max_length,
|
146 |
+
min_length=min_length,
|
147 |
+
do_sample=True,
|
148 |
+
top_p=top_p,
|
149 |
+
num_return_sequences=1,
|
150 |
+
eos_token_id=self.tokenizer.sep_token_id,
|
151 |
+
pad_token_id=self.tokenizer.pad_token_id,
|
152 |
+
repetition_penalty=1.1,
|
153 |
+
**model_kwargs)
|
154 |
+
else:
|
155 |
+
#beam search
|
156 |
+
outputs = self.text_decoder.generate(input_ids=input_ids,
|
157 |
+
max_length=max_length,
|
158 |
+
min_length=min_length,
|
159 |
+
num_beams=num_beams,
|
160 |
+
eos_token_id=self.tokenizer.sep_token_id,
|
161 |
+
pad_token_id=self.tokenizer.pad_token_id,
|
162 |
+
repetition_penalty=repetition_penalty,
|
163 |
+
**model_kwargs)
|
164 |
+
|
165 |
+
captions = []
|
166 |
+
for output in outputs:
|
167 |
+
caption = self.tokenizer.decode(output, skip_special_tokens=True)
|
168 |
+
captions.append(caption[len(self.prompt):])
|
169 |
+
return captions
|
170 |
+
|
171 |
+
|
172 |
+
def blip_decoder(pretrained='',**kwargs):
|
173 |
+
model = BLIP_Decoder(**kwargs)
|
174 |
+
if pretrained:
|
175 |
+
model,msg = load_checkpoint(model,pretrained)
|
176 |
+
assert(len(msg.missing_keys)==0)
|
177 |
+
return model
|
178 |
+
|
179 |
+
def blip_feature_extractor(pretrained='',**kwargs):
|
180 |
+
model = BLIP_Base(**kwargs)
|
181 |
+
if pretrained:
|
182 |
+
model,msg = load_checkpoint(model,pretrained)
|
183 |
+
assert(len(msg.missing_keys)==0)
|
184 |
+
return model
|
185 |
+
|
186 |
+
def init_tokenizer():
|
187 |
+
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
188 |
+
tokenizer.add_special_tokens({'bos_token':'[DEC]'})
|
189 |
+
tokenizer.add_special_tokens({'additional_special_tokens':['[ENC]']})
|
190 |
+
tokenizer.enc_token_id = tokenizer.additional_special_tokens_ids[0]
|
191 |
+
return tokenizer
|
192 |
+
|
193 |
+
|
194 |
+
def create_vit(vit, image_size, use_grad_checkpointing=False, ckpt_layer=0, drop_path_rate=0):
|
195 |
+
|
196 |
+
assert vit in ['base', 'large'], "vit parameter must be base or large"
|
197 |
+
if vit=='base':
|
198 |
+
vision_width = 768
|
199 |
+
visual_encoder = VisionTransformer(img_size=image_size, patch_size=16, embed_dim=vision_width, depth=12,
|
200 |
+
num_heads=12, use_grad_checkpointing=use_grad_checkpointing, ckpt_layer=ckpt_layer,
|
201 |
+
drop_path_rate=0 or drop_path_rate
|
202 |
+
)
|
203 |
+
elif vit=='large':
|
204 |
+
vision_width = 1024
|
205 |
+
visual_encoder = VisionTransformer(img_size=image_size, patch_size=16, embed_dim=vision_width, depth=24,
|
206 |
+
num_heads=16, use_grad_checkpointing=use_grad_checkpointing, ckpt_layer=ckpt_layer,
|
207 |
+
drop_path_rate=0.1 or drop_path_rate
|
208 |
+
)
|
209 |
+
return visual_encoder, vision_width
|
210 |
+
|
211 |
+
def is_url(url_or_filename):
|
212 |
+
parsed = urlparse(url_or_filename)
|
213 |
+
return parsed.scheme in ("http", "https")
|
214 |
+
|
215 |
+
def load_checkpoint(model,url_or_filename):
|
216 |
+
if is_url(url_or_filename):
|
217 |
+
cached_file = download_cached_file(url_or_filename, check_hash=False, progress=True)
|
218 |
+
checkpoint = torch.load(cached_file, map_location='cpu')
|
219 |
+
elif os.path.isfile(url_or_filename):
|
220 |
+
checkpoint = torch.load(url_or_filename, map_location='cpu')
|
221 |
+
else:
|
222 |
+
raise RuntimeError('checkpoint url or path is invalid')
|
223 |
+
|
224 |
+
state_dict = checkpoint['model']
|
225 |
+
|
226 |
+
state_dict['visual_encoder.pos_embed'] = interpolate_pos_embed(state_dict['visual_encoder.pos_embed'],model.visual_encoder)
|
227 |
+
if 'visual_encoder_m.pos_embed' in model.state_dict().keys():
|
228 |
+
state_dict['visual_encoder_m.pos_embed'] = interpolate_pos_embed(state_dict['visual_encoder_m.pos_embed'],
|
229 |
+
model.visual_encoder_m)
|
230 |
+
for key in model.state_dict().keys():
|
231 |
+
if key in state_dict.keys():
|
232 |
+
if state_dict[key].shape!=model.state_dict()[key].shape:
|
233 |
+
del state_dict[key]
|
234 |
+
|
235 |
+
msg = model.load_state_dict(state_dict,strict=False)
|
236 |
+
print('load checkpoint from %s'%url_or_filename)
|
237 |
+
return model,msg
|
238 |
+
|
repositories/BLIP/models/blip_itm.py
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from models.med import BertConfig, BertModel
|
2 |
+
from transformers import BertTokenizer
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from torch import nn
|
6 |
+
import torch.nn.functional as F
|
7 |
+
|
8 |
+
from models.blip import create_vit, init_tokenizer, load_checkpoint
|
9 |
+
|
10 |
+
class BLIP_ITM(nn.Module):
|
11 |
+
def __init__(self,
|
12 |
+
med_config = 'configs/med_config.json',
|
13 |
+
image_size = 384,
|
14 |
+
vit = 'base',
|
15 |
+
vit_grad_ckpt = False,
|
16 |
+
vit_ckpt_layer = 0,
|
17 |
+
embed_dim = 256,
|
18 |
+
):
|
19 |
+
"""
|
20 |
+
Args:
|
21 |
+
med_config (str): path for the mixture of encoder-decoder model's configuration file
|
22 |
+
image_size (int): input image size
|
23 |
+
vit (str): model size of vision transformer
|
24 |
+
"""
|
25 |
+
super().__init__()
|
26 |
+
|
27 |
+
self.visual_encoder, vision_width = create_vit(vit,image_size, vit_grad_ckpt, vit_ckpt_layer)
|
28 |
+
self.tokenizer = init_tokenizer()
|
29 |
+
med_config = BertConfig.from_json_file(med_config)
|
30 |
+
med_config.encoder_width = vision_width
|
31 |
+
self.text_encoder = BertModel(config=med_config, add_pooling_layer=False)
|
32 |
+
|
33 |
+
text_width = self.text_encoder.config.hidden_size
|
34 |
+
|
35 |
+
self.vision_proj = nn.Linear(vision_width, embed_dim)
|
36 |
+
self.text_proj = nn.Linear(text_width, embed_dim)
|
37 |
+
|
38 |
+
self.itm_head = nn.Linear(text_width, 2)
|
39 |
+
|
40 |
+
|
41 |
+
def forward(self, image, caption, match_head='itm'):
|
42 |
+
|
43 |
+
image_embeds = self.visual_encoder(image)
|
44 |
+
image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(image.device)
|
45 |
+
|
46 |
+
text = self.tokenizer(caption, padding='max_length', truncation=True, max_length=35,
|
47 |
+
return_tensors="pt").to(image.device)
|
48 |
+
|
49 |
+
|
50 |
+
if match_head=='itm':
|
51 |
+
output = self.text_encoder(text.input_ids,
|
52 |
+
attention_mask = text.attention_mask,
|
53 |
+
encoder_hidden_states = image_embeds,
|
54 |
+
encoder_attention_mask = image_atts,
|
55 |
+
return_dict = True,
|
56 |
+
)
|
57 |
+
itm_output = self.itm_head(output.last_hidden_state[:,0,:])
|
58 |
+
return itm_output
|
59 |
+
|
60 |
+
elif match_head=='itc':
|
61 |
+
text_output = self.text_encoder(text.input_ids, attention_mask = text.attention_mask,
|
62 |
+
return_dict = True, mode = 'text')
|
63 |
+
image_feat = F.normalize(self.vision_proj(image_embeds[:,0,:]),dim=-1)
|
64 |
+
text_feat = F.normalize(self.text_proj(text_output.last_hidden_state[:,0,:]),dim=-1)
|
65 |
+
|
66 |
+
sim = image_feat @ text_feat.t()
|
67 |
+
return sim
|
68 |
+
|
69 |
+
|
70 |
+
def blip_itm(pretrained='',**kwargs):
|
71 |
+
model = BLIP_ITM(**kwargs)
|
72 |
+
if pretrained:
|
73 |
+
model,msg = load_checkpoint(model,pretrained)
|
74 |
+
assert(len(msg.missing_keys)==0)
|
75 |
+
return model
|
76 |
+
|
repositories/BLIP/models/blip_nlvr.py
ADDED
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from models.med import BertConfig
|
2 |
+
from models.nlvr_encoder import BertModel
|
3 |
+
from models.vit import interpolate_pos_embed
|
4 |
+
from models.blip import create_vit, init_tokenizer, is_url
|
5 |
+
|
6 |
+
from timm.models.hub import download_cached_file
|
7 |
+
|
8 |
+
import torch
|
9 |
+
from torch import nn
|
10 |
+
import torch.nn.functional as F
|
11 |
+
from transformers import BertTokenizer
|
12 |
+
import numpy as np
|
13 |
+
|
14 |
+
class BLIP_NLVR(nn.Module):
|
15 |
+
def __init__(self,
|
16 |
+
med_config = 'configs/med_config.json',
|
17 |
+
image_size = 480,
|
18 |
+
vit = 'base',
|
19 |
+
vit_grad_ckpt = False,
|
20 |
+
vit_ckpt_layer = 0,
|
21 |
+
):
|
22 |
+
"""
|
23 |
+
Args:
|
24 |
+
med_config (str): path for the mixture of encoder-decoder model's configuration file
|
25 |
+
image_size (int): input image size
|
26 |
+
vit (str): model size of vision transformer
|
27 |
+
"""
|
28 |
+
super().__init__()
|
29 |
+
|
30 |
+
self.visual_encoder, vision_width = create_vit(vit,image_size, vit_grad_ckpt, vit_ckpt_layer, drop_path_rate=0.1)
|
31 |
+
self.tokenizer = init_tokenizer()
|
32 |
+
med_config = BertConfig.from_json_file(med_config)
|
33 |
+
med_config.encoder_width = vision_width
|
34 |
+
self.text_encoder = BertModel(config=med_config, add_pooling_layer=False)
|
35 |
+
|
36 |
+
self.cls_head = nn.Sequential(
|
37 |
+
nn.Linear(self.text_encoder.config.hidden_size, self.text_encoder.config.hidden_size),
|
38 |
+
nn.ReLU(),
|
39 |
+
nn.Linear(self.text_encoder.config.hidden_size, 2)
|
40 |
+
)
|
41 |
+
|
42 |
+
def forward(self, image, text, targets, train=True):
|
43 |
+
|
44 |
+
image_embeds = self.visual_encoder(image)
|
45 |
+
image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(image.device)
|
46 |
+
image0_embeds, image1_embeds = torch.split(image_embeds,targets.size(0))
|
47 |
+
|
48 |
+
text = self.tokenizer(text, padding='longest', return_tensors="pt").to(image.device)
|
49 |
+
text.input_ids[:,0] = self.tokenizer.enc_token_id
|
50 |
+
|
51 |
+
output = self.text_encoder(text.input_ids,
|
52 |
+
attention_mask = text.attention_mask,
|
53 |
+
encoder_hidden_states = [image0_embeds,image1_embeds],
|
54 |
+
encoder_attention_mask = [image_atts[:image0_embeds.size(0)],
|
55 |
+
image_atts[image0_embeds.size(0):]],
|
56 |
+
return_dict = True,
|
57 |
+
)
|
58 |
+
hidden_state = output.last_hidden_state[:,0,:]
|
59 |
+
prediction = self.cls_head(hidden_state)
|
60 |
+
|
61 |
+
if train:
|
62 |
+
loss = F.cross_entropy(prediction, targets)
|
63 |
+
return loss
|
64 |
+
else:
|
65 |
+
return prediction
|
66 |
+
|
67 |
+
def blip_nlvr(pretrained='',**kwargs):
|
68 |
+
model = BLIP_NLVR(**kwargs)
|
69 |
+
if pretrained:
|
70 |
+
model,msg = load_checkpoint(model,pretrained)
|
71 |
+
print("missing keys:")
|
72 |
+
print(msg.missing_keys)
|
73 |
+
return model
|
74 |
+
|
75 |
+
|
76 |
+
def load_checkpoint(model,url_or_filename):
|
77 |
+
if is_url(url_or_filename):
|
78 |
+
cached_file = download_cached_file(url_or_filename, check_hash=False, progress=True)
|
79 |
+
checkpoint = torch.load(cached_file, map_location='cpu')
|
80 |
+
elif os.path.isfile(url_or_filename):
|
81 |
+
checkpoint = torch.load(url_or_filename, map_location='cpu')
|
82 |
+
else:
|
83 |
+
raise RuntimeError('checkpoint url or path is invalid')
|
84 |
+
state_dict = checkpoint['model']
|
85 |
+
|
86 |
+
state_dict['visual_encoder.pos_embed'] = interpolate_pos_embed(state_dict['visual_encoder.pos_embed'],model.visual_encoder)
|
87 |
+
|
88 |
+
for key in list(state_dict.keys()):
|
89 |
+
if 'crossattention.self.' in key:
|
90 |
+
new_key0 = key.replace('self','self0')
|
91 |
+
new_key1 = key.replace('self','self1')
|
92 |
+
state_dict[new_key0] = state_dict[key]
|
93 |
+
state_dict[new_key1] = state_dict[key]
|
94 |
+
elif 'crossattention.output.dense.' in key:
|
95 |
+
new_key0 = key.replace('dense','dense0')
|
96 |
+
new_key1 = key.replace('dense','dense1')
|
97 |
+
state_dict[new_key0] = state_dict[key]
|
98 |
+
state_dict[new_key1] = state_dict[key]
|
99 |
+
|
100 |
+
msg = model.load_state_dict(state_dict,strict=False)
|
101 |
+
print('load checkpoint from %s'%url_or_filename)
|
102 |
+
return model,msg
|
103 |
+
|
repositories/BLIP/models/blip_pretrain.py
ADDED
@@ -0,0 +1,339 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
'''
|
2 |
+
* Copyright (c) 2022, salesforce.com, inc.
|
3 |
+
* All rights reserved.
|
4 |
+
* SPDX-License-Identifier: BSD-3-Clause
|
5 |
+
* For full license text, see LICENSE.txt file in the repo root or https://opensource.org/licenses/BSD-3-Clause
|
6 |
+
* By Junnan Li
|
7 |
+
'''
|
8 |
+
from models.med import BertConfig, BertModel, BertLMHeadModel
|
9 |
+
from transformers import BertTokenizer
|
10 |
+
import transformers
|
11 |
+
transformers.logging.set_verbosity_error()
|
12 |
+
|
13 |
+
import torch
|
14 |
+
from torch import nn
|
15 |
+
import torch.nn.functional as F
|
16 |
+
|
17 |
+
from models.blip import create_vit, init_tokenizer, load_checkpoint
|
18 |
+
|
19 |
+
class BLIP_Pretrain(nn.Module):
|
20 |
+
def __init__(self,
|
21 |
+
med_config = 'configs/bert_config.json',
|
22 |
+
image_size = 224,
|
23 |
+
vit = 'base',
|
24 |
+
vit_grad_ckpt = False,
|
25 |
+
vit_ckpt_layer = 0,
|
26 |
+
embed_dim = 256,
|
27 |
+
queue_size = 57600,
|
28 |
+
momentum = 0.995,
|
29 |
+
):
|
30 |
+
"""
|
31 |
+
Args:
|
32 |
+
med_config (str): path for the mixture of encoder-decoder model's configuration file
|
33 |
+
image_size (int): input image size
|
34 |
+
vit (str): model size of vision transformer
|
35 |
+
"""
|
36 |
+
super().__init__()
|
37 |
+
|
38 |
+
self.visual_encoder, vision_width = create_vit(vit,image_size, vit_grad_ckpt, vit_ckpt_layer, 0)
|
39 |
+
|
40 |
+
if vit=='base':
|
41 |
+
checkpoint = torch.hub.load_state_dict_from_url(
|
42 |
+
url="https://dl.fbaipublicfiles.com/deit/deit_base_patch16_224-b5f2ef4d.pth",
|
43 |
+
map_location="cpu", check_hash=True)
|
44 |
+
state_dict = checkpoint["model"]
|
45 |
+
msg = self.visual_encoder.load_state_dict(state_dict,strict=False)
|
46 |
+
elif vit=='large':
|
47 |
+
from timm.models.helpers import load_custom_pretrained
|
48 |
+
from timm.models.vision_transformer import default_cfgs
|
49 |
+
load_custom_pretrained(self.visual_encoder,default_cfgs['vit_large_patch16_224_in21k'])
|
50 |
+
|
51 |
+
self.tokenizer = init_tokenizer()
|
52 |
+
encoder_config = BertConfig.from_json_file(med_config)
|
53 |
+
encoder_config.encoder_width = vision_width
|
54 |
+
self.text_encoder = BertModel.from_pretrained('bert-base-uncased',config=encoder_config, add_pooling_layer=False)
|
55 |
+
self.text_encoder.resize_token_embeddings(len(self.tokenizer))
|
56 |
+
|
57 |
+
text_width = self.text_encoder.config.hidden_size
|
58 |
+
|
59 |
+
self.vision_proj = nn.Linear(vision_width, embed_dim)
|
60 |
+
self.text_proj = nn.Linear(text_width, embed_dim)
|
61 |
+
|
62 |
+
self.itm_head = nn.Linear(text_width, 2)
|
63 |
+
|
64 |
+
# create momentum encoders
|
65 |
+
self.visual_encoder_m, vision_width = create_vit(vit,image_size)
|
66 |
+
self.vision_proj_m = nn.Linear(vision_width, embed_dim)
|
67 |
+
self.text_encoder_m = BertModel(config=encoder_config, add_pooling_layer=False)
|
68 |
+
self.text_proj_m = nn.Linear(text_width, embed_dim)
|
69 |
+
|
70 |
+
self.model_pairs = [[self.visual_encoder,self.visual_encoder_m],
|
71 |
+
[self.vision_proj,self.vision_proj_m],
|
72 |
+
[self.text_encoder,self.text_encoder_m],
|
73 |
+
[self.text_proj,self.text_proj_m],
|
74 |
+
]
|
75 |
+
self.copy_params()
|
76 |
+
|
77 |
+
# create the queue
|
78 |
+
self.register_buffer("image_queue", torch.randn(embed_dim, queue_size))
|
79 |
+
self.register_buffer("text_queue", torch.randn(embed_dim, queue_size))
|
80 |
+
self.register_buffer("queue_ptr", torch.zeros(1, dtype=torch.long))
|
81 |
+
|
82 |
+
self.image_queue = nn.functional.normalize(self.image_queue, dim=0)
|
83 |
+
self.text_queue = nn.functional.normalize(self.text_queue, dim=0)
|
84 |
+
|
85 |
+
self.queue_size = queue_size
|
86 |
+
self.momentum = momentum
|
87 |
+
self.temp = nn.Parameter(0.07*torch.ones([]))
|
88 |
+
|
89 |
+
# create the decoder
|
90 |
+
decoder_config = BertConfig.from_json_file(med_config)
|
91 |
+
decoder_config.encoder_width = vision_width
|
92 |
+
self.text_decoder = BertLMHeadModel.from_pretrained('bert-base-uncased',config=decoder_config)
|
93 |
+
self.text_decoder.resize_token_embeddings(len(self.tokenizer))
|
94 |
+
tie_encoder_decoder_weights(self.text_encoder,self.text_decoder.bert,'','/attention')
|
95 |
+
|
96 |
+
|
97 |
+
def forward(self, image, caption, alpha):
|
98 |
+
with torch.no_grad():
|
99 |
+
self.temp.clamp_(0.001,0.5)
|
100 |
+
|
101 |
+
image_embeds = self.visual_encoder(image)
|
102 |
+
image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(image.device)
|
103 |
+
image_feat = F.normalize(self.vision_proj(image_embeds[:,0,:]),dim=-1)
|
104 |
+
|
105 |
+
text = self.tokenizer(caption, padding='max_length', truncation=True, max_length=30,
|
106 |
+
return_tensors="pt").to(image.device)
|
107 |
+
text_output = self.text_encoder(text.input_ids, attention_mask = text.attention_mask,
|
108 |
+
return_dict = True, mode = 'text')
|
109 |
+
text_feat = F.normalize(self.text_proj(text_output.last_hidden_state[:,0,:]),dim=-1)
|
110 |
+
|
111 |
+
# get momentum features
|
112 |
+
with torch.no_grad():
|
113 |
+
self._momentum_update()
|
114 |
+
image_embeds_m = self.visual_encoder_m(image)
|
115 |
+
image_feat_m = F.normalize(self.vision_proj_m(image_embeds_m[:,0,:]),dim=-1)
|
116 |
+
image_feat_all = torch.cat([image_feat_m.t(),self.image_queue.clone().detach()],dim=1)
|
117 |
+
|
118 |
+
text_output_m = self.text_encoder_m(text.input_ids, attention_mask = text.attention_mask,
|
119 |
+
return_dict = True, mode = 'text')
|
120 |
+
text_feat_m = F.normalize(self.text_proj_m(text_output_m.last_hidden_state[:,0,:]),dim=-1)
|
121 |
+
text_feat_all = torch.cat([text_feat_m.t(),self.text_queue.clone().detach()],dim=1)
|
122 |
+
|
123 |
+
sim_i2t_m = image_feat_m @ text_feat_all / self.temp
|
124 |
+
sim_t2i_m = text_feat_m @ image_feat_all / self.temp
|
125 |
+
|
126 |
+
sim_targets = torch.zeros(sim_i2t_m.size()).to(image.device)
|
127 |
+
sim_targets.fill_diagonal_(1)
|
128 |
+
|
129 |
+
sim_i2t_targets = alpha * F.softmax(sim_i2t_m, dim=1) + (1 - alpha) * sim_targets
|
130 |
+
sim_t2i_targets = alpha * F.softmax(sim_t2i_m, dim=1) + (1 - alpha) * sim_targets
|
131 |
+
|
132 |
+
sim_i2t = image_feat @ text_feat_all / self.temp
|
133 |
+
sim_t2i = text_feat @ image_feat_all / self.temp
|
134 |
+
|
135 |
+
loss_i2t = -torch.sum(F.log_softmax(sim_i2t, dim=1)*sim_i2t_targets,dim=1).mean()
|
136 |
+
loss_t2i = -torch.sum(F.log_softmax(sim_t2i, dim=1)*sim_t2i_targets,dim=1).mean()
|
137 |
+
|
138 |
+
loss_ita = (loss_i2t+loss_t2i)/2
|
139 |
+
|
140 |
+
self._dequeue_and_enqueue(image_feat_m, text_feat_m)
|
141 |
+
|
142 |
+
###============== Image-text Matching ===================###
|
143 |
+
encoder_input_ids = text.input_ids.clone()
|
144 |
+
encoder_input_ids[:,0] = self.tokenizer.enc_token_id
|
145 |
+
|
146 |
+
# forward the positve image-text pair
|
147 |
+
bs = image.size(0)
|
148 |
+
output_pos = self.text_encoder(encoder_input_ids,
|
149 |
+
attention_mask = text.attention_mask,
|
150 |
+
encoder_hidden_states = image_embeds,
|
151 |
+
encoder_attention_mask = image_atts,
|
152 |
+
return_dict = True,
|
153 |
+
)
|
154 |
+
with torch.no_grad():
|
155 |
+
weights_t2i = F.softmax(sim_t2i[:,:bs],dim=1)+1e-4
|
156 |
+
weights_t2i.fill_diagonal_(0)
|
157 |
+
weights_i2t = F.softmax(sim_i2t[:,:bs],dim=1)+1e-4
|
158 |
+
weights_i2t.fill_diagonal_(0)
|
159 |
+
|
160 |
+
# select a negative image for each text
|
161 |
+
image_embeds_neg = []
|
162 |
+
for b in range(bs):
|
163 |
+
neg_idx = torch.multinomial(weights_t2i[b], 1).item()
|
164 |
+
image_embeds_neg.append(image_embeds[neg_idx])
|
165 |
+
image_embeds_neg = torch.stack(image_embeds_neg,dim=0)
|
166 |
+
|
167 |
+
# select a negative text for each image
|
168 |
+
text_ids_neg = []
|
169 |
+
text_atts_neg = []
|
170 |
+
for b in range(bs):
|
171 |
+
neg_idx = torch.multinomial(weights_i2t[b], 1).item()
|
172 |
+
text_ids_neg.append(encoder_input_ids[neg_idx])
|
173 |
+
text_atts_neg.append(text.attention_mask[neg_idx])
|
174 |
+
|
175 |
+
text_ids_neg = torch.stack(text_ids_neg,dim=0)
|
176 |
+
text_atts_neg = torch.stack(text_atts_neg,dim=0)
|
177 |
+
|
178 |
+
text_ids_all = torch.cat([encoder_input_ids, text_ids_neg],dim=0)
|
179 |
+
text_atts_all = torch.cat([text.attention_mask, text_atts_neg],dim=0)
|
180 |
+
|
181 |
+
image_embeds_all = torch.cat([image_embeds_neg,image_embeds],dim=0)
|
182 |
+
image_atts_all = torch.cat([image_atts,image_atts],dim=0)
|
183 |
+
|
184 |
+
output_neg = self.text_encoder(text_ids_all,
|
185 |
+
attention_mask = text_atts_all,
|
186 |
+
encoder_hidden_states = image_embeds_all,
|
187 |
+
encoder_attention_mask = image_atts_all,
|
188 |
+
return_dict = True,
|
189 |
+
)
|
190 |
+
|
191 |
+
vl_embeddings = torch.cat([output_pos.last_hidden_state[:,0,:], output_neg.last_hidden_state[:,0,:]],dim=0)
|
192 |
+
vl_output = self.itm_head(vl_embeddings)
|
193 |
+
|
194 |
+
itm_labels = torch.cat([torch.ones(bs,dtype=torch.long),torch.zeros(2*bs,dtype=torch.long)],
|
195 |
+
dim=0).to(image.device)
|
196 |
+
loss_itm = F.cross_entropy(vl_output, itm_labels)
|
197 |
+
|
198 |
+
##================= LM ========================##
|
199 |
+
decoder_input_ids = text.input_ids.clone()
|
200 |
+
decoder_input_ids[:,0] = self.tokenizer.bos_token_id
|
201 |
+
decoder_targets = decoder_input_ids.masked_fill(decoder_input_ids == self.tokenizer.pad_token_id, -100)
|
202 |
+
|
203 |
+
decoder_output = self.text_decoder(decoder_input_ids,
|
204 |
+
attention_mask = text.attention_mask,
|
205 |
+
encoder_hidden_states = image_embeds,
|
206 |
+
encoder_attention_mask = image_atts,
|
207 |
+
labels = decoder_targets,
|
208 |
+
return_dict = True,
|
209 |
+
)
|
210 |
+
|
211 |
+
loss_lm = decoder_output.loss
|
212 |
+
return loss_ita, loss_itm, loss_lm
|
213 |
+
|
214 |
+
|
215 |
+
|
216 |
+
@torch.no_grad()
|
217 |
+
def copy_params(self):
|
218 |
+
for model_pair in self.model_pairs:
|
219 |
+
for param, param_m in zip(model_pair[0].parameters(), model_pair[1].parameters()):
|
220 |
+
param_m.data.copy_(param.data) # initialize
|
221 |
+
param_m.requires_grad = False # not update by gradient
|
222 |
+
|
223 |
+
|
224 |
+
@torch.no_grad()
|
225 |
+
def _momentum_update(self):
|
226 |
+
for model_pair in self.model_pairs:
|
227 |
+
for param, param_m in zip(model_pair[0].parameters(), model_pair[1].parameters()):
|
228 |
+
param_m.data = param_m.data * self.momentum + param.data * (1. - self.momentum)
|
229 |
+
|
230 |
+
|
231 |
+
@torch.no_grad()
|
232 |
+
def _dequeue_and_enqueue(self, image_feat, text_feat):
|
233 |
+
# gather keys before updating queue
|
234 |
+
image_feats = concat_all_gather(image_feat)
|
235 |
+
text_feats = concat_all_gather(text_feat)
|
236 |
+
|
237 |
+
batch_size = image_feats.shape[0]
|
238 |
+
|
239 |
+
ptr = int(self.queue_ptr)
|
240 |
+
assert self.queue_size % batch_size == 0 # for simplicity
|
241 |
+
|
242 |
+
# replace the keys at ptr (dequeue and enqueue)
|
243 |
+
self.image_queue[:, ptr:ptr + batch_size] = image_feats.T
|
244 |
+
self.text_queue[:, ptr:ptr + batch_size] = text_feats.T
|
245 |
+
ptr = (ptr + batch_size) % self.queue_size # move pointer
|
246 |
+
|
247 |
+
self.queue_ptr[0] = ptr
|
248 |
+
|
249 |
+
|
250 |
+
def blip_pretrain(**kwargs):
|
251 |
+
model = BLIP_Pretrain(**kwargs)
|
252 |
+
return model
|
253 |
+
|
254 |
+
|
255 |
+
@torch.no_grad()
|
256 |
+
def concat_all_gather(tensor):
|
257 |
+
"""
|
258 |
+
Performs all_gather operation on the provided tensors.
|
259 |
+
*** Warning ***: torch.distributed.all_gather has no gradient.
|
260 |
+
"""
|
261 |
+
tensors_gather = [torch.ones_like(tensor)
|
262 |
+
for _ in range(torch.distributed.get_world_size())]
|
263 |
+
torch.distributed.all_gather(tensors_gather, tensor, async_op=False)
|
264 |
+
|
265 |
+
output = torch.cat(tensors_gather, dim=0)
|
266 |
+
return output
|
267 |
+
|
268 |
+
|
269 |
+
from typing import List
|
270 |
+
def tie_encoder_decoder_weights(encoder: nn.Module, decoder: nn.Module, base_model_prefix: str, skip_key:str):
|
271 |
+
uninitialized_encoder_weights: List[str] = []
|
272 |
+
if decoder.__class__ != encoder.__class__:
|
273 |
+
logger.info(
|
274 |
+
f"{decoder.__class__} and {encoder.__class__} are not equal. In this case make sure that all encoder weights are correctly initialized."
|
275 |
+
)
|
276 |
+
|
277 |
+
def tie_encoder_to_decoder_recursively(
|
278 |
+
decoder_pointer: nn.Module,
|
279 |
+
encoder_pointer: nn.Module,
|
280 |
+
module_name: str,
|
281 |
+
uninitialized_encoder_weights: List[str],
|
282 |
+
skip_key: str,
|
283 |
+
depth=0,
|
284 |
+
):
|
285 |
+
assert isinstance(decoder_pointer, nn.Module) and isinstance(
|
286 |
+
encoder_pointer, nn.Module
|
287 |
+
), f"{decoder_pointer} and {encoder_pointer} have to be of type torch.nn.Module"
|
288 |
+
if hasattr(decoder_pointer, "weight") and skip_key not in module_name:
|
289 |
+
assert hasattr(encoder_pointer, "weight")
|
290 |
+
encoder_pointer.weight = decoder_pointer.weight
|
291 |
+
if hasattr(decoder_pointer, "bias"):
|
292 |
+
assert hasattr(encoder_pointer, "bias")
|
293 |
+
encoder_pointer.bias = decoder_pointer.bias
|
294 |
+
print(module_name+' is tied')
|
295 |
+
return
|
296 |
+
|
297 |
+
encoder_modules = encoder_pointer._modules
|
298 |
+
decoder_modules = decoder_pointer._modules
|
299 |
+
if len(decoder_modules) > 0:
|
300 |
+
assert (
|
301 |
+
len(encoder_modules) > 0
|
302 |
+
), f"Encoder module {encoder_pointer} does not match decoder module {decoder_pointer}"
|
303 |
+
|
304 |
+
all_encoder_weights = set([module_name + "/" + sub_name for sub_name in encoder_modules.keys()])
|
305 |
+
encoder_layer_pos = 0
|
306 |
+
for name, module in decoder_modules.items():
|
307 |
+
if name.isdigit():
|
308 |
+
encoder_name = str(int(name) + encoder_layer_pos)
|
309 |
+
decoder_name = name
|
310 |
+
if not isinstance(decoder_modules[decoder_name], type(encoder_modules[encoder_name])) and len(
|
311 |
+
encoder_modules
|
312 |
+
) != len(decoder_modules):
|
313 |
+
# this can happen if the name corresponds to the position in a list module list of layers
|
314 |
+
# in this case the decoder has added a cross-attention that the encoder does not have
|
315 |
+
# thus skip this step and subtract one layer pos from encoder
|
316 |
+
encoder_layer_pos -= 1
|
317 |
+
continue
|
318 |
+
elif name not in encoder_modules:
|
319 |
+
continue
|
320 |
+
elif depth > 500:
|
321 |
+
raise ValueError(
|
322 |
+
"Max depth of recursive function `tie_encoder_to_decoder` reached. It seems that there is a circular dependency between two or more `nn.Modules` of your model."
|
323 |
+
)
|
324 |
+
else:
|
325 |
+
decoder_name = encoder_name = name
|
326 |
+
tie_encoder_to_decoder_recursively(
|
327 |
+
decoder_modules[decoder_name],
|
328 |
+
encoder_modules[encoder_name],
|
329 |
+
module_name + "/" + name,
|
330 |
+
uninitialized_encoder_weights,
|
331 |
+
skip_key,
|
332 |
+
depth=depth + 1,
|
333 |
+
)
|
334 |
+
all_encoder_weights.remove(module_name + "/" + encoder_name)
|
335 |
+
|
336 |
+
uninitialized_encoder_weights += list(all_encoder_weights)
|
337 |
+
|
338 |
+
# tie weights recursively
|
339 |
+
tie_encoder_to_decoder_recursively(decoder, encoder, base_model_prefix, uninitialized_encoder_weights, skip_key)
|
repositories/BLIP/models/blip_retrieval.py
ADDED
@@ -0,0 +1,319 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from models.med import BertConfig, BertModel
|
2 |
+
from transformers import BertTokenizer
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from torch import nn
|
6 |
+
import torch.nn.functional as F
|
7 |
+
|
8 |
+
from models.blip import create_vit, init_tokenizer, load_checkpoint
|
9 |
+
|
10 |
+
class BLIP_Retrieval(nn.Module):
|
11 |
+
def __init__(self,
|
12 |
+
med_config = 'configs/med_config.json',
|
13 |
+
image_size = 384,
|
14 |
+
vit = 'base',
|
15 |
+
vit_grad_ckpt = False,
|
16 |
+
vit_ckpt_layer = 0,
|
17 |
+
embed_dim = 256,
|
18 |
+
queue_size = 57600,
|
19 |
+
momentum = 0.995,
|
20 |
+
negative_all_rank = False,
|
21 |
+
):
|
22 |
+
"""
|
23 |
+
Args:
|
24 |
+
med_config (str): path for the mixture of encoder-decoder model's configuration file
|
25 |
+
image_size (int): input image size
|
26 |
+
vit (str): model size of vision transformer
|
27 |
+
"""
|
28 |
+
super().__init__()
|
29 |
+
|
30 |
+
self.visual_encoder, vision_width = create_vit(vit,image_size, vit_grad_ckpt, vit_ckpt_layer)
|
31 |
+
self.tokenizer = init_tokenizer()
|
32 |
+
med_config = BertConfig.from_json_file(med_config)
|
33 |
+
med_config.encoder_width = vision_width
|
34 |
+
self.text_encoder = BertModel(config=med_config, add_pooling_layer=False)
|
35 |
+
|
36 |
+
text_width = self.text_encoder.config.hidden_size
|
37 |
+
|
38 |
+
self.vision_proj = nn.Linear(vision_width, embed_dim)
|
39 |
+
self.text_proj = nn.Linear(text_width, embed_dim)
|
40 |
+
|
41 |
+
self.itm_head = nn.Linear(text_width, 2)
|
42 |
+
|
43 |
+
# create momentum encoders
|
44 |
+
self.visual_encoder_m, vision_width = create_vit(vit,image_size)
|
45 |
+
self.vision_proj_m = nn.Linear(vision_width, embed_dim)
|
46 |
+
self.text_encoder_m = BertModel(config=med_config, add_pooling_layer=False)
|
47 |
+
self.text_proj_m = nn.Linear(text_width, embed_dim)
|
48 |
+
|
49 |
+
self.model_pairs = [[self.visual_encoder,self.visual_encoder_m],
|
50 |
+
[self.vision_proj,self.vision_proj_m],
|
51 |
+
[self.text_encoder,self.text_encoder_m],
|
52 |
+
[self.text_proj,self.text_proj_m],
|
53 |
+
]
|
54 |
+
self.copy_params()
|
55 |
+
|
56 |
+
# create the queue
|
57 |
+
self.register_buffer("image_queue", torch.randn(embed_dim, queue_size))
|
58 |
+
self.register_buffer("text_queue", torch.randn(embed_dim, queue_size))
|
59 |
+
self.register_buffer("idx_queue", torch.full((1,queue_size),-100))
|
60 |
+
self.register_buffer("ptr_queue", torch.zeros(1, dtype=torch.long))
|
61 |
+
|
62 |
+
self.image_queue = nn.functional.normalize(self.image_queue, dim=0)
|
63 |
+
self.text_queue = nn.functional.normalize(self.text_queue, dim=0)
|
64 |
+
|
65 |
+
self.queue_size = queue_size
|
66 |
+
self.momentum = momentum
|
67 |
+
self.temp = nn.Parameter(0.07*torch.ones([]))
|
68 |
+
|
69 |
+
self.negative_all_rank = negative_all_rank
|
70 |
+
|
71 |
+
|
72 |
+
def forward(self, image, caption, alpha, idx):
|
73 |
+
with torch.no_grad():
|
74 |
+
self.temp.clamp_(0.001,0.5)
|
75 |
+
|
76 |
+
image_embeds = self.visual_encoder(image)
|
77 |
+
image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(image.device)
|
78 |
+
image_feat = F.normalize(self.vision_proj(image_embeds[:,0,:]),dim=-1)
|
79 |
+
|
80 |
+
text = self.tokenizer(caption, padding='max_length', truncation=True, max_length=35,
|
81 |
+
return_tensors="pt").to(image.device)
|
82 |
+
|
83 |
+
text_output = self.text_encoder(text.input_ids, attention_mask = text.attention_mask,
|
84 |
+
return_dict = True, mode = 'text')
|
85 |
+
text_feat = F.normalize(self.text_proj(text_output.last_hidden_state[:,0,:]),dim=-1)
|
86 |
+
|
87 |
+
###============== Image-text Contrastive Learning ===================###
|
88 |
+
idx = idx.view(-1,1)
|
89 |
+
idx_all = torch.cat([idx.t(), self.idx_queue.clone().detach()],dim=1)
|
90 |
+
pos_idx = torch.eq(idx, idx_all).float()
|
91 |
+
sim_targets = pos_idx / pos_idx.sum(1,keepdim=True)
|
92 |
+
|
93 |
+
# get momentum features
|
94 |
+
with torch.no_grad():
|
95 |
+
self._momentum_update()
|
96 |
+
image_embeds_m = self.visual_encoder_m(image)
|
97 |
+
image_feat_m = F.normalize(self.vision_proj_m(image_embeds_m[:,0,:]),dim=-1)
|
98 |
+
image_feat_m_all = torch.cat([image_feat_m.t(),self.image_queue.clone().detach()],dim=1)
|
99 |
+
|
100 |
+
text_output_m = self.text_encoder_m(text.input_ids, attention_mask = text.attention_mask,
|
101 |
+
return_dict = True, mode = 'text')
|
102 |
+
text_feat_m = F.normalize(self.text_proj_m(text_output_m.last_hidden_state[:,0,:]),dim=-1)
|
103 |
+
text_feat_m_all = torch.cat([text_feat_m.t(),self.text_queue.clone().detach()],dim=1)
|
104 |
+
|
105 |
+
sim_i2t_m = image_feat_m @ text_feat_m_all / self.temp
|
106 |
+
sim_t2i_m = text_feat_m @ image_feat_m_all / self.temp
|
107 |
+
|
108 |
+
sim_i2t_targets = alpha * F.softmax(sim_i2t_m, dim=1) + (1 - alpha) * sim_targets
|
109 |
+
sim_t2i_targets = alpha * F.softmax(sim_t2i_m, dim=1) + (1 - alpha) * sim_targets
|
110 |
+
|
111 |
+
sim_i2t = image_feat @ text_feat_m_all / self.temp
|
112 |
+
sim_t2i = text_feat @ image_feat_m_all / self.temp
|
113 |
+
|
114 |
+
loss_i2t = -torch.sum(F.log_softmax(sim_i2t, dim=1)*sim_i2t_targets,dim=1).mean()
|
115 |
+
loss_t2i = -torch.sum(F.log_softmax(sim_t2i, dim=1)*sim_t2i_targets,dim=1).mean()
|
116 |
+
|
117 |
+
loss_ita = (loss_i2t+loss_t2i)/2
|
118 |
+
|
119 |
+
idxs = concat_all_gather(idx)
|
120 |
+
self._dequeue_and_enqueue(image_feat_m, text_feat_m, idxs)
|
121 |
+
|
122 |
+
###============== Image-text Matching ===================###
|
123 |
+
encoder_input_ids = text.input_ids.clone()
|
124 |
+
encoder_input_ids[:,0] = self.tokenizer.enc_token_id
|
125 |
+
|
126 |
+
# forward the positve image-text pair
|
127 |
+
bs = image.size(0)
|
128 |
+
output_pos = self.text_encoder(encoder_input_ids,
|
129 |
+
attention_mask = text.attention_mask,
|
130 |
+
encoder_hidden_states = image_embeds,
|
131 |
+
encoder_attention_mask = image_atts,
|
132 |
+
return_dict = True,
|
133 |
+
)
|
134 |
+
|
135 |
+
|
136 |
+
if self.negative_all_rank:
|
137 |
+
# compute sample similarity
|
138 |
+
with torch.no_grad():
|
139 |
+
mask = torch.eq(idx, idxs.t())
|
140 |
+
|
141 |
+
image_feat_world = concat_all_gather(image_feat)
|
142 |
+
text_feat_world = concat_all_gather(text_feat)
|
143 |
+
|
144 |
+
sim_i2t = image_feat @ text_feat_world.t() / self.temp
|
145 |
+
sim_t2i = text_feat @ image_feat_world.t() / self.temp
|
146 |
+
|
147 |
+
weights_i2t = F.softmax(sim_i2t,dim=1)
|
148 |
+
weights_i2t.masked_fill_(mask, 0)
|
149 |
+
|
150 |
+
weights_t2i = F.softmax(sim_t2i,dim=1)
|
151 |
+
weights_t2i.masked_fill_(mask, 0)
|
152 |
+
|
153 |
+
image_embeds_world = all_gather_with_grad(image_embeds)
|
154 |
+
|
155 |
+
# select a negative image (from all ranks) for each text
|
156 |
+
image_embeds_neg = []
|
157 |
+
for b in range(bs):
|
158 |
+
neg_idx = torch.multinomial(weights_t2i[b], 1).item()
|
159 |
+
image_embeds_neg.append(image_embeds_world[neg_idx])
|
160 |
+
image_embeds_neg = torch.stack(image_embeds_neg,dim=0)
|
161 |
+
|
162 |
+
# select a negative text (from all ranks) for each image
|
163 |
+
input_ids_world = concat_all_gather(encoder_input_ids)
|
164 |
+
att_mask_world = concat_all_gather(text.attention_mask)
|
165 |
+
|
166 |
+
text_ids_neg = []
|
167 |
+
text_atts_neg = []
|
168 |
+
for b in range(bs):
|
169 |
+
neg_idx = torch.multinomial(weights_i2t[b], 1).item()
|
170 |
+
text_ids_neg.append(input_ids_world[neg_idx])
|
171 |
+
text_atts_neg.append(att_mask_world[neg_idx])
|
172 |
+
|
173 |
+
else:
|
174 |
+
with torch.no_grad():
|
175 |
+
mask = torch.eq(idx, idx.t())
|
176 |
+
|
177 |
+
sim_i2t = image_feat @ text_feat.t() / self.temp
|
178 |
+
sim_t2i = text_feat @ image_feat.t() / self.temp
|
179 |
+
|
180 |
+
weights_i2t = F.softmax(sim_i2t,dim=1)
|
181 |
+
weights_i2t.masked_fill_(mask, 0)
|
182 |
+
|
183 |
+
weights_t2i = F.softmax(sim_t2i,dim=1)
|
184 |
+
weights_t2i.masked_fill_(mask, 0)
|
185 |
+
|
186 |
+
# select a negative image (from same rank) for each text
|
187 |
+
image_embeds_neg = []
|
188 |
+
for b in range(bs):
|
189 |
+
neg_idx = torch.multinomial(weights_t2i[b], 1).item()
|
190 |
+
image_embeds_neg.append(image_embeds[neg_idx])
|
191 |
+
image_embeds_neg = torch.stack(image_embeds_neg,dim=0)
|
192 |
+
|
193 |
+
# select a negative text (from same rank) for each image
|
194 |
+
text_ids_neg = []
|
195 |
+
text_atts_neg = []
|
196 |
+
for b in range(bs):
|
197 |
+
neg_idx = torch.multinomial(weights_i2t[b], 1).item()
|
198 |
+
text_ids_neg.append(encoder_input_ids[neg_idx])
|
199 |
+
text_atts_neg.append(text.attention_mask[neg_idx])
|
200 |
+
|
201 |
+
text_ids_neg = torch.stack(text_ids_neg,dim=0)
|
202 |
+
text_atts_neg = torch.stack(text_atts_neg,dim=0)
|
203 |
+
|
204 |
+
text_ids_all = torch.cat([encoder_input_ids, text_ids_neg],dim=0)
|
205 |
+
text_atts_all = torch.cat([text.attention_mask, text_atts_neg],dim=0)
|
206 |
+
|
207 |
+
image_embeds_all = torch.cat([image_embeds_neg,image_embeds],dim=0)
|
208 |
+
image_atts_all = torch.cat([image_atts,image_atts],dim=0)
|
209 |
+
|
210 |
+
output_neg = self.text_encoder(text_ids_all,
|
211 |
+
attention_mask = text_atts_all,
|
212 |
+
encoder_hidden_states = image_embeds_all,
|
213 |
+
encoder_attention_mask = image_atts_all,
|
214 |
+
return_dict = True,
|
215 |
+
)
|
216 |
+
|
217 |
+
|
218 |
+
vl_embeddings = torch.cat([output_pos.last_hidden_state[:,0,:], output_neg.last_hidden_state[:,0,:]],dim=0)
|
219 |
+
vl_output = self.itm_head(vl_embeddings)
|
220 |
+
|
221 |
+
itm_labels = torch.cat([torch.ones(bs,dtype=torch.long),torch.zeros(2*bs,dtype=torch.long)],
|
222 |
+
dim=0).to(image.device)
|
223 |
+
loss_itm = F.cross_entropy(vl_output, itm_labels)
|
224 |
+
|
225 |
+
return loss_ita, loss_itm
|
226 |
+
|
227 |
+
|
228 |
+
@torch.no_grad()
|
229 |
+
def copy_params(self):
|
230 |
+
for model_pair in self.model_pairs:
|
231 |
+
for param, param_m in zip(model_pair[0].parameters(), model_pair[1].parameters()):
|
232 |
+
param_m.data.copy_(param.data) # initialize
|
233 |
+
param_m.requires_grad = False # not update by gradient
|
234 |
+
|
235 |
+
|
236 |
+
@torch.no_grad()
|
237 |
+
def _momentum_update(self):
|
238 |
+
for model_pair in self.model_pairs:
|
239 |
+
for param, param_m in zip(model_pair[0].parameters(), model_pair[1].parameters()):
|
240 |
+
param_m.data = param_m.data * self.momentum + param.data * (1. - self.momentum)
|
241 |
+
|
242 |
+
|
243 |
+
@torch.no_grad()
|
244 |
+
def _dequeue_and_enqueue(self, image_feat, text_feat, idxs):
|
245 |
+
# gather keys before updating queue
|
246 |
+
image_feats = concat_all_gather(image_feat)
|
247 |
+
text_feats = concat_all_gather(text_feat)
|
248 |
+
|
249 |
+
|
250 |
+
batch_size = image_feats.shape[0]
|
251 |
+
|
252 |
+
ptr = int(self.ptr_queue)
|
253 |
+
assert self.queue_size % batch_size == 0 # for simplicity
|
254 |
+
|
255 |
+
# replace the keys at ptr (dequeue and enqueue)
|
256 |
+
self.image_queue[:, ptr:ptr + batch_size] = image_feats.T
|
257 |
+
self.text_queue[:, ptr:ptr + batch_size] = text_feats.T
|
258 |
+
self.idx_queue[:, ptr:ptr + batch_size] = idxs.T
|
259 |
+
ptr = (ptr + batch_size) % self.queue_size # move pointer
|
260 |
+
|
261 |
+
self.ptr_queue[0] = ptr
|
262 |
+
|
263 |
+
|
264 |
+
def blip_retrieval(pretrained='',**kwargs):
|
265 |
+
model = BLIP_Retrieval(**kwargs)
|
266 |
+
if pretrained:
|
267 |
+
model,msg = load_checkpoint(model,pretrained)
|
268 |
+
print("missing keys:")
|
269 |
+
print(msg.missing_keys)
|
270 |
+
return model
|
271 |
+
|
272 |
+
|
273 |
+
@torch.no_grad()
|
274 |
+
def concat_all_gather(tensor):
|
275 |
+
"""
|
276 |
+
Performs all_gather operation on the provided tensors.
|
277 |
+
*** Warning ***: torch.distributed.all_gather has no gradient.
|
278 |
+
"""
|
279 |
+
tensors_gather = [torch.ones_like(tensor)
|
280 |
+
for _ in range(torch.distributed.get_world_size())]
|
281 |
+
torch.distributed.all_gather(tensors_gather, tensor, async_op=False)
|
282 |
+
|
283 |
+
output = torch.cat(tensors_gather, dim=0)
|
284 |
+
return output
|
285 |
+
|
286 |
+
|
287 |
+
class GatherLayer(torch.autograd.Function):
|
288 |
+
"""
|
289 |
+
Gather tensors from all workers with support for backward propagation:
|
290 |
+
This implementation does not cut the gradients as torch.distributed.all_gather does.
|
291 |
+
"""
|
292 |
+
|
293 |
+
@staticmethod
|
294 |
+
def forward(ctx, x):
|
295 |
+
output = [torch.zeros_like(x) for _ in range(torch.distributed.get_world_size())]
|
296 |
+
torch.distributed.all_gather(output, x)
|
297 |
+
return tuple(output)
|
298 |
+
|
299 |
+
@staticmethod
|
300 |
+
def backward(ctx, *grads):
|
301 |
+
all_gradients = torch.stack(grads)
|
302 |
+
torch.distributed.all_reduce(all_gradients)
|
303 |
+
return all_gradients[torch.distributed.get_rank()]
|
304 |
+
|
305 |
+
|
306 |
+
def all_gather_with_grad(tensors):
|
307 |
+
"""
|
308 |
+
Performs all_gather operation on the provided tensors.
|
309 |
+
Graph remains connected for backward grad computation.
|
310 |
+
"""
|
311 |
+
# Queue the gathered tensors
|
312 |
+
world_size = torch.distributed.get_world_size()
|
313 |
+
# There is no need for reduction in the single-proc case
|
314 |
+
if world_size == 1:
|
315 |
+
return tensors
|
316 |
+
|
317 |
+
tensor_all = GatherLayer.apply(tensors)
|
318 |
+
|
319 |
+
return torch.cat(tensor_all, dim=0)
|
repositories/BLIP/models/blip_vqa.py
ADDED
@@ -0,0 +1,186 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from models.med import BertConfig, BertModel, BertLMHeadModel
|
2 |
+
from models.blip import create_vit, init_tokenizer, load_checkpoint
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from torch import nn
|
6 |
+
import torch.nn.functional as F
|
7 |
+
from transformers import BertTokenizer
|
8 |
+
import numpy as np
|
9 |
+
|
10 |
+
class BLIP_VQA(nn.Module):
|
11 |
+
def __init__(self,
|
12 |
+
med_config = 'configs/med_config.json',
|
13 |
+
image_size = 480,
|
14 |
+
vit = 'base',
|
15 |
+
vit_grad_ckpt = False,
|
16 |
+
vit_ckpt_layer = 0,
|
17 |
+
):
|
18 |
+
"""
|
19 |
+
Args:
|
20 |
+
med_config (str): path for the mixture of encoder-decoder model's configuration file
|
21 |
+
image_size (int): input image size
|
22 |
+
vit (str): model size of vision transformer
|
23 |
+
"""
|
24 |
+
super().__init__()
|
25 |
+
|
26 |
+
self.visual_encoder, vision_width = create_vit(vit, image_size, vit_grad_ckpt, vit_ckpt_layer, drop_path_rate=0.1)
|
27 |
+
self.tokenizer = init_tokenizer()
|
28 |
+
|
29 |
+
encoder_config = BertConfig.from_json_file(med_config)
|
30 |
+
encoder_config.encoder_width = vision_width
|
31 |
+
self.text_encoder = BertModel(config=encoder_config, add_pooling_layer=False)
|
32 |
+
|
33 |
+
decoder_config = BertConfig.from_json_file(med_config)
|
34 |
+
self.text_decoder = BertLMHeadModel(config=decoder_config)
|
35 |
+
|
36 |
+
|
37 |
+
def forward(self, image, question, answer=None, n=None, weights=None, train=True, inference='rank', k_test=128):
|
38 |
+
|
39 |
+
image_embeds = self.visual_encoder(image)
|
40 |
+
image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(image.device)
|
41 |
+
|
42 |
+
question = self.tokenizer(question, padding='longest', truncation=True, max_length=35,
|
43 |
+
return_tensors="pt").to(image.device)
|
44 |
+
question.input_ids[:,0] = self.tokenizer.enc_token_id
|
45 |
+
|
46 |
+
if train:
|
47 |
+
'''
|
48 |
+
n: number of answers for each question
|
49 |
+
weights: weight for each answer
|
50 |
+
'''
|
51 |
+
answer = self.tokenizer(answer, padding='longest', return_tensors="pt").to(image.device)
|
52 |
+
answer.input_ids[:,0] = self.tokenizer.bos_token_id
|
53 |
+
answer_targets = answer.input_ids.masked_fill(answer.input_ids == self.tokenizer.pad_token_id, -100)
|
54 |
+
|
55 |
+
question_output = self.text_encoder(question.input_ids,
|
56 |
+
attention_mask = question.attention_mask,
|
57 |
+
encoder_hidden_states = image_embeds,
|
58 |
+
encoder_attention_mask = image_atts,
|
59 |
+
return_dict = True)
|
60 |
+
|
61 |
+
question_states = []
|
62 |
+
question_atts = []
|
63 |
+
for b, n in enumerate(n):
|
64 |
+
question_states += [question_output.last_hidden_state[b]]*n
|
65 |
+
question_atts += [question.attention_mask[b]]*n
|
66 |
+
question_states = torch.stack(question_states,0)
|
67 |
+
question_atts = torch.stack(question_atts,0)
|
68 |
+
|
69 |
+
answer_output = self.text_decoder(answer.input_ids,
|
70 |
+
attention_mask = answer.attention_mask,
|
71 |
+
encoder_hidden_states = question_states,
|
72 |
+
encoder_attention_mask = question_atts,
|
73 |
+
labels = answer_targets,
|
74 |
+
return_dict = True,
|
75 |
+
reduction = 'none',
|
76 |
+
)
|
77 |
+
|
78 |
+
loss = weights * answer_output.loss
|
79 |
+
loss = loss.sum()/image.size(0)
|
80 |
+
|
81 |
+
return loss
|
82 |
+
|
83 |
+
|
84 |
+
else:
|
85 |
+
question_output = self.text_encoder(question.input_ids,
|
86 |
+
attention_mask = question.attention_mask,
|
87 |
+
encoder_hidden_states = image_embeds,
|
88 |
+
encoder_attention_mask = image_atts,
|
89 |
+
return_dict = True)
|
90 |
+
|
91 |
+
if inference=='generate':
|
92 |
+
num_beams = 3
|
93 |
+
question_states = question_output.last_hidden_state.repeat_interleave(num_beams,dim=0)
|
94 |
+
question_atts = torch.ones(question_states.size()[:-1],dtype=torch.long).to(question_states.device)
|
95 |
+
model_kwargs = {"encoder_hidden_states": question_states, "encoder_attention_mask":question_atts}
|
96 |
+
|
97 |
+
bos_ids = torch.full((image.size(0),1),fill_value=self.tokenizer.bos_token_id,device=image.device)
|
98 |
+
|
99 |
+
outputs = self.text_decoder.generate(input_ids=bos_ids,
|
100 |
+
max_length=10,
|
101 |
+
min_length=1,
|
102 |
+
num_beams=num_beams,
|
103 |
+
eos_token_id=self.tokenizer.sep_token_id,
|
104 |
+
pad_token_id=self.tokenizer.pad_token_id,
|
105 |
+
**model_kwargs)
|
106 |
+
|
107 |
+
answers = []
|
108 |
+
for output in outputs:
|
109 |
+
answer = self.tokenizer.decode(output, skip_special_tokens=True)
|
110 |
+
answers.append(answer)
|
111 |
+
return answers
|
112 |
+
|
113 |
+
elif inference=='rank':
|
114 |
+
max_ids = self.rank_answer(question_output.last_hidden_state, question.attention_mask,
|
115 |
+
answer.input_ids, answer.attention_mask, k_test)
|
116 |
+
return max_ids
|
117 |
+
|
118 |
+
|
119 |
+
|
120 |
+
def rank_answer(self, question_states, question_atts, answer_ids, answer_atts, k):
|
121 |
+
|
122 |
+
num_ques = question_states.size(0)
|
123 |
+
start_ids = answer_ids[0,0].repeat(num_ques,1) # bos token
|
124 |
+
|
125 |
+
start_output = self.text_decoder(start_ids,
|
126 |
+
encoder_hidden_states = question_states,
|
127 |
+
encoder_attention_mask = question_atts,
|
128 |
+
return_dict = True,
|
129 |
+
reduction = 'none')
|
130 |
+
logits = start_output.logits[:,0,:] # first token's logit
|
131 |
+
|
132 |
+
# topk_probs: top-k probability
|
133 |
+
# topk_ids: [num_question, k]
|
134 |
+
answer_first_token = answer_ids[:,1]
|
135 |
+
prob_first_token = F.softmax(logits,dim=1).index_select(dim=1, index=answer_first_token)
|
136 |
+
topk_probs, topk_ids = prob_first_token.topk(k,dim=1)
|
137 |
+
|
138 |
+
# answer input: [num_question*k, answer_len]
|
139 |
+
input_ids = []
|
140 |
+
input_atts = []
|
141 |
+
for b, topk_id in enumerate(topk_ids):
|
142 |
+
input_ids.append(answer_ids.index_select(dim=0, index=topk_id))
|
143 |
+
input_atts.append(answer_atts.index_select(dim=0, index=topk_id))
|
144 |
+
input_ids = torch.cat(input_ids,dim=0)
|
145 |
+
input_atts = torch.cat(input_atts,dim=0)
|
146 |
+
|
147 |
+
targets_ids = input_ids.masked_fill(input_ids == self.tokenizer.pad_token_id, -100)
|
148 |
+
|
149 |
+
# repeat encoder's output for top-k answers
|
150 |
+
question_states = tile(question_states, 0, k)
|
151 |
+
question_atts = tile(question_atts, 0, k)
|
152 |
+
|
153 |
+
output = self.text_decoder(input_ids,
|
154 |
+
attention_mask = input_atts,
|
155 |
+
encoder_hidden_states = question_states,
|
156 |
+
encoder_attention_mask = question_atts,
|
157 |
+
labels = targets_ids,
|
158 |
+
return_dict = True,
|
159 |
+
reduction = 'none')
|
160 |
+
|
161 |
+
log_probs_sum = -output.loss
|
162 |
+
log_probs_sum = log_probs_sum.view(num_ques,k)
|
163 |
+
|
164 |
+
max_topk_ids = log_probs_sum.argmax(dim=1)
|
165 |
+
max_ids = topk_ids[max_topk_ids>=0,max_topk_ids]
|
166 |
+
|
167 |
+
return max_ids
|
168 |
+
|
169 |
+
|
170 |
+
def blip_vqa(pretrained='',**kwargs):
|
171 |
+
model = BLIP_VQA(**kwargs)
|
172 |
+
if pretrained:
|
173 |
+
model,msg = load_checkpoint(model,pretrained)
|
174 |
+
# assert(len(msg.missing_keys)==0)
|
175 |
+
return model
|
176 |
+
|
177 |
+
|
178 |
+
def tile(x, dim, n_tile):
|
179 |
+
init_dim = x.size(dim)
|
180 |
+
repeat_idx = [1] * x.dim()
|
181 |
+
repeat_idx[dim] = n_tile
|
182 |
+
x = x.repeat(*(repeat_idx))
|
183 |
+
order_index = torch.LongTensor(np.concatenate([init_dim * np.arange(n_tile) + i for i in range(init_dim)]))
|
184 |
+
return torch.index_select(x, dim, order_index.to(x.device))
|
185 |
+
|
186 |
+
|
repositories/BLIP/models/med.py
ADDED
@@ -0,0 +1,955 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
'''
|
2 |
+
* Copyright (c) 2022, salesforce.com, inc.
|
3 |
+
* All rights reserved.
|
4 |
+
* SPDX-License-Identifier: BSD-3-Clause
|
5 |
+
* For full license text, see LICENSE.txt file in the repo root or https://opensource.org/licenses/BSD-3-Clause
|
6 |
+
* By Junnan Li
|
7 |
+
* Based on huggingface code base
|
8 |
+
* https://github.com/huggingface/transformers/blob/v4.15.0/src/transformers/models/bert
|
9 |
+
'''
|
10 |
+
|
11 |
+
import math
|
12 |
+
import os
|
13 |
+
import warnings
|
14 |
+
from dataclasses import dataclass
|
15 |
+
from typing import Optional, Tuple
|
16 |
+
|
17 |
+
import torch
|
18 |
+
from torch import Tensor, device, dtype, nn
|
19 |
+
import torch.utils.checkpoint
|
20 |
+
from torch import nn
|
21 |
+
from torch.nn import CrossEntropyLoss
|
22 |
+
import torch.nn.functional as F
|
23 |
+
|
24 |
+
from transformers.activations import ACT2FN
|
25 |
+
from transformers.file_utils import (
|
26 |
+
ModelOutput,
|
27 |
+
)
|
28 |
+
from transformers.modeling_outputs import (
|
29 |
+
BaseModelOutputWithPastAndCrossAttentions,
|
30 |
+
BaseModelOutputWithPoolingAndCrossAttentions,
|
31 |
+
CausalLMOutputWithCrossAttentions,
|
32 |
+
MaskedLMOutput,
|
33 |
+
MultipleChoiceModelOutput,
|
34 |
+
NextSentencePredictorOutput,
|
35 |
+
QuestionAnsweringModelOutput,
|
36 |
+
SequenceClassifierOutput,
|
37 |
+
TokenClassifierOutput,
|
38 |
+
)
|
39 |
+
from transformers.modeling_utils import (
|
40 |
+
PreTrainedModel,
|
41 |
+
apply_chunking_to_forward,
|
42 |
+
find_pruneable_heads_and_indices,
|
43 |
+
prune_linear_layer,
|
44 |
+
)
|
45 |
+
from transformers.utils import logging
|
46 |
+
from transformers.models.bert.configuration_bert import BertConfig
|
47 |
+
|
48 |
+
|
49 |
+
logger = logging.get_logger(__name__)
|
50 |
+
|
51 |
+
|
52 |
+
class BertEmbeddings(nn.Module):
|
53 |
+
"""Construct the embeddings from word and position embeddings."""
|
54 |
+
|
55 |
+
def __init__(self, config):
|
56 |
+
super().__init__()
|
57 |
+
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
|
58 |
+
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
|
59 |
+
|
60 |
+
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
|
61 |
+
# any TensorFlow checkpoint file
|
62 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
63 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
64 |
+
|
65 |
+
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
|
66 |
+
self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)))
|
67 |
+
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
|
68 |
+
|
69 |
+
self.config = config
|
70 |
+
|
71 |
+
def forward(
|
72 |
+
self, input_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0
|
73 |
+
):
|
74 |
+
if input_ids is not None:
|
75 |
+
input_shape = input_ids.size()
|
76 |
+
else:
|
77 |
+
input_shape = inputs_embeds.size()[:-1]
|
78 |
+
|
79 |
+
seq_length = input_shape[1]
|
80 |
+
|
81 |
+
if position_ids is None:
|
82 |
+
position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length]
|
83 |
+
|
84 |
+
if inputs_embeds is None:
|
85 |
+
inputs_embeds = self.word_embeddings(input_ids)
|
86 |
+
|
87 |
+
embeddings = inputs_embeds
|
88 |
+
|
89 |
+
if self.position_embedding_type == "absolute":
|
90 |
+
position_embeddings = self.position_embeddings(position_ids)
|
91 |
+
embeddings += position_embeddings
|
92 |
+
embeddings = self.LayerNorm(embeddings)
|
93 |
+
embeddings = self.dropout(embeddings)
|
94 |
+
return embeddings
|
95 |
+
|
96 |
+
|
97 |
+
class BertSelfAttention(nn.Module):
|
98 |
+
def __init__(self, config, is_cross_attention):
|
99 |
+
super().__init__()
|
100 |
+
self.config = config
|
101 |
+
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
|
102 |
+
raise ValueError(
|
103 |
+
"The hidden size (%d) is not a multiple of the number of attention "
|
104 |
+
"heads (%d)" % (config.hidden_size, config.num_attention_heads)
|
105 |
+
)
|
106 |
+
|
107 |
+
self.num_attention_heads = config.num_attention_heads
|
108 |
+
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
|
109 |
+
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
110 |
+
|
111 |
+
self.query = nn.Linear(config.hidden_size, self.all_head_size)
|
112 |
+
if is_cross_attention:
|
113 |
+
self.key = nn.Linear(config.encoder_width, self.all_head_size)
|
114 |
+
self.value = nn.Linear(config.encoder_width, self.all_head_size)
|
115 |
+
else:
|
116 |
+
self.key = nn.Linear(config.hidden_size, self.all_head_size)
|
117 |
+
self.value = nn.Linear(config.hidden_size, self.all_head_size)
|
118 |
+
|
119 |
+
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
|
120 |
+
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
|
121 |
+
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
|
122 |
+
self.max_position_embeddings = config.max_position_embeddings
|
123 |
+
self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
|
124 |
+
self.save_attention = False
|
125 |
+
|
126 |
+
def save_attn_gradients(self, attn_gradients):
|
127 |
+
self.attn_gradients = attn_gradients
|
128 |
+
|
129 |
+
def get_attn_gradients(self):
|
130 |
+
return self.attn_gradients
|
131 |
+
|
132 |
+
def save_attention_map(self, attention_map):
|
133 |
+
self.attention_map = attention_map
|
134 |
+
|
135 |
+
def get_attention_map(self):
|
136 |
+
return self.attention_map
|
137 |
+
|
138 |
+
def transpose_for_scores(self, x):
|
139 |
+
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
|
140 |
+
x = x.view(*new_x_shape)
|
141 |
+
return x.permute(0, 2, 1, 3)
|
142 |
+
|
143 |
+
def forward(
|
144 |
+
self,
|
145 |
+
hidden_states,
|
146 |
+
attention_mask=None,
|
147 |
+
head_mask=None,
|
148 |
+
encoder_hidden_states=None,
|
149 |
+
encoder_attention_mask=None,
|
150 |
+
past_key_value=None,
|
151 |
+
output_attentions=False,
|
152 |
+
):
|
153 |
+
mixed_query_layer = self.query(hidden_states)
|
154 |
+
|
155 |
+
# If this is instantiated as a cross-attention module, the keys
|
156 |
+
# and values come from an encoder; the attention mask needs to be
|
157 |
+
# such that the encoder's padding tokens are not attended to.
|
158 |
+
is_cross_attention = encoder_hidden_states is not None
|
159 |
+
|
160 |
+
if is_cross_attention:
|
161 |
+
key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
|
162 |
+
value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
|
163 |
+
attention_mask = encoder_attention_mask
|
164 |
+
elif past_key_value is not None:
|
165 |
+
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
166 |
+
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
167 |
+
key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
|
168 |
+
value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
|
169 |
+
else:
|
170 |
+
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
171 |
+
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
172 |
+
|
173 |
+
query_layer = self.transpose_for_scores(mixed_query_layer)
|
174 |
+
|
175 |
+
past_key_value = (key_layer, value_layer)
|
176 |
+
|
177 |
+
# Take the dot product between "query" and "key" to get the raw attention scores.
|
178 |
+
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
|
179 |
+
|
180 |
+
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
|
181 |
+
seq_length = hidden_states.size()[1]
|
182 |
+
position_ids_l = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
|
183 |
+
position_ids_r = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
|
184 |
+
distance = position_ids_l - position_ids_r
|
185 |
+
positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
|
186 |
+
positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility
|
187 |
+
|
188 |
+
if self.position_embedding_type == "relative_key":
|
189 |
+
relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
|
190 |
+
attention_scores = attention_scores + relative_position_scores
|
191 |
+
elif self.position_embedding_type == "relative_key_query":
|
192 |
+
relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
|
193 |
+
relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
|
194 |
+
attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
|
195 |
+
|
196 |
+
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
|
197 |
+
if attention_mask is not None:
|
198 |
+
# Apply the attention mask is (precomputed for all layers in BertModel forward() function)
|
199 |
+
attention_scores = attention_scores + attention_mask
|
200 |
+
|
201 |
+
# Normalize the attention scores to probabilities.
|
202 |
+
attention_probs = nn.Softmax(dim=-1)(attention_scores)
|
203 |
+
|
204 |
+
if is_cross_attention and self.save_attention:
|
205 |
+
self.save_attention_map(attention_probs)
|
206 |
+
attention_probs.register_hook(self.save_attn_gradients)
|
207 |
+
|
208 |
+
# This is actually dropping out entire tokens to attend to, which might
|
209 |
+
# seem a bit unusual, but is taken from the original Transformer paper.
|
210 |
+
attention_probs_dropped = self.dropout(attention_probs)
|
211 |
+
|
212 |
+
# Mask heads if we want to
|
213 |
+
if head_mask is not None:
|
214 |
+
attention_probs_dropped = attention_probs_dropped * head_mask
|
215 |
+
|
216 |
+
context_layer = torch.matmul(attention_probs_dropped, value_layer)
|
217 |
+
|
218 |
+
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
|
219 |
+
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
|
220 |
+
context_layer = context_layer.view(*new_context_layer_shape)
|
221 |
+
|
222 |
+
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
|
223 |
+
|
224 |
+
outputs = outputs + (past_key_value,)
|
225 |
+
return outputs
|
226 |
+
|
227 |
+
|
228 |
+
class BertSelfOutput(nn.Module):
|
229 |
+
def __init__(self, config):
|
230 |
+
super().__init__()
|
231 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
232 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
233 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
234 |
+
|
235 |
+
def forward(self, hidden_states, input_tensor):
|
236 |
+
hidden_states = self.dense(hidden_states)
|
237 |
+
hidden_states = self.dropout(hidden_states)
|
238 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
239 |
+
return hidden_states
|
240 |
+
|
241 |
+
|
242 |
+
class BertAttention(nn.Module):
|
243 |
+
def __init__(self, config, is_cross_attention=False):
|
244 |
+
super().__init__()
|
245 |
+
self.self = BertSelfAttention(config, is_cross_attention)
|
246 |
+
self.output = BertSelfOutput(config)
|
247 |
+
self.pruned_heads = set()
|
248 |
+
|
249 |
+
def prune_heads(self, heads):
|
250 |
+
if len(heads) == 0:
|
251 |
+
return
|
252 |
+
heads, index = find_pruneable_heads_and_indices(
|
253 |
+
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
|
254 |
+
)
|
255 |
+
|
256 |
+
# Prune linear layers
|
257 |
+
self.self.query = prune_linear_layer(self.self.query, index)
|
258 |
+
self.self.key = prune_linear_layer(self.self.key, index)
|
259 |
+
self.self.value = prune_linear_layer(self.self.value, index)
|
260 |
+
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
|
261 |
+
|
262 |
+
# Update hyper params and store pruned heads
|
263 |
+
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
|
264 |
+
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
|
265 |
+
self.pruned_heads = self.pruned_heads.union(heads)
|
266 |
+
|
267 |
+
def forward(
|
268 |
+
self,
|
269 |
+
hidden_states,
|
270 |
+
attention_mask=None,
|
271 |
+
head_mask=None,
|
272 |
+
encoder_hidden_states=None,
|
273 |
+
encoder_attention_mask=None,
|
274 |
+
past_key_value=None,
|
275 |
+
output_attentions=False,
|
276 |
+
):
|
277 |
+
self_outputs = self.self(
|
278 |
+
hidden_states,
|
279 |
+
attention_mask,
|
280 |
+
head_mask,
|
281 |
+
encoder_hidden_states,
|
282 |
+
encoder_attention_mask,
|
283 |
+
past_key_value,
|
284 |
+
output_attentions,
|
285 |
+
)
|
286 |
+
attention_output = self.output(self_outputs[0], hidden_states)
|
287 |
+
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
|
288 |
+
return outputs
|
289 |
+
|
290 |
+
|
291 |
+
class BertIntermediate(nn.Module):
|
292 |
+
def __init__(self, config):
|
293 |
+
super().__init__()
|
294 |
+
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
|
295 |
+
if isinstance(config.hidden_act, str):
|
296 |
+
self.intermediate_act_fn = ACT2FN[config.hidden_act]
|
297 |
+
else:
|
298 |
+
self.intermediate_act_fn = config.hidden_act
|
299 |
+
|
300 |
+
def forward(self, hidden_states):
|
301 |
+
hidden_states = self.dense(hidden_states)
|
302 |
+
hidden_states = self.intermediate_act_fn(hidden_states)
|
303 |
+
return hidden_states
|
304 |
+
|
305 |
+
|
306 |
+
class BertOutput(nn.Module):
|
307 |
+
def __init__(self, config):
|
308 |
+
super().__init__()
|
309 |
+
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
|
310 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
311 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
312 |
+
|
313 |
+
def forward(self, hidden_states, input_tensor):
|
314 |
+
hidden_states = self.dense(hidden_states)
|
315 |
+
hidden_states = self.dropout(hidden_states)
|
316 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
317 |
+
return hidden_states
|
318 |
+
|
319 |
+
|
320 |
+
class BertLayer(nn.Module):
|
321 |
+
def __init__(self, config, layer_num):
|
322 |
+
super().__init__()
|
323 |
+
self.config = config
|
324 |
+
self.chunk_size_feed_forward = config.chunk_size_feed_forward
|
325 |
+
self.seq_len_dim = 1
|
326 |
+
self.attention = BertAttention(config)
|
327 |
+
self.layer_num = layer_num
|
328 |
+
if self.config.add_cross_attention:
|
329 |
+
self.crossattention = BertAttention(config, is_cross_attention=self.config.add_cross_attention)
|
330 |
+
self.intermediate = BertIntermediate(config)
|
331 |
+
self.output = BertOutput(config)
|
332 |
+
|
333 |
+
def forward(
|
334 |
+
self,
|
335 |
+
hidden_states,
|
336 |
+
attention_mask=None,
|
337 |
+
head_mask=None,
|
338 |
+
encoder_hidden_states=None,
|
339 |
+
encoder_attention_mask=None,
|
340 |
+
past_key_value=None,
|
341 |
+
output_attentions=False,
|
342 |
+
mode=None,
|
343 |
+
):
|
344 |
+
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
|
345 |
+
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
|
346 |
+
self_attention_outputs = self.attention(
|
347 |
+
hidden_states,
|
348 |
+
attention_mask,
|
349 |
+
head_mask,
|
350 |
+
output_attentions=output_attentions,
|
351 |
+
past_key_value=self_attn_past_key_value,
|
352 |
+
)
|
353 |
+
attention_output = self_attention_outputs[0]
|
354 |
+
|
355 |
+
outputs = self_attention_outputs[1:-1]
|
356 |
+
present_key_value = self_attention_outputs[-1]
|
357 |
+
|
358 |
+
if mode=='multimodal':
|
359 |
+
assert encoder_hidden_states is not None, "encoder_hidden_states must be given for cross-attention layers"
|
360 |
+
|
361 |
+
cross_attention_outputs = self.crossattention(
|
362 |
+
attention_output,
|
363 |
+
attention_mask,
|
364 |
+
head_mask,
|
365 |
+
encoder_hidden_states,
|
366 |
+
encoder_attention_mask,
|
367 |
+
output_attentions=output_attentions,
|
368 |
+
)
|
369 |
+
attention_output = cross_attention_outputs[0]
|
370 |
+
outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
|
371 |
+
layer_output = apply_chunking_to_forward(
|
372 |
+
self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
|
373 |
+
)
|
374 |
+
outputs = (layer_output,) + outputs
|
375 |
+
|
376 |
+
outputs = outputs + (present_key_value,)
|
377 |
+
|
378 |
+
return outputs
|
379 |
+
|
380 |
+
def feed_forward_chunk(self, attention_output):
|
381 |
+
intermediate_output = self.intermediate(attention_output)
|
382 |
+
layer_output = self.output(intermediate_output, attention_output)
|
383 |
+
return layer_output
|
384 |
+
|
385 |
+
|
386 |
+
class BertEncoder(nn.Module):
|
387 |
+
def __init__(self, config):
|
388 |
+
super().__init__()
|
389 |
+
self.config = config
|
390 |
+
self.layer = nn.ModuleList([BertLayer(config,i) for i in range(config.num_hidden_layers)])
|
391 |
+
self.gradient_checkpointing = False
|
392 |
+
|
393 |
+
def forward(
|
394 |
+
self,
|
395 |
+
hidden_states,
|
396 |
+
attention_mask=None,
|
397 |
+
head_mask=None,
|
398 |
+
encoder_hidden_states=None,
|
399 |
+
encoder_attention_mask=None,
|
400 |
+
past_key_values=None,
|
401 |
+
use_cache=None,
|
402 |
+
output_attentions=False,
|
403 |
+
output_hidden_states=False,
|
404 |
+
return_dict=True,
|
405 |
+
mode='multimodal',
|
406 |
+
):
|
407 |
+
all_hidden_states = () if output_hidden_states else None
|
408 |
+
all_self_attentions = () if output_attentions else None
|
409 |
+
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
|
410 |
+
|
411 |
+
next_decoder_cache = () if use_cache else None
|
412 |
+
|
413 |
+
for i in range(self.config.num_hidden_layers):
|
414 |
+
layer_module = self.layer[i]
|
415 |
+
if output_hidden_states:
|
416 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
417 |
+
|
418 |
+
layer_head_mask = head_mask[i] if head_mask is not None else None
|
419 |
+
past_key_value = past_key_values[i] if past_key_values is not None else None
|
420 |
+
|
421 |
+
if self.gradient_checkpointing and self.training:
|
422 |
+
|
423 |
+
if use_cache:
|
424 |
+
logger.warn(
|
425 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
426 |
+
)
|
427 |
+
use_cache = False
|
428 |
+
|
429 |
+
def create_custom_forward(module):
|
430 |
+
def custom_forward(*inputs):
|
431 |
+
return module(*inputs, past_key_value, output_attentions)
|
432 |
+
|
433 |
+
return custom_forward
|
434 |
+
|
435 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
436 |
+
create_custom_forward(layer_module),
|
437 |
+
hidden_states,
|
438 |
+
attention_mask,
|
439 |
+
layer_head_mask,
|
440 |
+
encoder_hidden_states,
|
441 |
+
encoder_attention_mask,
|
442 |
+
mode=mode,
|
443 |
+
)
|
444 |
+
else:
|
445 |
+
layer_outputs = layer_module(
|
446 |
+
hidden_states,
|
447 |
+
attention_mask,
|
448 |
+
layer_head_mask,
|
449 |
+
encoder_hidden_states,
|
450 |
+
encoder_attention_mask,
|
451 |
+
past_key_value,
|
452 |
+
output_attentions,
|
453 |
+
mode=mode,
|
454 |
+
)
|
455 |
+
|
456 |
+
hidden_states = layer_outputs[0]
|
457 |
+
if use_cache:
|
458 |
+
next_decoder_cache += (layer_outputs[-1],)
|
459 |
+
if output_attentions:
|
460 |
+
all_self_attentions = all_self_attentions + (layer_outputs[1],)
|
461 |
+
|
462 |
+
if output_hidden_states:
|
463 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
464 |
+
|
465 |
+
if not return_dict:
|
466 |
+
return tuple(
|
467 |
+
v
|
468 |
+
for v in [
|
469 |
+
hidden_states,
|
470 |
+
next_decoder_cache,
|
471 |
+
all_hidden_states,
|
472 |
+
all_self_attentions,
|
473 |
+
all_cross_attentions,
|
474 |
+
]
|
475 |
+
if v is not None
|
476 |
+
)
|
477 |
+
return BaseModelOutputWithPastAndCrossAttentions(
|
478 |
+
last_hidden_state=hidden_states,
|
479 |
+
past_key_values=next_decoder_cache,
|
480 |
+
hidden_states=all_hidden_states,
|
481 |
+
attentions=all_self_attentions,
|
482 |
+
cross_attentions=all_cross_attentions,
|
483 |
+
)
|
484 |
+
|
485 |
+
|
486 |
+
class BertPooler(nn.Module):
|
487 |
+
def __init__(self, config):
|
488 |
+
super().__init__()
|
489 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
490 |
+
self.activation = nn.Tanh()
|
491 |
+
|
492 |
+
def forward(self, hidden_states):
|
493 |
+
# We "pool" the model by simply taking the hidden state corresponding
|
494 |
+
# to the first token.
|
495 |
+
first_token_tensor = hidden_states[:, 0]
|
496 |
+
pooled_output = self.dense(first_token_tensor)
|
497 |
+
pooled_output = self.activation(pooled_output)
|
498 |
+
return pooled_output
|
499 |
+
|
500 |
+
|
501 |
+
class BertPredictionHeadTransform(nn.Module):
|
502 |
+
def __init__(self, config):
|
503 |
+
super().__init__()
|
504 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
505 |
+
if isinstance(config.hidden_act, str):
|
506 |
+
self.transform_act_fn = ACT2FN[config.hidden_act]
|
507 |
+
else:
|
508 |
+
self.transform_act_fn = config.hidden_act
|
509 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
510 |
+
|
511 |
+
def forward(self, hidden_states):
|
512 |
+
hidden_states = self.dense(hidden_states)
|
513 |
+
hidden_states = self.transform_act_fn(hidden_states)
|
514 |
+
hidden_states = self.LayerNorm(hidden_states)
|
515 |
+
return hidden_states
|
516 |
+
|
517 |
+
|
518 |
+
class BertLMPredictionHead(nn.Module):
|
519 |
+
def __init__(self, config):
|
520 |
+
super().__init__()
|
521 |
+
self.transform = BertPredictionHeadTransform(config)
|
522 |
+
|
523 |
+
# The output weights are the same as the input embeddings, but there is
|
524 |
+
# an output-only bias for each token.
|
525 |
+
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
526 |
+
|
527 |
+
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
|
528 |
+
|
529 |
+
# Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
|
530 |
+
self.decoder.bias = self.bias
|
531 |
+
|
532 |
+
def forward(self, hidden_states):
|
533 |
+
hidden_states = self.transform(hidden_states)
|
534 |
+
hidden_states = self.decoder(hidden_states)
|
535 |
+
return hidden_states
|
536 |
+
|
537 |
+
|
538 |
+
class BertOnlyMLMHead(nn.Module):
|
539 |
+
def __init__(self, config):
|
540 |
+
super().__init__()
|
541 |
+
self.predictions = BertLMPredictionHead(config)
|
542 |
+
|
543 |
+
def forward(self, sequence_output):
|
544 |
+
prediction_scores = self.predictions(sequence_output)
|
545 |
+
return prediction_scores
|
546 |
+
|
547 |
+
|
548 |
+
class BertPreTrainedModel(PreTrainedModel):
|
549 |
+
"""
|
550 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
551 |
+
models.
|
552 |
+
"""
|
553 |
+
|
554 |
+
config_class = BertConfig
|
555 |
+
base_model_prefix = "bert"
|
556 |
+
_keys_to_ignore_on_load_missing = [r"position_ids"]
|
557 |
+
|
558 |
+
def _init_weights(self, module):
|
559 |
+
""" Initialize the weights """
|
560 |
+
if isinstance(module, (nn.Linear, nn.Embedding)):
|
561 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
562 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
563 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
564 |
+
elif isinstance(module, nn.LayerNorm):
|
565 |
+
module.bias.data.zero_()
|
566 |
+
module.weight.data.fill_(1.0)
|
567 |
+
if isinstance(module, nn.Linear) and module.bias is not None:
|
568 |
+
module.bias.data.zero_()
|
569 |
+
|
570 |
+
|
571 |
+
class BertModel(BertPreTrainedModel):
|
572 |
+
"""
|
573 |
+
The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
|
574 |
+
cross-attention is added between the self-attention layers, following the architecture described in `Attention is
|
575 |
+
all you need <https://arxiv.org/abs/1706.03762>`__ by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
|
576 |
+
Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
|
577 |
+
argument and :obj:`add_cross_attention` set to :obj:`True`; an :obj:`encoder_hidden_states` is then expected as an
|
578 |
+
input to the forward pass.
|
579 |
+
"""
|
580 |
+
|
581 |
+
def __init__(self, config, add_pooling_layer=True):
|
582 |
+
super().__init__(config)
|
583 |
+
self.config = config
|
584 |
+
|
585 |
+
self.embeddings = BertEmbeddings(config)
|
586 |
+
|
587 |
+
self.encoder = BertEncoder(config)
|
588 |
+
|
589 |
+
self.pooler = BertPooler(config) if add_pooling_layer else None
|
590 |
+
|
591 |
+
self.init_weights()
|
592 |
+
|
593 |
+
|
594 |
+
def get_input_embeddings(self):
|
595 |
+
return self.embeddings.word_embeddings
|
596 |
+
|
597 |
+
def set_input_embeddings(self, value):
|
598 |
+
self.embeddings.word_embeddings = value
|
599 |
+
|
600 |
+
def _prune_heads(self, heads_to_prune):
|
601 |
+
"""
|
602 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
603 |
+
class PreTrainedModel
|
604 |
+
"""
|
605 |
+
for layer, heads in heads_to_prune.items():
|
606 |
+
self.encoder.layer[layer].attention.prune_heads(heads)
|
607 |
+
|
608 |
+
|
609 |
+
def get_extended_attention_mask(self, attention_mask: Tensor, input_shape: Tuple[int], device: device, is_decoder: bool) -> Tensor:
|
610 |
+
"""
|
611 |
+
Makes broadcastable attention and causal masks so that future and masked tokens are ignored.
|
612 |
+
|
613 |
+
Arguments:
|
614 |
+
attention_mask (:obj:`torch.Tensor`):
|
615 |
+
Mask with ones indicating tokens to attend to, zeros for tokens to ignore.
|
616 |
+
input_shape (:obj:`Tuple[int]`):
|
617 |
+
The shape of the input to the model.
|
618 |
+
device: (:obj:`torch.device`):
|
619 |
+
The device of the input to the model.
|
620 |
+
|
621 |
+
Returns:
|
622 |
+
:obj:`torch.Tensor` The extended attention mask, with a the same dtype as :obj:`attention_mask.dtype`.
|
623 |
+
"""
|
624 |
+
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
625 |
+
# ourselves in which case we just need to make it broadcastable to all heads.
|
626 |
+
if attention_mask.dim() == 3:
|
627 |
+
extended_attention_mask = attention_mask[:, None, :, :]
|
628 |
+
elif attention_mask.dim() == 2:
|
629 |
+
# Provided a padding mask of dimensions [batch_size, seq_length]
|
630 |
+
# - if the model is a decoder, apply a causal mask in addition to the padding mask
|
631 |
+
# - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
632 |
+
if is_decoder:
|
633 |
+
batch_size, seq_length = input_shape
|
634 |
+
|
635 |
+
seq_ids = torch.arange(seq_length, device=device)
|
636 |
+
causal_mask = seq_ids[None, None, :].repeat(batch_size, seq_length, 1) <= seq_ids[None, :, None]
|
637 |
+
# in case past_key_values are used we need to add a prefix ones mask to the causal mask
|
638 |
+
# causal and attention masks must have same type with pytorch version < 1.3
|
639 |
+
causal_mask = causal_mask.to(attention_mask.dtype)
|
640 |
+
|
641 |
+
if causal_mask.shape[1] < attention_mask.shape[1]:
|
642 |
+
prefix_seq_len = attention_mask.shape[1] - causal_mask.shape[1]
|
643 |
+
causal_mask = torch.cat(
|
644 |
+
[
|
645 |
+
torch.ones((batch_size, seq_length, prefix_seq_len), device=device, dtype=causal_mask.dtype),
|
646 |
+
causal_mask,
|
647 |
+
],
|
648 |
+
axis=-1,
|
649 |
+
)
|
650 |
+
|
651 |
+
extended_attention_mask = causal_mask[:, None, :, :] * attention_mask[:, None, None, :]
|
652 |
+
else:
|
653 |
+
extended_attention_mask = attention_mask[:, None, None, :]
|
654 |
+
else:
|
655 |
+
raise ValueError(
|
656 |
+
"Wrong shape for input_ids (shape {}) or attention_mask (shape {})".format(
|
657 |
+
input_shape, attention_mask.shape
|
658 |
+
)
|
659 |
+
)
|
660 |
+
|
661 |
+
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
|
662 |
+
# masked positions, this operation will create a tensor which is 0.0 for
|
663 |
+
# positions we want to attend and -10000.0 for masked positions.
|
664 |
+
# Since we are adding it to the raw scores before the softmax, this is
|
665 |
+
# effectively the same as removing these entirely.
|
666 |
+
extended_attention_mask = extended_attention_mask.to(dtype=self.dtype) # fp16 compatibility
|
667 |
+
extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
|
668 |
+
return extended_attention_mask
|
669 |
+
|
670 |
+
def forward(
|
671 |
+
self,
|
672 |
+
input_ids=None,
|
673 |
+
attention_mask=None,
|
674 |
+
position_ids=None,
|
675 |
+
head_mask=None,
|
676 |
+
inputs_embeds=None,
|
677 |
+
encoder_embeds=None,
|
678 |
+
encoder_hidden_states=None,
|
679 |
+
encoder_attention_mask=None,
|
680 |
+
past_key_values=None,
|
681 |
+
use_cache=None,
|
682 |
+
output_attentions=None,
|
683 |
+
output_hidden_states=None,
|
684 |
+
return_dict=None,
|
685 |
+
is_decoder=False,
|
686 |
+
mode='multimodal',
|
687 |
+
):
|
688 |
+
r"""
|
689 |
+
encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
|
690 |
+
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
|
691 |
+
the model is configured as a decoder.
|
692 |
+
encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
|
693 |
+
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
|
694 |
+
the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``:
|
695 |
+
- 1 for tokens that are **not masked**,
|
696 |
+
- 0 for tokens that are **masked**.
|
697 |
+
past_key_values (:obj:`tuple(tuple(torch.FloatTensor))` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
|
698 |
+
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
699 |
+
If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids`
|
700 |
+
(those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)`
|
701 |
+
instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`.
|
702 |
+
use_cache (:obj:`bool`, `optional`):
|
703 |
+
If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up
|
704 |
+
decoding (see :obj:`past_key_values`).
|
705 |
+
"""
|
706 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
707 |
+
output_hidden_states = (
|
708 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
709 |
+
)
|
710 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
711 |
+
|
712 |
+
if is_decoder:
|
713 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
714 |
+
else:
|
715 |
+
use_cache = False
|
716 |
+
|
717 |
+
if input_ids is not None and inputs_embeds is not None:
|
718 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
719 |
+
elif input_ids is not None:
|
720 |
+
input_shape = input_ids.size()
|
721 |
+
batch_size, seq_length = input_shape
|
722 |
+
device = input_ids.device
|
723 |
+
elif inputs_embeds is not None:
|
724 |
+
input_shape = inputs_embeds.size()[:-1]
|
725 |
+
batch_size, seq_length = input_shape
|
726 |
+
device = inputs_embeds.device
|
727 |
+
elif encoder_embeds is not None:
|
728 |
+
input_shape = encoder_embeds.size()[:-1]
|
729 |
+
batch_size, seq_length = input_shape
|
730 |
+
device = encoder_embeds.device
|
731 |
+
else:
|
732 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds or encoder_embeds")
|
733 |
+
|
734 |
+
# past_key_values_length
|
735 |
+
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
|
736 |
+
|
737 |
+
if attention_mask is None:
|
738 |
+
attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device)
|
739 |
+
|
740 |
+
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
741 |
+
# ourselves in which case we just need to make it broadcastable to all heads.
|
742 |
+
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape,
|
743 |
+
device, is_decoder)
|
744 |
+
|
745 |
+
# If a 2D or 3D attention mask is provided for the cross-attention
|
746 |
+
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
747 |
+
if encoder_hidden_states is not None:
|
748 |
+
if type(encoder_hidden_states) == list:
|
749 |
+
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states[0].size()
|
750 |
+
else:
|
751 |
+
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
|
752 |
+
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
|
753 |
+
|
754 |
+
if type(encoder_attention_mask) == list:
|
755 |
+
encoder_extended_attention_mask = [self.invert_attention_mask(mask) for mask in encoder_attention_mask]
|
756 |
+
elif encoder_attention_mask is None:
|
757 |
+
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
|
758 |
+
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
|
759 |
+
else:
|
760 |
+
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
|
761 |
+
else:
|
762 |
+
encoder_extended_attention_mask = None
|
763 |
+
|
764 |
+
# Prepare head mask if needed
|
765 |
+
# 1.0 in head_mask indicate we keep the head
|
766 |
+
# attention_probs has shape bsz x n_heads x N x N
|
767 |
+
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
768 |
+
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
769 |
+
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
770 |
+
|
771 |
+
if encoder_embeds is None:
|
772 |
+
embedding_output = self.embeddings(
|
773 |
+
input_ids=input_ids,
|
774 |
+
position_ids=position_ids,
|
775 |
+
inputs_embeds=inputs_embeds,
|
776 |
+
past_key_values_length=past_key_values_length,
|
777 |
+
)
|
778 |
+
else:
|
779 |
+
embedding_output = encoder_embeds
|
780 |
+
|
781 |
+
encoder_outputs = self.encoder(
|
782 |
+
embedding_output,
|
783 |
+
attention_mask=extended_attention_mask,
|
784 |
+
head_mask=head_mask,
|
785 |
+
encoder_hidden_states=encoder_hidden_states,
|
786 |
+
encoder_attention_mask=encoder_extended_attention_mask,
|
787 |
+
past_key_values=past_key_values,
|
788 |
+
use_cache=use_cache,
|
789 |
+
output_attentions=output_attentions,
|
790 |
+
output_hidden_states=output_hidden_states,
|
791 |
+
return_dict=return_dict,
|
792 |
+
mode=mode,
|
793 |
+
)
|
794 |
+
sequence_output = encoder_outputs[0]
|
795 |
+
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
|
796 |
+
|
797 |
+
if not return_dict:
|
798 |
+
return (sequence_output, pooled_output) + encoder_outputs[1:]
|
799 |
+
|
800 |
+
return BaseModelOutputWithPoolingAndCrossAttentions(
|
801 |
+
last_hidden_state=sequence_output,
|
802 |
+
pooler_output=pooled_output,
|
803 |
+
past_key_values=encoder_outputs.past_key_values,
|
804 |
+
hidden_states=encoder_outputs.hidden_states,
|
805 |
+
attentions=encoder_outputs.attentions,
|
806 |
+
cross_attentions=encoder_outputs.cross_attentions,
|
807 |
+
)
|
808 |
+
|
809 |
+
|
810 |
+
|
811 |
+
class BertLMHeadModel(BertPreTrainedModel):
|
812 |
+
|
813 |
+
_keys_to_ignore_on_load_unexpected = [r"pooler"]
|
814 |
+
_keys_to_ignore_on_load_missing = [r"position_ids", r"predictions.decoder.bias"]
|
815 |
+
|
816 |
+
def __init__(self, config):
|
817 |
+
super().__init__(config)
|
818 |
+
|
819 |
+
self.bert = BertModel(config, add_pooling_layer=False)
|
820 |
+
self.cls = BertOnlyMLMHead(config)
|
821 |
+
|
822 |
+
self.init_weights()
|
823 |
+
|
824 |
+
def get_output_embeddings(self):
|
825 |
+
return self.cls.predictions.decoder
|
826 |
+
|
827 |
+
def set_output_embeddings(self, new_embeddings):
|
828 |
+
self.cls.predictions.decoder = new_embeddings
|
829 |
+
|
830 |
+
def forward(
|
831 |
+
self,
|
832 |
+
input_ids=None,
|
833 |
+
attention_mask=None,
|
834 |
+
position_ids=None,
|
835 |
+
head_mask=None,
|
836 |
+
inputs_embeds=None,
|
837 |
+
encoder_hidden_states=None,
|
838 |
+
encoder_attention_mask=None,
|
839 |
+
labels=None,
|
840 |
+
past_key_values=None,
|
841 |
+
use_cache=None,
|
842 |
+
output_attentions=None,
|
843 |
+
output_hidden_states=None,
|
844 |
+
return_dict=None,
|
845 |
+
return_logits=False,
|
846 |
+
is_decoder=True,
|
847 |
+
reduction='mean',
|
848 |
+
mode='multimodal',
|
849 |
+
):
|
850 |
+
r"""
|
851 |
+
encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
|
852 |
+
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
|
853 |
+
the model is configured as a decoder.
|
854 |
+
encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
|
855 |
+
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
|
856 |
+
the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``:
|
857 |
+
- 1 for tokens that are **not masked**,
|
858 |
+
- 0 for tokens that are **masked**.
|
859 |
+
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
|
860 |
+
Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
|
861 |
+
``[-100, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are
|
862 |
+
ignored (masked), the loss is only computed for the tokens with labels n ``[0, ..., config.vocab_size]``
|
863 |
+
past_key_values (:obj:`tuple(tuple(torch.FloatTensor))` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
|
864 |
+
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
865 |
+
If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids`
|
866 |
+
(those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)`
|
867 |
+
instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`.
|
868 |
+
use_cache (:obj:`bool`, `optional`):
|
869 |
+
If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up
|
870 |
+
decoding (see :obj:`past_key_values`).
|
871 |
+
Returns:
|
872 |
+
Example::
|
873 |
+
>>> from transformers import BertTokenizer, BertLMHeadModel, BertConfig
|
874 |
+
>>> import torch
|
875 |
+
>>> tokenizer = BertTokenizer.from_pretrained('bert-base-cased')
|
876 |
+
>>> config = BertConfig.from_pretrained("bert-base-cased")
|
877 |
+
>>> model = BertLMHeadModel.from_pretrained('bert-base-cased', config=config)
|
878 |
+
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
|
879 |
+
>>> outputs = model(**inputs)
|
880 |
+
>>> prediction_logits = outputs.logits
|
881 |
+
"""
|
882 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
883 |
+
if labels is not None:
|
884 |
+
use_cache = False
|
885 |
+
|
886 |
+
outputs = self.bert(
|
887 |
+
input_ids,
|
888 |
+
attention_mask=attention_mask,
|
889 |
+
position_ids=position_ids,
|
890 |
+
head_mask=head_mask,
|
891 |
+
inputs_embeds=inputs_embeds,
|
892 |
+
encoder_hidden_states=encoder_hidden_states,
|
893 |
+
encoder_attention_mask=encoder_attention_mask,
|
894 |
+
past_key_values=past_key_values,
|
895 |
+
use_cache=use_cache,
|
896 |
+
output_attentions=output_attentions,
|
897 |
+
output_hidden_states=output_hidden_states,
|
898 |
+
return_dict=return_dict,
|
899 |
+
is_decoder=is_decoder,
|
900 |
+
mode=mode,
|
901 |
+
)
|
902 |
+
|
903 |
+
sequence_output = outputs[0]
|
904 |
+
prediction_scores = self.cls(sequence_output)
|
905 |
+
|
906 |
+
if return_logits:
|
907 |
+
return prediction_scores[:, :-1, :].contiguous()
|
908 |
+
|
909 |
+
lm_loss = None
|
910 |
+
if labels is not None:
|
911 |
+
# we are doing next-token prediction; shift prediction scores and input ids by one
|
912 |
+
shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous()
|
913 |
+
labels = labels[:, 1:].contiguous()
|
914 |
+
loss_fct = CrossEntropyLoss(reduction=reduction, label_smoothing=0.1)
|
915 |
+
lm_loss = loss_fct(shifted_prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
|
916 |
+
if reduction=='none':
|
917 |
+
lm_loss = lm_loss.view(prediction_scores.size(0),-1).sum(1)
|
918 |
+
|
919 |
+
if not return_dict:
|
920 |
+
output = (prediction_scores,) + outputs[2:]
|
921 |
+
return ((lm_loss,) + output) if lm_loss is not None else output
|
922 |
+
|
923 |
+
return CausalLMOutputWithCrossAttentions(
|
924 |
+
loss=lm_loss,
|
925 |
+
logits=prediction_scores,
|
926 |
+
past_key_values=outputs.past_key_values,
|
927 |
+
hidden_states=outputs.hidden_states,
|
928 |
+
attentions=outputs.attentions,
|
929 |
+
cross_attentions=outputs.cross_attentions,
|
930 |
+
)
|
931 |
+
|
932 |
+
def prepare_inputs_for_generation(self, input_ids, past=None, attention_mask=None, **model_kwargs):
|
933 |
+
input_shape = input_ids.shape
|
934 |
+
# if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
|
935 |
+
if attention_mask is None:
|
936 |
+
attention_mask = input_ids.new_ones(input_shape)
|
937 |
+
|
938 |
+
# cut decoder_input_ids if past is used
|
939 |
+
if past is not None:
|
940 |
+
input_ids = input_ids[:, -1:]
|
941 |
+
|
942 |
+
return {
|
943 |
+
"input_ids": input_ids,
|
944 |
+
"attention_mask": attention_mask,
|
945 |
+
"past_key_values": past,
|
946 |
+
"encoder_hidden_states": model_kwargs.get("encoder_hidden_states", None),
|
947 |
+
"encoder_attention_mask": model_kwargs.get("encoder_attention_mask", None),
|
948 |
+
"is_decoder": True,
|
949 |
+
}
|
950 |
+
|
951 |
+
def _reorder_cache(self, past, beam_idx):
|
952 |
+
reordered_past = ()
|
953 |
+
for layer_past in past:
|
954 |
+
reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),)
|
955 |
+
return reordered_past
|
repositories/BLIP/models/nlvr_encoder.py
ADDED
@@ -0,0 +1,843 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import os
|
3 |
+
import warnings
|
4 |
+
from dataclasses import dataclass
|
5 |
+
from typing import Optional, Tuple
|
6 |
+
|
7 |
+
import torch
|
8 |
+
from torch import Tensor, device, dtype, nn
|
9 |
+
import torch.utils.checkpoint
|
10 |
+
from torch import nn
|
11 |
+
from torch.nn import CrossEntropyLoss
|
12 |
+
import torch.nn.functional as F
|
13 |
+
|
14 |
+
from transformers.activations import ACT2FN
|
15 |
+
from transformers.file_utils import (
|
16 |
+
ModelOutput,
|
17 |
+
)
|
18 |
+
from transformers.modeling_outputs import (
|
19 |
+
BaseModelOutputWithPastAndCrossAttentions,
|
20 |
+
BaseModelOutputWithPoolingAndCrossAttentions,
|
21 |
+
CausalLMOutputWithCrossAttentions,
|
22 |
+
MaskedLMOutput,
|
23 |
+
MultipleChoiceModelOutput,
|
24 |
+
NextSentencePredictorOutput,
|
25 |
+
QuestionAnsweringModelOutput,
|
26 |
+
SequenceClassifierOutput,
|
27 |
+
TokenClassifierOutput,
|
28 |
+
)
|
29 |
+
from transformers.modeling_utils import (
|
30 |
+
PreTrainedModel,
|
31 |
+
apply_chunking_to_forward,
|
32 |
+
find_pruneable_heads_and_indices,
|
33 |
+
prune_linear_layer,
|
34 |
+
)
|
35 |
+
from transformers.utils import logging
|
36 |
+
from transformers.models.bert.configuration_bert import BertConfig
|
37 |
+
|
38 |
+
|
39 |
+
logger = logging.get_logger(__name__)
|
40 |
+
|
41 |
+
|
42 |
+
class BertEmbeddings(nn.Module):
|
43 |
+
"""Construct the embeddings from word and position embeddings."""
|
44 |
+
|
45 |
+
def __init__(self, config):
|
46 |
+
super().__init__()
|
47 |
+
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
|
48 |
+
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
|
49 |
+
|
50 |
+
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
|
51 |
+
# any TensorFlow checkpoint file
|
52 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
53 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
54 |
+
|
55 |
+
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
|
56 |
+
self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)))
|
57 |
+
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
|
58 |
+
|
59 |
+
self.config = config
|
60 |
+
|
61 |
+
def forward(
|
62 |
+
self, input_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0
|
63 |
+
):
|
64 |
+
if input_ids is not None:
|
65 |
+
input_shape = input_ids.size()
|
66 |
+
else:
|
67 |
+
input_shape = inputs_embeds.size()[:-1]
|
68 |
+
|
69 |
+
seq_length = input_shape[1]
|
70 |
+
|
71 |
+
if position_ids is None:
|
72 |
+
position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length]
|
73 |
+
|
74 |
+
if inputs_embeds is None:
|
75 |
+
inputs_embeds = self.word_embeddings(input_ids)
|
76 |
+
|
77 |
+
embeddings = inputs_embeds
|
78 |
+
|
79 |
+
if self.position_embedding_type == "absolute":
|
80 |
+
position_embeddings = self.position_embeddings(position_ids)
|
81 |
+
embeddings += position_embeddings
|
82 |
+
embeddings = self.LayerNorm(embeddings)
|
83 |
+
embeddings = self.dropout(embeddings)
|
84 |
+
return embeddings
|
85 |
+
|
86 |
+
|
87 |
+
class BertSelfAttention(nn.Module):
|
88 |
+
def __init__(self, config, is_cross_attention):
|
89 |
+
super().__init__()
|
90 |
+
self.config = config
|
91 |
+
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
|
92 |
+
raise ValueError(
|
93 |
+
"The hidden size (%d) is not a multiple of the number of attention "
|
94 |
+
"heads (%d)" % (config.hidden_size, config.num_attention_heads)
|
95 |
+
)
|
96 |
+
|
97 |
+
self.num_attention_heads = config.num_attention_heads
|
98 |
+
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
|
99 |
+
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
100 |
+
|
101 |
+
self.query = nn.Linear(config.hidden_size, self.all_head_size)
|
102 |
+
if is_cross_attention:
|
103 |
+
self.key = nn.Linear(config.encoder_width, self.all_head_size)
|
104 |
+
self.value = nn.Linear(config.encoder_width, self.all_head_size)
|
105 |
+
else:
|
106 |
+
self.key = nn.Linear(config.hidden_size, self.all_head_size)
|
107 |
+
self.value = nn.Linear(config.hidden_size, self.all_head_size)
|
108 |
+
|
109 |
+
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
|
110 |
+
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
|
111 |
+
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
|
112 |
+
self.max_position_embeddings = config.max_position_embeddings
|
113 |
+
self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
|
114 |
+
self.save_attention = False
|
115 |
+
|
116 |
+
def save_attn_gradients(self, attn_gradients):
|
117 |
+
self.attn_gradients = attn_gradients
|
118 |
+
|
119 |
+
def get_attn_gradients(self):
|
120 |
+
return self.attn_gradients
|
121 |
+
|
122 |
+
def save_attention_map(self, attention_map):
|
123 |
+
self.attention_map = attention_map
|
124 |
+
|
125 |
+
def get_attention_map(self):
|
126 |
+
return self.attention_map
|
127 |
+
|
128 |
+
def transpose_for_scores(self, x):
|
129 |
+
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
|
130 |
+
x = x.view(*new_x_shape)
|
131 |
+
return x.permute(0, 2, 1, 3)
|
132 |
+
|
133 |
+
def forward(
|
134 |
+
self,
|
135 |
+
hidden_states,
|
136 |
+
attention_mask=None,
|
137 |
+
head_mask=None,
|
138 |
+
encoder_hidden_states=None,
|
139 |
+
encoder_attention_mask=None,
|
140 |
+
past_key_value=None,
|
141 |
+
output_attentions=False,
|
142 |
+
):
|
143 |
+
mixed_query_layer = self.query(hidden_states)
|
144 |
+
|
145 |
+
# If this is instantiated as a cross-attention module, the keys
|
146 |
+
# and values come from an encoder; the attention mask needs to be
|
147 |
+
# such that the encoder's padding tokens are not attended to.
|
148 |
+
is_cross_attention = encoder_hidden_states is not None
|
149 |
+
|
150 |
+
if is_cross_attention:
|
151 |
+
key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
|
152 |
+
value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
|
153 |
+
attention_mask = encoder_attention_mask
|
154 |
+
elif past_key_value is not None:
|
155 |
+
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
156 |
+
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
157 |
+
key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
|
158 |
+
value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
|
159 |
+
else:
|
160 |
+
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
161 |
+
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
162 |
+
|
163 |
+
query_layer = self.transpose_for_scores(mixed_query_layer)
|
164 |
+
|
165 |
+
past_key_value = (key_layer, value_layer)
|
166 |
+
|
167 |
+
# Take the dot product between "query" and "key" to get the raw attention scores.
|
168 |
+
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
|
169 |
+
|
170 |
+
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
|
171 |
+
seq_length = hidden_states.size()[1]
|
172 |
+
position_ids_l = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
|
173 |
+
position_ids_r = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
|
174 |
+
distance = position_ids_l - position_ids_r
|
175 |
+
positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
|
176 |
+
positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility
|
177 |
+
|
178 |
+
if self.position_embedding_type == "relative_key":
|
179 |
+
relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
|
180 |
+
attention_scores = attention_scores + relative_position_scores
|
181 |
+
elif self.position_embedding_type == "relative_key_query":
|
182 |
+
relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
|
183 |
+
relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
|
184 |
+
attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
|
185 |
+
|
186 |
+
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
|
187 |
+
if attention_mask is not None:
|
188 |
+
# Apply the attention mask is (precomputed for all layers in BertModel forward() function)
|
189 |
+
attention_scores = attention_scores + attention_mask
|
190 |
+
|
191 |
+
# Normalize the attention scores to probabilities.
|
192 |
+
attention_probs = nn.Softmax(dim=-1)(attention_scores)
|
193 |
+
|
194 |
+
if is_cross_attention and self.save_attention:
|
195 |
+
self.save_attention_map(attention_probs)
|
196 |
+
attention_probs.register_hook(self.save_attn_gradients)
|
197 |
+
|
198 |
+
# This is actually dropping out entire tokens to attend to, which might
|
199 |
+
# seem a bit unusual, but is taken from the original Transformer paper.
|
200 |
+
attention_probs_dropped = self.dropout(attention_probs)
|
201 |
+
|
202 |
+
# Mask heads if we want to
|
203 |
+
if head_mask is not None:
|
204 |
+
attention_probs_dropped = attention_probs_dropped * head_mask
|
205 |
+
|
206 |
+
context_layer = torch.matmul(attention_probs_dropped, value_layer)
|
207 |
+
|
208 |
+
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
|
209 |
+
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
|
210 |
+
context_layer = context_layer.view(*new_context_layer_shape)
|
211 |
+
|
212 |
+
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
|
213 |
+
|
214 |
+
outputs = outputs + (past_key_value,)
|
215 |
+
return outputs
|
216 |
+
|
217 |
+
|
218 |
+
class BertSelfOutput(nn.Module):
|
219 |
+
def __init__(self, config, twin=False, merge=False):
|
220 |
+
super().__init__()
|
221 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
222 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
223 |
+
if twin:
|
224 |
+
self.dense0 = nn.Linear(config.hidden_size, config.hidden_size)
|
225 |
+
self.dense1 = nn.Linear(config.hidden_size, config.hidden_size)
|
226 |
+
else:
|
227 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
228 |
+
if merge:
|
229 |
+
self.act = ACT2FN[config.hidden_act]
|
230 |
+
self.merge_layer = nn.Linear(config.hidden_size * 2, config.hidden_size)
|
231 |
+
self.merge = True
|
232 |
+
else:
|
233 |
+
self.merge = False
|
234 |
+
|
235 |
+
def forward(self, hidden_states, input_tensor):
|
236 |
+
if type(hidden_states) == list:
|
237 |
+
hidden_states0 = self.dense0(hidden_states[0])
|
238 |
+
hidden_states1 = self.dense1(hidden_states[1])
|
239 |
+
if self.merge:
|
240 |
+
#hidden_states = self.merge_layer(self.act(torch.cat([hidden_states0,hidden_states1],dim=-1)))
|
241 |
+
hidden_states = self.merge_layer(torch.cat([hidden_states0,hidden_states1],dim=-1))
|
242 |
+
else:
|
243 |
+
hidden_states = (hidden_states0+hidden_states1)/2
|
244 |
+
else:
|
245 |
+
hidden_states = self.dense(hidden_states)
|
246 |
+
hidden_states = self.dropout(hidden_states)
|
247 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
248 |
+
return hidden_states
|
249 |
+
|
250 |
+
|
251 |
+
class BertAttention(nn.Module):
|
252 |
+
def __init__(self, config, is_cross_attention=False, layer_num=-1):
|
253 |
+
super().__init__()
|
254 |
+
if is_cross_attention:
|
255 |
+
self.self0 = BertSelfAttention(config, is_cross_attention)
|
256 |
+
self.self1 = BertSelfAttention(config, is_cross_attention)
|
257 |
+
else:
|
258 |
+
self.self = BertSelfAttention(config, is_cross_attention)
|
259 |
+
self.output = BertSelfOutput(config, twin=is_cross_attention, merge=(is_cross_attention and layer_num>=6))
|
260 |
+
self.pruned_heads = set()
|
261 |
+
|
262 |
+
def prune_heads(self, heads):
|
263 |
+
if len(heads) == 0:
|
264 |
+
return
|
265 |
+
heads, index = find_pruneable_heads_and_indices(
|
266 |
+
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
|
267 |
+
)
|
268 |
+
|
269 |
+
# Prune linear layers
|
270 |
+
self.self.query = prune_linear_layer(self.self.query, index)
|
271 |
+
self.self.key = prune_linear_layer(self.self.key, index)
|
272 |
+
self.self.value = prune_linear_layer(self.self.value, index)
|
273 |
+
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
|
274 |
+
|
275 |
+
# Update hyper params and store pruned heads
|
276 |
+
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
|
277 |
+
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
|
278 |
+
self.pruned_heads = self.pruned_heads.union(heads)
|
279 |
+
|
280 |
+
def forward(
|
281 |
+
self,
|
282 |
+
hidden_states,
|
283 |
+
attention_mask=None,
|
284 |
+
head_mask=None,
|
285 |
+
encoder_hidden_states=None,
|
286 |
+
encoder_attention_mask=None,
|
287 |
+
past_key_value=None,
|
288 |
+
output_attentions=False,
|
289 |
+
):
|
290 |
+
if type(encoder_hidden_states)==list:
|
291 |
+
self_outputs0 = self.self0(
|
292 |
+
hidden_states,
|
293 |
+
attention_mask,
|
294 |
+
head_mask,
|
295 |
+
encoder_hidden_states[0],
|
296 |
+
encoder_attention_mask[0],
|
297 |
+
past_key_value,
|
298 |
+
output_attentions,
|
299 |
+
)
|
300 |
+
self_outputs1 = self.self1(
|
301 |
+
hidden_states,
|
302 |
+
attention_mask,
|
303 |
+
head_mask,
|
304 |
+
encoder_hidden_states[1],
|
305 |
+
encoder_attention_mask[1],
|
306 |
+
past_key_value,
|
307 |
+
output_attentions,
|
308 |
+
)
|
309 |
+
attention_output = self.output([self_outputs0[0],self_outputs1[0]], hidden_states)
|
310 |
+
|
311 |
+
outputs = (attention_output,) + self_outputs0[1:] # add attentions if we output them
|
312 |
+
else:
|
313 |
+
self_outputs = self.self(
|
314 |
+
hidden_states,
|
315 |
+
attention_mask,
|
316 |
+
head_mask,
|
317 |
+
encoder_hidden_states,
|
318 |
+
encoder_attention_mask,
|
319 |
+
past_key_value,
|
320 |
+
output_attentions,
|
321 |
+
)
|
322 |
+
attention_output = self.output(self_outputs[0], hidden_states)
|
323 |
+
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
|
324 |
+
return outputs
|
325 |
+
|
326 |
+
|
327 |
+
class BertIntermediate(nn.Module):
|
328 |
+
def __init__(self, config):
|
329 |
+
super().__init__()
|
330 |
+
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
|
331 |
+
if isinstance(config.hidden_act, str):
|
332 |
+
self.intermediate_act_fn = ACT2FN[config.hidden_act]
|
333 |
+
else:
|
334 |
+
self.intermediate_act_fn = config.hidden_act
|
335 |
+
|
336 |
+
def forward(self, hidden_states):
|
337 |
+
hidden_states = self.dense(hidden_states)
|
338 |
+
hidden_states = self.intermediate_act_fn(hidden_states)
|
339 |
+
return hidden_states
|
340 |
+
|
341 |
+
|
342 |
+
class BertOutput(nn.Module):
|
343 |
+
def __init__(self, config):
|
344 |
+
super().__init__()
|
345 |
+
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
|
346 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
347 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
348 |
+
|
349 |
+
def forward(self, hidden_states, input_tensor):
|
350 |
+
hidden_states = self.dense(hidden_states)
|
351 |
+
hidden_states = self.dropout(hidden_states)
|
352 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
353 |
+
return hidden_states
|
354 |
+
|
355 |
+
|
356 |
+
class BertLayer(nn.Module):
|
357 |
+
def __init__(self, config, layer_num):
|
358 |
+
super().__init__()
|
359 |
+
self.config = config
|
360 |
+
self.chunk_size_feed_forward = config.chunk_size_feed_forward
|
361 |
+
self.seq_len_dim = 1
|
362 |
+
self.attention = BertAttention(config)
|
363 |
+
self.layer_num = layer_num
|
364 |
+
if self.config.add_cross_attention:
|
365 |
+
self.crossattention = BertAttention(config, is_cross_attention=self.config.add_cross_attention, layer_num=layer_num)
|
366 |
+
self.intermediate = BertIntermediate(config)
|
367 |
+
self.output = BertOutput(config)
|
368 |
+
|
369 |
+
def forward(
|
370 |
+
self,
|
371 |
+
hidden_states,
|
372 |
+
attention_mask=None,
|
373 |
+
head_mask=None,
|
374 |
+
encoder_hidden_states=None,
|
375 |
+
encoder_attention_mask=None,
|
376 |
+
past_key_value=None,
|
377 |
+
output_attentions=False,
|
378 |
+
mode=None,
|
379 |
+
):
|
380 |
+
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
|
381 |
+
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
|
382 |
+
self_attention_outputs = self.attention(
|
383 |
+
hidden_states,
|
384 |
+
attention_mask,
|
385 |
+
head_mask,
|
386 |
+
output_attentions=output_attentions,
|
387 |
+
past_key_value=self_attn_past_key_value,
|
388 |
+
)
|
389 |
+
attention_output = self_attention_outputs[0]
|
390 |
+
|
391 |
+
outputs = self_attention_outputs[1:-1]
|
392 |
+
present_key_value = self_attention_outputs[-1]
|
393 |
+
|
394 |
+
if mode=='multimodal':
|
395 |
+
assert encoder_hidden_states is not None, "encoder_hidden_states must be given for cross-attention layers"
|
396 |
+
cross_attention_outputs = self.crossattention(
|
397 |
+
attention_output,
|
398 |
+
attention_mask,
|
399 |
+
head_mask,
|
400 |
+
encoder_hidden_states,
|
401 |
+
encoder_attention_mask,
|
402 |
+
output_attentions=output_attentions,
|
403 |
+
)
|
404 |
+
attention_output = cross_attention_outputs[0]
|
405 |
+
outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
|
406 |
+
layer_output = apply_chunking_to_forward(
|
407 |
+
self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
|
408 |
+
)
|
409 |
+
outputs = (layer_output,) + outputs
|
410 |
+
|
411 |
+
outputs = outputs + (present_key_value,)
|
412 |
+
|
413 |
+
return outputs
|
414 |
+
|
415 |
+
def feed_forward_chunk(self, attention_output):
|
416 |
+
intermediate_output = self.intermediate(attention_output)
|
417 |
+
layer_output = self.output(intermediate_output, attention_output)
|
418 |
+
return layer_output
|
419 |
+
|
420 |
+
|
421 |
+
class BertEncoder(nn.Module):
|
422 |
+
def __init__(self, config):
|
423 |
+
super().__init__()
|
424 |
+
self.config = config
|
425 |
+
self.layer = nn.ModuleList([BertLayer(config,i) for i in range(config.num_hidden_layers)])
|
426 |
+
self.gradient_checkpointing = False
|
427 |
+
|
428 |
+
def forward(
|
429 |
+
self,
|
430 |
+
hidden_states,
|
431 |
+
attention_mask=None,
|
432 |
+
head_mask=None,
|
433 |
+
encoder_hidden_states=None,
|
434 |
+
encoder_attention_mask=None,
|
435 |
+
past_key_values=None,
|
436 |
+
use_cache=None,
|
437 |
+
output_attentions=False,
|
438 |
+
output_hidden_states=False,
|
439 |
+
return_dict=True,
|
440 |
+
mode='multimodal',
|
441 |
+
):
|
442 |
+
all_hidden_states = () if output_hidden_states else None
|
443 |
+
all_self_attentions = () if output_attentions else None
|
444 |
+
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
|
445 |
+
|
446 |
+
next_decoder_cache = () if use_cache else None
|
447 |
+
|
448 |
+
for i in range(self.config.num_hidden_layers):
|
449 |
+
layer_module = self.layer[i]
|
450 |
+
if output_hidden_states:
|
451 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
452 |
+
|
453 |
+
layer_head_mask = head_mask[i] if head_mask is not None else None
|
454 |
+
past_key_value = past_key_values[i] if past_key_values is not None else None
|
455 |
+
|
456 |
+
if self.gradient_checkpointing and self.training:
|
457 |
+
|
458 |
+
if use_cache:
|
459 |
+
logger.warn(
|
460 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
461 |
+
)
|
462 |
+
use_cache = False
|
463 |
+
|
464 |
+
def create_custom_forward(module):
|
465 |
+
def custom_forward(*inputs):
|
466 |
+
return module(*inputs, past_key_value, output_attentions)
|
467 |
+
|
468 |
+
return custom_forward
|
469 |
+
|
470 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
471 |
+
create_custom_forward(layer_module),
|
472 |
+
hidden_states,
|
473 |
+
attention_mask,
|
474 |
+
layer_head_mask,
|
475 |
+
encoder_hidden_states,
|
476 |
+
encoder_attention_mask,
|
477 |
+
mode=mode,
|
478 |
+
)
|
479 |
+
else:
|
480 |
+
layer_outputs = layer_module(
|
481 |
+
hidden_states,
|
482 |
+
attention_mask,
|
483 |
+
layer_head_mask,
|
484 |
+
encoder_hidden_states,
|
485 |
+
encoder_attention_mask,
|
486 |
+
past_key_value,
|
487 |
+
output_attentions,
|
488 |
+
mode=mode,
|
489 |
+
)
|
490 |
+
|
491 |
+
hidden_states = layer_outputs[0]
|
492 |
+
if use_cache:
|
493 |
+
next_decoder_cache += (layer_outputs[-1],)
|
494 |
+
if output_attentions:
|
495 |
+
all_self_attentions = all_self_attentions + (layer_outputs[1],)
|
496 |
+
|
497 |
+
if output_hidden_states:
|
498 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
499 |
+
|
500 |
+
if not return_dict:
|
501 |
+
return tuple(
|
502 |
+
v
|
503 |
+
for v in [
|
504 |
+
hidden_states,
|
505 |
+
next_decoder_cache,
|
506 |
+
all_hidden_states,
|
507 |
+
all_self_attentions,
|
508 |
+
all_cross_attentions,
|
509 |
+
]
|
510 |
+
if v is not None
|
511 |
+
)
|
512 |
+
return BaseModelOutputWithPastAndCrossAttentions(
|
513 |
+
last_hidden_state=hidden_states,
|
514 |
+
past_key_values=next_decoder_cache,
|
515 |
+
hidden_states=all_hidden_states,
|
516 |
+
attentions=all_self_attentions,
|
517 |
+
cross_attentions=all_cross_attentions,
|
518 |
+
)
|
519 |
+
|
520 |
+
|
521 |
+
class BertPooler(nn.Module):
|
522 |
+
def __init__(self, config):
|
523 |
+
super().__init__()
|
524 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
525 |
+
self.activation = nn.Tanh()
|
526 |
+
|
527 |
+
def forward(self, hidden_states):
|
528 |
+
# We "pool" the model by simply taking the hidden state corresponding
|
529 |
+
# to the first token.
|
530 |
+
first_token_tensor = hidden_states[:, 0]
|
531 |
+
pooled_output = self.dense(first_token_tensor)
|
532 |
+
pooled_output = self.activation(pooled_output)
|
533 |
+
return pooled_output
|
534 |
+
|
535 |
+
|
536 |
+
class BertPredictionHeadTransform(nn.Module):
|
537 |
+
def __init__(self, config):
|
538 |
+
super().__init__()
|
539 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
540 |
+
if isinstance(config.hidden_act, str):
|
541 |
+
self.transform_act_fn = ACT2FN[config.hidden_act]
|
542 |
+
else:
|
543 |
+
self.transform_act_fn = config.hidden_act
|
544 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
545 |
+
|
546 |
+
def forward(self, hidden_states):
|
547 |
+
hidden_states = self.dense(hidden_states)
|
548 |
+
hidden_states = self.transform_act_fn(hidden_states)
|
549 |
+
hidden_states = self.LayerNorm(hidden_states)
|
550 |
+
return hidden_states
|
551 |
+
|
552 |
+
|
553 |
+
class BertLMPredictionHead(nn.Module):
|
554 |
+
def __init__(self, config):
|
555 |
+
super().__init__()
|
556 |
+
self.transform = BertPredictionHeadTransform(config)
|
557 |
+
|
558 |
+
# The output weights are the same as the input embeddings, but there is
|
559 |
+
# an output-only bias for each token.
|
560 |
+
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
561 |
+
|
562 |
+
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
|
563 |
+
|
564 |
+
# Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
|
565 |
+
self.decoder.bias = self.bias
|
566 |
+
|
567 |
+
def forward(self, hidden_states):
|
568 |
+
hidden_states = self.transform(hidden_states)
|
569 |
+
hidden_states = self.decoder(hidden_states)
|
570 |
+
return hidden_states
|
571 |
+
|
572 |
+
|
573 |
+
class BertOnlyMLMHead(nn.Module):
|
574 |
+
def __init__(self, config):
|
575 |
+
super().__init__()
|
576 |
+
self.predictions = BertLMPredictionHead(config)
|
577 |
+
|
578 |
+
def forward(self, sequence_output):
|
579 |
+
prediction_scores = self.predictions(sequence_output)
|
580 |
+
return prediction_scores
|
581 |
+
|
582 |
+
|
583 |
+
class BertPreTrainedModel(PreTrainedModel):
|
584 |
+
"""
|
585 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
586 |
+
models.
|
587 |
+
"""
|
588 |
+
|
589 |
+
config_class = BertConfig
|
590 |
+
base_model_prefix = "bert"
|
591 |
+
_keys_to_ignore_on_load_missing = [r"position_ids"]
|
592 |
+
|
593 |
+
def _init_weights(self, module):
|
594 |
+
""" Initialize the weights """
|
595 |
+
if isinstance(module, (nn.Linear, nn.Embedding)):
|
596 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
597 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
598 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
599 |
+
elif isinstance(module, nn.LayerNorm):
|
600 |
+
module.bias.data.zero_()
|
601 |
+
module.weight.data.fill_(1.0)
|
602 |
+
if isinstance(module, nn.Linear) and module.bias is not None:
|
603 |
+
module.bias.data.zero_()
|
604 |
+
|
605 |
+
|
606 |
+
class BertModel(BertPreTrainedModel):
|
607 |
+
"""
|
608 |
+
The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
|
609 |
+
cross-attention is added between the self-attention layers, following the architecture described in `Attention is
|
610 |
+
all you need <https://arxiv.org/abs/1706.03762>`__ by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
|
611 |
+
Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
|
612 |
+
argument and :obj:`add_cross_attention` set to :obj:`True`; an :obj:`encoder_hidden_states` is then expected as an
|
613 |
+
input to the forward pass.
|
614 |
+
"""
|
615 |
+
|
616 |
+
def __init__(self, config, add_pooling_layer=True):
|
617 |
+
super().__init__(config)
|
618 |
+
self.config = config
|
619 |
+
|
620 |
+
self.embeddings = BertEmbeddings(config)
|
621 |
+
|
622 |
+
self.encoder = BertEncoder(config)
|
623 |
+
|
624 |
+
self.pooler = BertPooler(config) if add_pooling_layer else None
|
625 |
+
|
626 |
+
self.init_weights()
|
627 |
+
|
628 |
+
|
629 |
+
def get_input_embeddings(self):
|
630 |
+
return self.embeddings.word_embeddings
|
631 |
+
|
632 |
+
def set_input_embeddings(self, value):
|
633 |
+
self.embeddings.word_embeddings = value
|
634 |
+
|
635 |
+
def _prune_heads(self, heads_to_prune):
|
636 |
+
"""
|
637 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
638 |
+
class PreTrainedModel
|
639 |
+
"""
|
640 |
+
for layer, heads in heads_to_prune.items():
|
641 |
+
self.encoder.layer[layer].attention.prune_heads(heads)
|
642 |
+
|
643 |
+
|
644 |
+
def get_extended_attention_mask(self, attention_mask: Tensor, input_shape: Tuple[int], device: device, is_decoder: bool) -> Tensor:
|
645 |
+
"""
|
646 |
+
Makes broadcastable attention and causal masks so that future and masked tokens are ignored.
|
647 |
+
|
648 |
+
Arguments:
|
649 |
+
attention_mask (:obj:`torch.Tensor`):
|
650 |
+
Mask with ones indicating tokens to attend to, zeros for tokens to ignore.
|
651 |
+
input_shape (:obj:`Tuple[int]`):
|
652 |
+
The shape of the input to the model.
|
653 |
+
device: (:obj:`torch.device`):
|
654 |
+
The device of the input to the model.
|
655 |
+
|
656 |
+
Returns:
|
657 |
+
:obj:`torch.Tensor` The extended attention mask, with a the same dtype as :obj:`attention_mask.dtype`.
|
658 |
+
"""
|
659 |
+
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
660 |
+
# ourselves in which case we just need to make it broadcastable to all heads.
|
661 |
+
if attention_mask.dim() == 3:
|
662 |
+
extended_attention_mask = attention_mask[:, None, :, :]
|
663 |
+
elif attention_mask.dim() == 2:
|
664 |
+
# Provided a padding mask of dimensions [batch_size, seq_length]
|
665 |
+
# - if the model is a decoder, apply a causal mask in addition to the padding mask
|
666 |
+
# - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
667 |
+
if is_decoder:
|
668 |
+
batch_size, seq_length = input_shape
|
669 |
+
|
670 |
+
seq_ids = torch.arange(seq_length, device=device)
|
671 |
+
causal_mask = seq_ids[None, None, :].repeat(batch_size, seq_length, 1) <= seq_ids[None, :, None]
|
672 |
+
# in case past_key_values are used we need to add a prefix ones mask to the causal mask
|
673 |
+
# causal and attention masks must have same type with pytorch version < 1.3
|
674 |
+
causal_mask = causal_mask.to(attention_mask.dtype)
|
675 |
+
|
676 |
+
if causal_mask.shape[1] < attention_mask.shape[1]:
|
677 |
+
prefix_seq_len = attention_mask.shape[1] - causal_mask.shape[1]
|
678 |
+
causal_mask = torch.cat(
|
679 |
+
[
|
680 |
+
torch.ones((batch_size, seq_length, prefix_seq_len), device=device, dtype=causal_mask.dtype),
|
681 |
+
causal_mask,
|
682 |
+
],
|
683 |
+
axis=-1,
|
684 |
+
)
|
685 |
+
|
686 |
+
extended_attention_mask = causal_mask[:, None, :, :] * attention_mask[:, None, None, :]
|
687 |
+
else:
|
688 |
+
extended_attention_mask = attention_mask[:, None, None, :]
|
689 |
+
else:
|
690 |
+
raise ValueError(
|
691 |
+
"Wrong shape for input_ids (shape {}) or attention_mask (shape {})".format(
|
692 |
+
input_shape, attention_mask.shape
|
693 |
+
)
|
694 |
+
)
|
695 |
+
|
696 |
+
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
|
697 |
+
# masked positions, this operation will create a tensor which is 0.0 for
|
698 |
+
# positions we want to attend and -10000.0 for masked positions.
|
699 |
+
# Since we are adding it to the raw scores before the softmax, this is
|
700 |
+
# effectively the same as removing these entirely.
|
701 |
+
extended_attention_mask = extended_attention_mask.to(dtype=self.dtype) # fp16 compatibility
|
702 |
+
extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
|
703 |
+
return extended_attention_mask
|
704 |
+
|
705 |
+
def forward(
|
706 |
+
self,
|
707 |
+
input_ids=None,
|
708 |
+
attention_mask=None,
|
709 |
+
position_ids=None,
|
710 |
+
head_mask=None,
|
711 |
+
inputs_embeds=None,
|
712 |
+
encoder_embeds=None,
|
713 |
+
encoder_hidden_states=None,
|
714 |
+
encoder_attention_mask=None,
|
715 |
+
past_key_values=None,
|
716 |
+
use_cache=None,
|
717 |
+
output_attentions=None,
|
718 |
+
output_hidden_states=None,
|
719 |
+
return_dict=None,
|
720 |
+
is_decoder=False,
|
721 |
+
mode='multimodal',
|
722 |
+
):
|
723 |
+
r"""
|
724 |
+
encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
|
725 |
+
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
|
726 |
+
the model is configured as a decoder.
|
727 |
+
encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
|
728 |
+
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
|
729 |
+
the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``:
|
730 |
+
- 1 for tokens that are **not masked**,
|
731 |
+
- 0 for tokens that are **masked**.
|
732 |
+
past_key_values (:obj:`tuple(tuple(torch.FloatTensor))` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
|
733 |
+
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
734 |
+
If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids`
|
735 |
+
(those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)`
|
736 |
+
instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`.
|
737 |
+
use_cache (:obj:`bool`, `optional`):
|
738 |
+
If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up
|
739 |
+
decoding (see :obj:`past_key_values`).
|
740 |
+
"""
|
741 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
742 |
+
output_hidden_states = (
|
743 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
744 |
+
)
|
745 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
746 |
+
|
747 |
+
if is_decoder:
|
748 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
749 |
+
else:
|
750 |
+
use_cache = False
|
751 |
+
|
752 |
+
if input_ids is not None and inputs_embeds is not None:
|
753 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
754 |
+
elif input_ids is not None:
|
755 |
+
input_shape = input_ids.size()
|
756 |
+
batch_size, seq_length = input_shape
|
757 |
+
device = input_ids.device
|
758 |
+
elif inputs_embeds is not None:
|
759 |
+
input_shape = inputs_embeds.size()[:-1]
|
760 |
+
batch_size, seq_length = input_shape
|
761 |
+
device = inputs_embeds.device
|
762 |
+
elif encoder_embeds is not None:
|
763 |
+
input_shape = encoder_embeds.size()[:-1]
|
764 |
+
batch_size, seq_length = input_shape
|
765 |
+
device = encoder_embeds.device
|
766 |
+
else:
|
767 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds or encoder_embeds")
|
768 |
+
|
769 |
+
# past_key_values_length
|
770 |
+
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
|
771 |
+
|
772 |
+
if attention_mask is None:
|
773 |
+
attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device)
|
774 |
+
|
775 |
+
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
776 |
+
# ourselves in which case we just need to make it broadcastable to all heads.
|
777 |
+
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape,
|
778 |
+
device, is_decoder)
|
779 |
+
|
780 |
+
# If a 2D or 3D attention mask is provided for the cross-attention
|
781 |
+
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
782 |
+
if encoder_hidden_states is not None:
|
783 |
+
if type(encoder_hidden_states) == list:
|
784 |
+
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states[0].size()
|
785 |
+
else:
|
786 |
+
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
|
787 |
+
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
|
788 |
+
|
789 |
+
if type(encoder_attention_mask) == list:
|
790 |
+
encoder_extended_attention_mask = [self.invert_attention_mask(mask) for mask in encoder_attention_mask]
|
791 |
+
elif encoder_attention_mask is None:
|
792 |
+
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
|
793 |
+
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
|
794 |
+
else:
|
795 |
+
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
|
796 |
+
else:
|
797 |
+
encoder_extended_attention_mask = None
|
798 |
+
|
799 |
+
# Prepare head mask if needed
|
800 |
+
# 1.0 in head_mask indicate we keep the head
|
801 |
+
# attention_probs has shape bsz x n_heads x N x N
|
802 |
+
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
803 |
+
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
804 |
+
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
805 |
+
|
806 |
+
if encoder_embeds is None:
|
807 |
+
embedding_output = self.embeddings(
|
808 |
+
input_ids=input_ids,
|
809 |
+
position_ids=position_ids,
|
810 |
+
inputs_embeds=inputs_embeds,
|
811 |
+
past_key_values_length=past_key_values_length,
|
812 |
+
)
|
813 |
+
else:
|
814 |
+
embedding_output = encoder_embeds
|
815 |
+
|
816 |
+
encoder_outputs = self.encoder(
|
817 |
+
embedding_output,
|
818 |
+
attention_mask=extended_attention_mask,
|
819 |
+
head_mask=head_mask,
|
820 |
+
encoder_hidden_states=encoder_hidden_states,
|
821 |
+
encoder_attention_mask=encoder_extended_attention_mask,
|
822 |
+
past_key_values=past_key_values,
|
823 |
+
use_cache=use_cache,
|
824 |
+
output_attentions=output_attentions,
|
825 |
+
output_hidden_states=output_hidden_states,
|
826 |
+
return_dict=return_dict,
|
827 |
+
mode=mode,
|
828 |
+
)
|
829 |
+
sequence_output = encoder_outputs[0]
|
830 |
+
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
|
831 |
+
|
832 |
+
if not return_dict:
|
833 |
+
return (sequence_output, pooled_output) + encoder_outputs[1:]
|
834 |
+
|
835 |
+
return BaseModelOutputWithPoolingAndCrossAttentions(
|
836 |
+
last_hidden_state=sequence_output,
|
837 |
+
pooler_output=pooled_output,
|
838 |
+
past_key_values=encoder_outputs.past_key_values,
|
839 |
+
hidden_states=encoder_outputs.hidden_states,
|
840 |
+
attentions=encoder_outputs.attentions,
|
841 |
+
cross_attentions=encoder_outputs.cross_attentions,
|
842 |
+
)
|
843 |
+
|
repositories/BLIP/models/vit.py
ADDED
@@ -0,0 +1,305 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
'''
|
2 |
+
* Copyright (c) 2022, salesforce.com, inc.
|
3 |
+
* All rights reserved.
|
4 |
+
* SPDX-License-Identifier: BSD-3-Clause
|
5 |
+
* For full license text, see LICENSE.txt file in the repo root or https://opensource.org/licenses/BSD-3-Clause
|
6 |
+
* By Junnan Li
|
7 |
+
* Based on timm code base
|
8 |
+
* https://github.com/rwightman/pytorch-image-models/tree/master/timm
|
9 |
+
'''
|
10 |
+
|
11 |
+
import torch
|
12 |
+
import torch.nn as nn
|
13 |
+
import torch.nn.functional as F
|
14 |
+
from functools import partial
|
15 |
+
|
16 |
+
from timm.models.vision_transformer import _cfg, PatchEmbed
|
17 |
+
from timm.models.registry import register_model
|
18 |
+
from timm.models.layers import trunc_normal_, DropPath
|
19 |
+
from timm.models.helpers import named_apply, adapt_input_conv
|
20 |
+
|
21 |
+
from fairscale.nn.checkpoint.checkpoint_activations import checkpoint_wrapper
|
22 |
+
|
23 |
+
class Mlp(nn.Module):
|
24 |
+
""" MLP as used in Vision Transformer, MLP-Mixer and related networks
|
25 |
+
"""
|
26 |
+
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
|
27 |
+
super().__init__()
|
28 |
+
out_features = out_features or in_features
|
29 |
+
hidden_features = hidden_features or in_features
|
30 |
+
self.fc1 = nn.Linear(in_features, hidden_features)
|
31 |
+
self.act = act_layer()
|
32 |
+
self.fc2 = nn.Linear(hidden_features, out_features)
|
33 |
+
self.drop = nn.Dropout(drop)
|
34 |
+
|
35 |
+
def forward(self, x):
|
36 |
+
x = self.fc1(x)
|
37 |
+
x = self.act(x)
|
38 |
+
x = self.drop(x)
|
39 |
+
x = self.fc2(x)
|
40 |
+
x = self.drop(x)
|
41 |
+
return x
|
42 |
+
|
43 |
+
|
44 |
+
class Attention(nn.Module):
|
45 |
+
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.):
|
46 |
+
super().__init__()
|
47 |
+
self.num_heads = num_heads
|
48 |
+
head_dim = dim // num_heads
|
49 |
+
# NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights
|
50 |
+
self.scale = qk_scale or head_dim ** -0.5
|
51 |
+
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
52 |
+
self.attn_drop = nn.Dropout(attn_drop)
|
53 |
+
self.proj = nn.Linear(dim, dim)
|
54 |
+
self.proj_drop = nn.Dropout(proj_drop)
|
55 |
+
self.attn_gradients = None
|
56 |
+
self.attention_map = None
|
57 |
+
|
58 |
+
def save_attn_gradients(self, attn_gradients):
|
59 |
+
self.attn_gradients = attn_gradients
|
60 |
+
|
61 |
+
def get_attn_gradients(self):
|
62 |
+
return self.attn_gradients
|
63 |
+
|
64 |
+
def save_attention_map(self, attention_map):
|
65 |
+
self.attention_map = attention_map
|
66 |
+
|
67 |
+
def get_attention_map(self):
|
68 |
+
return self.attention_map
|
69 |
+
|
70 |
+
def forward(self, x, register_hook=False):
|
71 |
+
B, N, C = x.shape
|
72 |
+
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
73 |
+
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
|
74 |
+
|
75 |
+
attn = (q @ k.transpose(-2, -1)) * self.scale
|
76 |
+
attn = attn.softmax(dim=-1)
|
77 |
+
attn = self.attn_drop(attn)
|
78 |
+
|
79 |
+
if register_hook:
|
80 |
+
self.save_attention_map(attn)
|
81 |
+
attn.register_hook(self.save_attn_gradients)
|
82 |
+
|
83 |
+
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
|
84 |
+
x = self.proj(x)
|
85 |
+
x = self.proj_drop(x)
|
86 |
+
return x
|
87 |
+
|
88 |
+
|
89 |
+
class Block(nn.Module):
|
90 |
+
|
91 |
+
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
|
92 |
+
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, use_grad_checkpointing=False):
|
93 |
+
super().__init__()
|
94 |
+
self.norm1 = norm_layer(dim)
|
95 |
+
self.attn = Attention(
|
96 |
+
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
|
97 |
+
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
|
98 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
99 |
+
self.norm2 = norm_layer(dim)
|
100 |
+
mlp_hidden_dim = int(dim * mlp_ratio)
|
101 |
+
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
|
102 |
+
|
103 |
+
if use_grad_checkpointing:
|
104 |
+
self.attn = checkpoint_wrapper(self.attn)
|
105 |
+
self.mlp = checkpoint_wrapper(self.mlp)
|
106 |
+
|
107 |
+
def forward(self, x, register_hook=False):
|
108 |
+
x = x + self.drop_path(self.attn(self.norm1(x), register_hook=register_hook))
|
109 |
+
x = x + self.drop_path(self.mlp(self.norm2(x)))
|
110 |
+
return x
|
111 |
+
|
112 |
+
|
113 |
+
class VisionTransformer(nn.Module):
|
114 |
+
""" Vision Transformer
|
115 |
+
A PyTorch impl of : `An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale` -
|
116 |
+
https://arxiv.org/abs/2010.11929
|
117 |
+
"""
|
118 |
+
def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12,
|
119 |
+
num_heads=12, mlp_ratio=4., qkv_bias=True, qk_scale=None, representation_size=None,
|
120 |
+
drop_rate=0., attn_drop_rate=0., drop_path_rate=0., norm_layer=None,
|
121 |
+
use_grad_checkpointing=False, ckpt_layer=0):
|
122 |
+
"""
|
123 |
+
Args:
|
124 |
+
img_size (int, tuple): input image size
|
125 |
+
patch_size (int, tuple): patch size
|
126 |
+
in_chans (int): number of input channels
|
127 |
+
num_classes (int): number of classes for classification head
|
128 |
+
embed_dim (int): embedding dimension
|
129 |
+
depth (int): depth of transformer
|
130 |
+
num_heads (int): number of attention heads
|
131 |
+
mlp_ratio (int): ratio of mlp hidden dim to embedding dim
|
132 |
+
qkv_bias (bool): enable bias for qkv if True
|
133 |
+
qk_scale (float): override default qk scale of head_dim ** -0.5 if set
|
134 |
+
representation_size (Optional[int]): enable and set representation layer (pre-logits) to this value if set
|
135 |
+
drop_rate (float): dropout rate
|
136 |
+
attn_drop_rate (float): attention dropout rate
|
137 |
+
drop_path_rate (float): stochastic depth rate
|
138 |
+
norm_layer: (nn.Module): normalization layer
|
139 |
+
"""
|
140 |
+
super().__init__()
|
141 |
+
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
|
142 |
+
norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6)
|
143 |
+
|
144 |
+
self.patch_embed = PatchEmbed(
|
145 |
+
img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim)
|
146 |
+
|
147 |
+
num_patches = self.patch_embed.num_patches
|
148 |
+
|
149 |
+
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
|
150 |
+
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim))
|
151 |
+
self.pos_drop = nn.Dropout(p=drop_rate)
|
152 |
+
|
153 |
+
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
|
154 |
+
self.blocks = nn.ModuleList([
|
155 |
+
Block(
|
156 |
+
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
|
157 |
+
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer,
|
158 |
+
use_grad_checkpointing=(use_grad_checkpointing and i>=depth-ckpt_layer)
|
159 |
+
)
|
160 |
+
for i in range(depth)])
|
161 |
+
self.norm = norm_layer(embed_dim)
|
162 |
+
|
163 |
+
trunc_normal_(self.pos_embed, std=.02)
|
164 |
+
trunc_normal_(self.cls_token, std=.02)
|
165 |
+
self.apply(self._init_weights)
|
166 |
+
|
167 |
+
def _init_weights(self, m):
|
168 |
+
if isinstance(m, nn.Linear):
|
169 |
+
trunc_normal_(m.weight, std=.02)
|
170 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
171 |
+
nn.init.constant_(m.bias, 0)
|
172 |
+
elif isinstance(m, nn.LayerNorm):
|
173 |
+
nn.init.constant_(m.bias, 0)
|
174 |
+
nn.init.constant_(m.weight, 1.0)
|
175 |
+
|
176 |
+
@torch.jit.ignore
|
177 |
+
def no_weight_decay(self):
|
178 |
+
return {'pos_embed', 'cls_token'}
|
179 |
+
|
180 |
+
def forward(self, x, register_blk=-1):
|
181 |
+
B = x.shape[0]
|
182 |
+
x = self.patch_embed(x)
|
183 |
+
|
184 |
+
cls_tokens = self.cls_token.expand(B, -1, -1) # stole cls_tokens impl from Phil Wang, thanks
|
185 |
+
x = torch.cat((cls_tokens, x), dim=1)
|
186 |
+
|
187 |
+
x = x + self.pos_embed[:,:x.size(1),:]
|
188 |
+
x = self.pos_drop(x)
|
189 |
+
|
190 |
+
for i,blk in enumerate(self.blocks):
|
191 |
+
x = blk(x, register_blk==i)
|
192 |
+
x = self.norm(x)
|
193 |
+
|
194 |
+
return x
|
195 |
+
|
196 |
+
@torch.jit.ignore()
|
197 |
+
def load_pretrained(self, checkpoint_path, prefix=''):
|
198 |
+
_load_weights(self, checkpoint_path, prefix)
|
199 |
+
|
200 |
+
|
201 |
+
@torch.no_grad()
|
202 |
+
def _load_weights(model: VisionTransformer, checkpoint_path: str, prefix: str = ''):
|
203 |
+
""" Load weights from .npz checkpoints for official Google Brain Flax implementation
|
204 |
+
"""
|
205 |
+
import numpy as np
|
206 |
+
|
207 |
+
def _n2p(w, t=True):
|
208 |
+
if w.ndim == 4 and w.shape[0] == w.shape[1] == w.shape[2] == 1:
|
209 |
+
w = w.flatten()
|
210 |
+
if t:
|
211 |
+
if w.ndim == 4:
|
212 |
+
w = w.transpose([3, 2, 0, 1])
|
213 |
+
elif w.ndim == 3:
|
214 |
+
w = w.transpose([2, 0, 1])
|
215 |
+
elif w.ndim == 2:
|
216 |
+
w = w.transpose([1, 0])
|
217 |
+
return torch.from_numpy(w)
|
218 |
+
|
219 |
+
w = np.load(checkpoint_path)
|
220 |
+
if not prefix and 'opt/target/embedding/kernel' in w:
|
221 |
+
prefix = 'opt/target/'
|
222 |
+
|
223 |
+
if hasattr(model.patch_embed, 'backbone'):
|
224 |
+
# hybrid
|
225 |
+
backbone = model.patch_embed.backbone
|
226 |
+
stem_only = not hasattr(backbone, 'stem')
|
227 |
+
stem = backbone if stem_only else backbone.stem
|
228 |
+
stem.conv.weight.copy_(adapt_input_conv(stem.conv.weight.shape[1], _n2p(w[f'{prefix}conv_root/kernel'])))
|
229 |
+
stem.norm.weight.copy_(_n2p(w[f'{prefix}gn_root/scale']))
|
230 |
+
stem.norm.bias.copy_(_n2p(w[f'{prefix}gn_root/bias']))
|
231 |
+
if not stem_only:
|
232 |
+
for i, stage in enumerate(backbone.stages):
|
233 |
+
for j, block in enumerate(stage.blocks):
|
234 |
+
bp = f'{prefix}block{i + 1}/unit{j + 1}/'
|
235 |
+
for r in range(3):
|
236 |
+
getattr(block, f'conv{r + 1}').weight.copy_(_n2p(w[f'{bp}conv{r + 1}/kernel']))
|
237 |
+
getattr(block, f'norm{r + 1}').weight.copy_(_n2p(w[f'{bp}gn{r + 1}/scale']))
|
238 |
+
getattr(block, f'norm{r + 1}').bias.copy_(_n2p(w[f'{bp}gn{r + 1}/bias']))
|
239 |
+
if block.downsample is not None:
|
240 |
+
block.downsample.conv.weight.copy_(_n2p(w[f'{bp}conv_proj/kernel']))
|
241 |
+
block.downsample.norm.weight.copy_(_n2p(w[f'{bp}gn_proj/scale']))
|
242 |
+
block.downsample.norm.bias.copy_(_n2p(w[f'{bp}gn_proj/bias']))
|
243 |
+
embed_conv_w = _n2p(w[f'{prefix}embedding/kernel'])
|
244 |
+
else:
|
245 |
+
embed_conv_w = adapt_input_conv(
|
246 |
+
model.patch_embed.proj.weight.shape[1], _n2p(w[f'{prefix}embedding/kernel']))
|
247 |
+
model.patch_embed.proj.weight.copy_(embed_conv_w)
|
248 |
+
model.patch_embed.proj.bias.copy_(_n2p(w[f'{prefix}embedding/bias']))
|
249 |
+
model.cls_token.copy_(_n2p(w[f'{prefix}cls'], t=False))
|
250 |
+
pos_embed_w = _n2p(w[f'{prefix}Transformer/posembed_input/pos_embedding'], t=False)
|
251 |
+
if pos_embed_w.shape != model.pos_embed.shape:
|
252 |
+
pos_embed_w = resize_pos_embed( # resize pos embedding when different size from pretrained weights
|
253 |
+
pos_embed_w, model.pos_embed, getattr(model, 'num_tokens', 1), model.patch_embed.grid_size)
|
254 |
+
model.pos_embed.copy_(pos_embed_w)
|
255 |
+
model.norm.weight.copy_(_n2p(w[f'{prefix}Transformer/encoder_norm/scale']))
|
256 |
+
model.norm.bias.copy_(_n2p(w[f'{prefix}Transformer/encoder_norm/bias']))
|
257 |
+
# if isinstance(model.head, nn.Linear) and model.head.bias.shape[0] == w[f'{prefix}head/bias'].shape[-1]:
|
258 |
+
# model.head.weight.copy_(_n2p(w[f'{prefix}head/kernel']))
|
259 |
+
# model.head.bias.copy_(_n2p(w[f'{prefix}head/bias']))
|
260 |
+
# if isinstance(getattr(model.pre_logits, 'fc', None), nn.Linear) and f'{prefix}pre_logits/bias' in w:
|
261 |
+
# model.pre_logits.fc.weight.copy_(_n2p(w[f'{prefix}pre_logits/kernel']))
|
262 |
+
# model.pre_logits.fc.bias.copy_(_n2p(w[f'{prefix}pre_logits/bias']))
|
263 |
+
for i, block in enumerate(model.blocks.children()):
|
264 |
+
block_prefix = f'{prefix}Transformer/encoderblock_{i}/'
|
265 |
+
mha_prefix = block_prefix + 'MultiHeadDotProductAttention_1/'
|
266 |
+
block.norm1.weight.copy_(_n2p(w[f'{block_prefix}LayerNorm_0/scale']))
|
267 |
+
block.norm1.bias.copy_(_n2p(w[f'{block_prefix}LayerNorm_0/bias']))
|
268 |
+
block.attn.qkv.weight.copy_(torch.cat([
|
269 |
+
_n2p(w[f'{mha_prefix}{n}/kernel'], t=False).flatten(1).T for n in ('query', 'key', 'value')]))
|
270 |
+
block.attn.qkv.bias.copy_(torch.cat([
|
271 |
+
_n2p(w[f'{mha_prefix}{n}/bias'], t=False).reshape(-1) for n in ('query', 'key', 'value')]))
|
272 |
+
block.attn.proj.weight.copy_(_n2p(w[f'{mha_prefix}out/kernel']).flatten(1))
|
273 |
+
block.attn.proj.bias.copy_(_n2p(w[f'{mha_prefix}out/bias']))
|
274 |
+
for r in range(2):
|
275 |
+
getattr(block.mlp, f'fc{r + 1}').weight.copy_(_n2p(w[f'{block_prefix}MlpBlock_3/Dense_{r}/kernel']))
|
276 |
+
getattr(block.mlp, f'fc{r + 1}').bias.copy_(_n2p(w[f'{block_prefix}MlpBlock_3/Dense_{r}/bias']))
|
277 |
+
block.norm2.weight.copy_(_n2p(w[f'{block_prefix}LayerNorm_2/scale']))
|
278 |
+
block.norm2.bias.copy_(_n2p(w[f'{block_prefix}LayerNorm_2/bias']))
|
279 |
+
|
280 |
+
|
281 |
+
def interpolate_pos_embed(pos_embed_checkpoint, visual_encoder):
|
282 |
+
# interpolate position embedding
|
283 |
+
embedding_size = pos_embed_checkpoint.shape[-1]
|
284 |
+
num_patches = visual_encoder.patch_embed.num_patches
|
285 |
+
num_extra_tokens = visual_encoder.pos_embed.shape[-2] - num_patches
|
286 |
+
# height (== width) for the checkpoint position embedding
|
287 |
+
orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5)
|
288 |
+
# height (== width) for the new position embedding
|
289 |
+
new_size = int(num_patches ** 0.5)
|
290 |
+
|
291 |
+
if orig_size!=new_size:
|
292 |
+
# class_token and dist_token are kept unchanged
|
293 |
+
extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
|
294 |
+
# only the position tokens are interpolated
|
295 |
+
pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
|
296 |
+
pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2)
|
297 |
+
pos_tokens = torch.nn.functional.interpolate(
|
298 |
+
pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False)
|
299 |
+
pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2)
|
300 |
+
new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
|
301 |
+
print('reshape position embedding from %d to %d'%(orig_size ** 2,new_size ** 2))
|
302 |
+
|
303 |
+
return new_pos_embed
|
304 |
+
else:
|
305 |
+
return pos_embed_checkpoint
|
repositories/BLIP/predict.py
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Download the weights in ./checkpoints beforehand for fast inference
|
3 |
+
wget https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model*_base_caption.pth
|
4 |
+
wget https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model*_vqa.pth
|
5 |
+
wget https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth
|
6 |
+
"""
|
7 |
+
|
8 |
+
from pathlib import Path
|
9 |
+
|
10 |
+
from PIL import Image
|
11 |
+
import torch
|
12 |
+
from torchvision import transforms
|
13 |
+
from torchvision.transforms.functional import InterpolationMode
|
14 |
+
import cog
|
15 |
+
|
16 |
+
from models.blip import blip_decoder
|
17 |
+
from models.blip_vqa import blip_vqa
|
18 |
+
from models.blip_itm import blip_itm
|
19 |
+
|
20 |
+
|
21 |
+
class Predictor(cog.Predictor):
|
22 |
+
def setup(self):
|
23 |
+
self.device = "cuda:0"
|
24 |
+
|
25 |
+
self.models = {
|
26 |
+
'image_captioning': blip_decoder(pretrained='checkpoints/model*_base_caption.pth',
|
27 |
+
image_size=384, vit='base'),
|
28 |
+
'visual_question_answering': blip_vqa(pretrained='checkpoints/model*_vqa.pth',
|
29 |
+
image_size=480, vit='base'),
|
30 |
+
'image_text_matching': blip_itm(pretrained='checkpoints/model_base_retrieval_coco.pth',
|
31 |
+
image_size=384, vit='base')
|
32 |
+
}
|
33 |
+
|
34 |
+
@cog.input(
|
35 |
+
"image",
|
36 |
+
type=Path,
|
37 |
+
help="input image",
|
38 |
+
)
|
39 |
+
@cog.input(
|
40 |
+
"task",
|
41 |
+
type=str,
|
42 |
+
default='image_captioning',
|
43 |
+
options=['image_captioning', 'visual_question_answering', 'image_text_matching'],
|
44 |
+
help="Choose a task.",
|
45 |
+
)
|
46 |
+
@cog.input(
|
47 |
+
"question",
|
48 |
+
type=str,
|
49 |
+
default=None,
|
50 |
+
help="Type question for the input image for visual question answering task.",
|
51 |
+
)
|
52 |
+
@cog.input(
|
53 |
+
"caption",
|
54 |
+
type=str,
|
55 |
+
default=None,
|
56 |
+
help="Type caption for the input image for image text matching task.",
|
57 |
+
)
|
58 |
+
def predict(self, image, task, question, caption):
|
59 |
+
if task == 'visual_question_answering':
|
60 |
+
assert question is not None, 'Please type a question for visual question answering task.'
|
61 |
+
if task == 'image_text_matching':
|
62 |
+
assert caption is not None, 'Please type a caption for mage text matching task.'
|
63 |
+
|
64 |
+
im = load_image(image, image_size=480 if task == 'visual_question_answering' else 384, device=self.device)
|
65 |
+
model = self.models[task]
|
66 |
+
model.eval()
|
67 |
+
model = model.to(self.device)
|
68 |
+
|
69 |
+
if task == 'image_captioning':
|
70 |
+
with torch.no_grad():
|
71 |
+
caption = model.generate(im, sample=False, num_beams=3, max_length=20, min_length=5)
|
72 |
+
return 'Caption: ' + caption[0]
|
73 |
+
|
74 |
+
if task == 'visual_question_answering':
|
75 |
+
with torch.no_grad():
|
76 |
+
answer = model(im, question, train=False, inference='generate')
|
77 |
+
return 'Answer: ' + answer[0]
|
78 |
+
|
79 |
+
# image_text_matching
|
80 |
+
itm_output = model(im, caption, match_head='itm')
|
81 |
+
itm_score = torch.nn.functional.softmax(itm_output, dim=1)[:, 1]
|
82 |
+
itc_score = model(im, caption, match_head='itc')
|
83 |
+
return f'The image and text is matched with a probability of {itm_score.item():.4f}.\n' \
|
84 |
+
f'The image feature and text feature has a cosine similarity of {itc_score.item():.4f}.'
|
85 |
+
|
86 |
+
|
87 |
+
def load_image(image, image_size, device):
|
88 |
+
raw_image = Image.open(str(image)).convert('RGB')
|
89 |
+
|
90 |
+
w, h = raw_image.size
|
91 |
+
|
92 |
+
transform = transforms.Compose([
|
93 |
+
transforms.Resize((image_size, image_size), interpolation=InterpolationMode.BICUBIC),
|
94 |
+
transforms.ToTensor(),
|
95 |
+
transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711))
|
96 |
+
])
|
97 |
+
image = transform(raw_image).unsqueeze(0).to(device)
|
98 |
+
return image
|
repositories/BLIP/pretrain.py
ADDED
@@ -0,0 +1,173 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
'''
|
2 |
+
* Copyright (c) 2022, salesforce.com, inc.
|
3 |
+
* All rights reserved.
|
4 |
+
* SPDX-License-Identifier: BSD-3-Clause
|
5 |
+
* For full license text, see LICENSE.txt file in the repo root or https://opensource.org/licenses/BSD-3-Clause
|
6 |
+
* By Junnan Li
|
7 |
+
'''
|
8 |
+
import argparse
|
9 |
+
import os
|
10 |
+
import ruamel_yaml as yaml
|
11 |
+
import numpy as np
|
12 |
+
import random
|
13 |
+
import time
|
14 |
+
import datetime
|
15 |
+
import json
|
16 |
+
from pathlib import Path
|
17 |
+
|
18 |
+
import torch
|
19 |
+
import torch.nn as nn
|
20 |
+
import torch.nn.functional as F
|
21 |
+
import torch.backends.cudnn as cudnn
|
22 |
+
import torch.distributed as dist
|
23 |
+
from torch.utils.data import DataLoader
|
24 |
+
|
25 |
+
from models.blip_pretrain import blip_pretrain
|
26 |
+
import utils
|
27 |
+
from utils import warmup_lr_schedule, step_lr_schedule
|
28 |
+
from data import create_dataset, create_sampler, create_loader
|
29 |
+
|
30 |
+
def train(model, data_loader, optimizer, epoch, device, config):
|
31 |
+
# train
|
32 |
+
model.train()
|
33 |
+
|
34 |
+
metric_logger = utils.MetricLogger(delimiter=" ")
|
35 |
+
metric_logger.add_meter('lr', utils.SmoothedValue(window_size=50, fmt='{value:.6f}'))
|
36 |
+
metric_logger.add_meter('loss_ita', utils.SmoothedValue(window_size=50, fmt='{value:.4f}'))
|
37 |
+
metric_logger.add_meter('loss_itm', utils.SmoothedValue(window_size=50, fmt='{value:.4f}'))
|
38 |
+
metric_logger.add_meter('loss_lm', utils.SmoothedValue(window_size=50, fmt='{value:.4f}'))
|
39 |
+
|
40 |
+
header = 'Train Epoch: [{}]'.format(epoch)
|
41 |
+
print_freq = 50
|
42 |
+
|
43 |
+
if config['laion_path']:
|
44 |
+
data_loader.dataset.reload_laion(epoch)
|
45 |
+
|
46 |
+
data_loader.sampler.set_epoch(epoch)
|
47 |
+
|
48 |
+
for i, (image, caption) in enumerate(metric_logger.log_every(data_loader, print_freq, header)):
|
49 |
+
|
50 |
+
if epoch==0:
|
51 |
+
warmup_lr_schedule(optimizer, i, config['warmup_steps'], config['warmup_lr'], config['init_lr'])
|
52 |
+
|
53 |
+
optimizer.zero_grad()
|
54 |
+
|
55 |
+
image = image.to(device,non_blocking=True)
|
56 |
+
|
57 |
+
# ramp up alpha in the first 2 epochs
|
58 |
+
alpha = config['alpha']*min(1,(epoch*len(data_loader)+i)/(2*len(data_loader)))
|
59 |
+
|
60 |
+
loss_ita, loss_itm, loss_lm = model(image, caption, alpha = alpha)
|
61 |
+
loss = loss_ita + loss_itm + loss_lm
|
62 |
+
|
63 |
+
loss.backward()
|
64 |
+
optimizer.step()
|
65 |
+
|
66 |
+
metric_logger.update(loss_ita=loss_ita.item())
|
67 |
+
metric_logger.update(loss_itm=loss_itm.item())
|
68 |
+
metric_logger.update(loss_lm=loss_lm.item())
|
69 |
+
metric_logger.update(lr=optimizer.param_groups[0]["lr"])
|
70 |
+
|
71 |
+
|
72 |
+
# gather the stats from all processes
|
73 |
+
metric_logger.synchronize_between_processes()
|
74 |
+
print("Averaged stats:", metric_logger.global_avg())
|
75 |
+
return {k: "{:.3f}".format(meter.global_avg) for k, meter in metric_logger.meters.items()}
|
76 |
+
|
77 |
+
|
78 |
+
def main(args, config):
|
79 |
+
utils.init_distributed_mode(args)
|
80 |
+
|
81 |
+
device = torch.device(args.device)
|
82 |
+
|
83 |
+
# fix the seed for reproducibility
|
84 |
+
seed = args.seed + utils.get_rank()
|
85 |
+
torch.manual_seed(seed)
|
86 |
+
np.random.seed(seed)
|
87 |
+
random.seed(seed)
|
88 |
+
cudnn.benchmark = True
|
89 |
+
|
90 |
+
#### Dataset ####
|
91 |
+
print("Creating dataset")
|
92 |
+
datasets = [create_dataset('pretrain', config, min_scale=0.2)]
|
93 |
+
print('number of training samples: %d'%len(datasets[0]))
|
94 |
+
|
95 |
+
num_tasks = utils.get_world_size()
|
96 |
+
global_rank = utils.get_rank()
|
97 |
+
samplers = create_sampler(datasets, [True], num_tasks, global_rank)
|
98 |
+
|
99 |
+
data_loader = create_loader(datasets,samplers,batch_size=[config['batch_size']], num_workers=[4], is_trains=[True], collate_fns=[None])[0]
|
100 |
+
|
101 |
+
#### Model ####
|
102 |
+
print("Creating model")
|
103 |
+
model = blip_pretrain(image_size=config['image_size'], vit=config['vit'], vit_grad_ckpt=config['vit_grad_ckpt'],
|
104 |
+
vit_ckpt_layer=config['vit_ckpt_layer'], queue_size=config['queue_size'])
|
105 |
+
|
106 |
+
model = model.to(device)
|
107 |
+
|
108 |
+
optimizer = torch.optim.AdamW(params=model.parameters(), lr=config['init_lr'], weight_decay=config['weight_decay'])
|
109 |
+
|
110 |
+
start_epoch = 0
|
111 |
+
if args.checkpoint:
|
112 |
+
checkpoint = torch.load(args.checkpoint, map_location='cpu')
|
113 |
+
state_dict = checkpoint['model']
|
114 |
+
model.load_state_dict(state_dict)
|
115 |
+
|
116 |
+
optimizer.load_state_dict(checkpoint['optimizer'])
|
117 |
+
start_epoch = checkpoint['epoch']+1
|
118 |
+
print('resume checkpoint from %s'%args.checkpoint)
|
119 |
+
|
120 |
+
model_without_ddp = model
|
121 |
+
if args.distributed:
|
122 |
+
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
|
123 |
+
model_without_ddp = model.module
|
124 |
+
|
125 |
+
print("Start training")
|
126 |
+
start_time = time.time()
|
127 |
+
for epoch in range(start_epoch, config['max_epoch']):
|
128 |
+
|
129 |
+
step_lr_schedule(optimizer, epoch, config['init_lr'], config['min_lr'], config['lr_decay_rate'])
|
130 |
+
|
131 |
+
train_stats = train(model, data_loader, optimizer, epoch, device, config)
|
132 |
+
if utils.is_main_process():
|
133 |
+
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
|
134 |
+
'epoch': epoch,
|
135 |
+
}
|
136 |
+
save_obj = {
|
137 |
+
'model': model_without_ddp.state_dict(),
|
138 |
+
'optimizer': optimizer.state_dict(),
|
139 |
+
'config': config,
|
140 |
+
'epoch': epoch,
|
141 |
+
}
|
142 |
+
torch.save(save_obj, os.path.join(args.output_dir, 'checkpoint_%02d.pth'%epoch))
|
143 |
+
|
144 |
+
with open(os.path.join(args.output_dir, "log.txt"),"a") as f:
|
145 |
+
f.write(json.dumps(log_stats) + "\n")
|
146 |
+
|
147 |
+
dist.barrier()
|
148 |
+
|
149 |
+
total_time = time.time() - start_time
|
150 |
+
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
|
151 |
+
print('Training time {}'.format(total_time_str))
|
152 |
+
|
153 |
+
|
154 |
+
if __name__ == '__main__':
|
155 |
+
parser = argparse.ArgumentParser()
|
156 |
+
parser.add_argument('--config', default='./configs/pretrain.yaml')
|
157 |
+
parser.add_argument('--output_dir', default='output/Pretrain')
|
158 |
+
parser.add_argument('--checkpoint', default='')
|
159 |
+
parser.add_argument('--evaluate', action='store_true')
|
160 |
+
parser.add_argument('--device', default='cuda')
|
161 |
+
parser.add_argument('--seed', default=42, type=int)
|
162 |
+
parser.add_argument('--world_size', default=1, type=int, help='number of distributed processes')
|
163 |
+
parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
|
164 |
+
parser.add_argument('--distributed', default=True, type=bool)
|
165 |
+
args = parser.parse_args()
|
166 |
+
|
167 |
+
config = yaml.load(open(args.config, 'r'), Loader=yaml.Loader)
|
168 |
+
|
169 |
+
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
|
170 |
+
|
171 |
+
yaml.dump(config, open(os.path.join(args.output_dir, 'config.yaml'), 'w'))
|
172 |
+
|
173 |
+
main(args, config)
|
repositories/BLIP/requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
timm==0.4.12
|
2 |
+
transformers==4.15.0
|
3 |
+
fairscale==0.4.4
|
4 |
+
pycocoevalcap
|
repositories/BLIP/train_caption.py
ADDED
@@ -0,0 +1,206 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
'''
|
2 |
+
* Copyright (c) 2022, salesforce.com, inc.
|
3 |
+
* All rights reserved.
|
4 |
+
* SPDX-License-Identifier: BSD-3-Clause
|
5 |
+
* For full license text, see LICENSE.txt file in the repo root or https://opensource.org/licenses/BSD-3-Clause
|
6 |
+
* By Junnan Li
|
7 |
+
'''
|
8 |
+
import argparse
|
9 |
+
import os
|
10 |
+
import ruamel_yaml as yaml
|
11 |
+
import numpy as np
|
12 |
+
import random
|
13 |
+
import time
|
14 |
+
import datetime
|
15 |
+
import json
|
16 |
+
from pathlib import Path
|
17 |
+
|
18 |
+
import torch
|
19 |
+
import torch.nn as nn
|
20 |
+
import torch.nn.functional as F
|
21 |
+
import torch.backends.cudnn as cudnn
|
22 |
+
import torch.distributed as dist
|
23 |
+
from torch.utils.data import DataLoader
|
24 |
+
|
25 |
+
from models.blip import blip_decoder
|
26 |
+
import utils
|
27 |
+
from utils import cosine_lr_schedule
|
28 |
+
from data import create_dataset, create_sampler, create_loader
|
29 |
+
from data.utils import save_result, coco_caption_eval
|
30 |
+
|
31 |
+
def train(model, data_loader, optimizer, epoch, device):
|
32 |
+
# train
|
33 |
+
model.train()
|
34 |
+
|
35 |
+
metric_logger = utils.MetricLogger(delimiter=" ")
|
36 |
+
metric_logger.add_meter('lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}'))
|
37 |
+
metric_logger.add_meter('loss', utils.SmoothedValue(window_size=1, fmt='{value:.4f}'))
|
38 |
+
header = 'Train Caption Epoch: [{}]'.format(epoch)
|
39 |
+
print_freq = 50
|
40 |
+
|
41 |
+
for i, (image, caption, _) in enumerate(metric_logger.log_every(data_loader, print_freq, header)):
|
42 |
+
image = image.to(device)
|
43 |
+
|
44 |
+
loss = model(image, caption)
|
45 |
+
|
46 |
+
optimizer.zero_grad()
|
47 |
+
loss.backward()
|
48 |
+
optimizer.step()
|
49 |
+
|
50 |
+
metric_logger.update(loss=loss.item())
|
51 |
+
metric_logger.update(lr=optimizer.param_groups[0]["lr"])
|
52 |
+
|
53 |
+
# gather the stats from all processes
|
54 |
+
metric_logger.synchronize_between_processes()
|
55 |
+
print("Averaged stats:", metric_logger.global_avg())
|
56 |
+
return {k: "{:.3f}".format(meter.global_avg) for k, meter in metric_logger.meters.items()}
|
57 |
+
|
58 |
+
|
59 |
+
@torch.no_grad()
|
60 |
+
def evaluate(model, data_loader, device, config):
|
61 |
+
# evaluate
|
62 |
+
model.eval()
|
63 |
+
|
64 |
+
metric_logger = utils.MetricLogger(delimiter=" ")
|
65 |
+
header = 'Caption generation:'
|
66 |
+
print_freq = 10
|
67 |
+
|
68 |
+
result = []
|
69 |
+
for image, image_id in metric_logger.log_every(data_loader, print_freq, header):
|
70 |
+
|
71 |
+
image = image.to(device)
|
72 |
+
|
73 |
+
captions = model.generate(image, sample=False, num_beams=config['num_beams'], max_length=config['max_length'],
|
74 |
+
min_length=config['min_length'])
|
75 |
+
|
76 |
+
for caption, img_id in zip(captions, image_id):
|
77 |
+
result.append({"image_id": img_id.item(), "caption": caption})
|
78 |
+
|
79 |
+
return result
|
80 |
+
|
81 |
+
|
82 |
+
def main(args, config):
|
83 |
+
utils.init_distributed_mode(args)
|
84 |
+
|
85 |
+
device = torch.device(args.device)
|
86 |
+
|
87 |
+
# fix the seed for reproducibility
|
88 |
+
seed = args.seed + utils.get_rank()
|
89 |
+
torch.manual_seed(seed)
|
90 |
+
np.random.seed(seed)
|
91 |
+
random.seed(seed)
|
92 |
+
cudnn.benchmark = True
|
93 |
+
|
94 |
+
#### Dataset ####
|
95 |
+
print("Creating captioning dataset")
|
96 |
+
train_dataset, val_dataset, test_dataset = create_dataset('caption_coco', config)
|
97 |
+
|
98 |
+
if args.distributed:
|
99 |
+
num_tasks = utils.get_world_size()
|
100 |
+
global_rank = utils.get_rank()
|
101 |
+
samplers = create_sampler([train_dataset,val_dataset,test_dataset], [True,False,False], num_tasks, global_rank)
|
102 |
+
else:
|
103 |
+
samplers = [None, None, None]
|
104 |
+
|
105 |
+
train_loader, val_loader, test_loader = create_loader([train_dataset, val_dataset, test_dataset],samplers,
|
106 |
+
batch_size=[config['batch_size']]*3,num_workers=[4,4,4],
|
107 |
+
is_trains=[True, False, False], collate_fns=[None,None,None])
|
108 |
+
|
109 |
+
#### Model ####
|
110 |
+
print("Creating model")
|
111 |
+
model = blip_decoder(pretrained=config['pretrained'], image_size=config['image_size'], vit=config['vit'],
|
112 |
+
vit_grad_ckpt=config['vit_grad_ckpt'], vit_ckpt_layer=config['vit_ckpt_layer'],
|
113 |
+
prompt=config['prompt'])
|
114 |
+
|
115 |
+
model = model.to(device)
|
116 |
+
|
117 |
+
model_without_ddp = model
|
118 |
+
if args.distributed:
|
119 |
+
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
|
120 |
+
model_without_ddp = model.module
|
121 |
+
|
122 |
+
optimizer = torch.optim.AdamW(params=model.parameters(), lr=config['init_lr'], weight_decay=config['weight_decay'])
|
123 |
+
|
124 |
+
best = 0
|
125 |
+
best_epoch = 0
|
126 |
+
|
127 |
+
print("Start training")
|
128 |
+
start_time = time.time()
|
129 |
+
for epoch in range(0, config['max_epoch']):
|
130 |
+
if not args.evaluate:
|
131 |
+
if args.distributed:
|
132 |
+
train_loader.sampler.set_epoch(epoch)
|
133 |
+
|
134 |
+
cosine_lr_schedule(optimizer, epoch, config['max_epoch'], config['init_lr'], config['min_lr'])
|
135 |
+
|
136 |
+
train_stats = train(model, train_loader, optimizer, epoch, device)
|
137 |
+
|
138 |
+
val_result = evaluate(model_without_ddp, val_loader, device, config)
|
139 |
+
val_result_file = save_result(val_result, args.result_dir, 'val_epoch%d'%epoch, remove_duplicate='image_id')
|
140 |
+
|
141 |
+
test_result = evaluate(model_without_ddp, test_loader, device, config)
|
142 |
+
test_result_file = save_result(test_result, args.result_dir, 'test_epoch%d'%epoch, remove_duplicate='image_id')
|
143 |
+
|
144 |
+
if utils.is_main_process():
|
145 |
+
coco_val = coco_caption_eval(config['coco_gt_root'],val_result_file,'val')
|
146 |
+
coco_test = coco_caption_eval(config['coco_gt_root'],test_result_file,'test')
|
147 |
+
|
148 |
+
if args.evaluate:
|
149 |
+
log_stats = {**{f'val_{k}': v for k, v in coco_val.eval.items()},
|
150 |
+
**{f'test_{k}': v for k, v in coco_test.eval.items()},
|
151 |
+
}
|
152 |
+
with open(os.path.join(args.output_dir, "evaluate.txt"),"a") as f:
|
153 |
+
f.write(json.dumps(log_stats) + "\n")
|
154 |
+
else:
|
155 |
+
save_obj = {
|
156 |
+
'model': model_without_ddp.state_dict(),
|
157 |
+
'optimizer': optimizer.state_dict(),
|
158 |
+
'config': config,
|
159 |
+
'epoch': epoch,
|
160 |
+
}
|
161 |
+
|
162 |
+
if coco_val.eval['CIDEr'] + coco_val.eval['Bleu_4'] > best:
|
163 |
+
best = coco_val.eval['CIDEr'] + coco_val.eval['Bleu_4']
|
164 |
+
best_epoch = epoch
|
165 |
+
torch.save(save_obj, os.path.join(args.output_dir, 'checkpoint_best.pth'))
|
166 |
+
|
167 |
+
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
|
168 |
+
**{f'val_{k}': v for k, v in coco_val.eval.items()},
|
169 |
+
**{f'test_{k}': v for k, v in coco_test.eval.items()},
|
170 |
+
'epoch': epoch,
|
171 |
+
'best_epoch': best_epoch,
|
172 |
+
}
|
173 |
+
with open(os.path.join(args.output_dir, "log.txt"),"a") as f:
|
174 |
+
f.write(json.dumps(log_stats) + "\n")
|
175 |
+
|
176 |
+
if args.evaluate:
|
177 |
+
break
|
178 |
+
dist.barrier()
|
179 |
+
|
180 |
+
total_time = time.time() - start_time
|
181 |
+
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
|
182 |
+
print('Training time {}'.format(total_time_str))
|
183 |
+
|
184 |
+
|
185 |
+
if __name__ == '__main__':
|
186 |
+
parser = argparse.ArgumentParser()
|
187 |
+
parser.add_argument('--config', default='./configs/caption_coco.yaml')
|
188 |
+
parser.add_argument('--output_dir', default='output/Caption_coco')
|
189 |
+
parser.add_argument('--evaluate', action='store_true')
|
190 |
+
parser.add_argument('--device', default='cuda')
|
191 |
+
parser.add_argument('--seed', default=42, type=int)
|
192 |
+
parser.add_argument('--world_size', default=1, type=int, help='number of distributed processes')
|
193 |
+
parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
|
194 |
+
parser.add_argument('--distributed', default=True, type=bool)
|
195 |
+
args = parser.parse_args()
|
196 |
+
|
197 |
+
config = yaml.load(open(args.config, 'r'), Loader=yaml.Loader)
|
198 |
+
|
199 |
+
args.result_dir = os.path.join(args.output_dir, 'result')
|
200 |
+
|
201 |
+
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
|
202 |
+
Path(args.result_dir).mkdir(parents=True, exist_ok=True)
|
203 |
+
|
204 |
+
yaml.dump(config, open(os.path.join(args.output_dir, 'config.yaml'), 'w'))
|
205 |
+
|
206 |
+
main(args, config)
|
repositories/BLIP/train_nlvr.py
ADDED
@@ -0,0 +1,213 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
'''
|
2 |
+
* Copyright (c) 2022, salesforce.com, inc.
|
3 |
+
* All rights reserved.
|
4 |
+
* SPDX-License-Identifier: BSD-3-Clause
|
5 |
+
* For full license text, see LICENSE.txt file in the repo root or https://opensource.org/licenses/BSD-3-Clause
|
6 |
+
* By Junnan Li
|
7 |
+
'''
|
8 |
+
import argparse
|
9 |
+
import os
|
10 |
+
import ruamel_yaml as yaml
|
11 |
+
import numpy as np
|
12 |
+
import random
|
13 |
+
import time
|
14 |
+
import datetime
|
15 |
+
import json
|
16 |
+
from pathlib import Path
|
17 |
+
import json
|
18 |
+
import pickle
|
19 |
+
|
20 |
+
import torch
|
21 |
+
import torch.nn as nn
|
22 |
+
import torch.nn.functional as F
|
23 |
+
from torch.utils.data import DataLoader
|
24 |
+
import torch.backends.cudnn as cudnn
|
25 |
+
import torch.distributed as dist
|
26 |
+
|
27 |
+
from models.blip_nlvr import blip_nlvr
|
28 |
+
|
29 |
+
import utils
|
30 |
+
from utils import cosine_lr_schedule, warmup_lr_schedule
|
31 |
+
from data import create_dataset, create_sampler, create_loader
|
32 |
+
|
33 |
+
def train(model, data_loader, optimizer, epoch, device, config):
|
34 |
+
# train
|
35 |
+
model.train()
|
36 |
+
|
37 |
+
metric_logger = utils.MetricLogger(delimiter=" ")
|
38 |
+
metric_logger.add_meter('lr', utils.SmoothedValue(window_size=50, fmt='{value:.6f}'))
|
39 |
+
metric_logger.add_meter('loss', utils.SmoothedValue(window_size=50, fmt='{value:.4f}'))
|
40 |
+
|
41 |
+
header = 'Train Epoch: [{}]'.format(epoch)
|
42 |
+
print_freq = 50
|
43 |
+
step_size = 10
|
44 |
+
|
45 |
+
for i,(image0, image1, text, targets) in enumerate(metric_logger.log_every(data_loader, print_freq, header)):
|
46 |
+
|
47 |
+
images = torch.cat([image0, image1], dim=0)
|
48 |
+
images, targets = images.to(device), targets.to(device)
|
49 |
+
|
50 |
+
loss = model(images, text, targets=targets, train=True)
|
51 |
+
|
52 |
+
optimizer.zero_grad()
|
53 |
+
loss.backward()
|
54 |
+
optimizer.step()
|
55 |
+
|
56 |
+
metric_logger.update(lr=optimizer.param_groups[0]["lr"])
|
57 |
+
metric_logger.update(loss=loss.item())
|
58 |
+
|
59 |
+
# gather the stats from all processes
|
60 |
+
metric_logger.synchronize_between_processes()
|
61 |
+
print("Averaged stats:", metric_logger.global_avg())
|
62 |
+
return {k: "{:.4f}".format(meter.global_avg) for k, meter in metric_logger.meters.items()}
|
63 |
+
|
64 |
+
|
65 |
+
@torch.no_grad()
|
66 |
+
def evaluate(model, data_loader, device, config):
|
67 |
+
# test
|
68 |
+
model.eval()
|
69 |
+
|
70 |
+
metric_logger = utils.MetricLogger(delimiter=" ")
|
71 |
+
|
72 |
+
header = 'Evaluation:'
|
73 |
+
print_freq = 50
|
74 |
+
|
75 |
+
for image0, image1, text, targets in metric_logger.log_every(data_loader, print_freq, header):
|
76 |
+
images = torch.cat([image0, image1], dim=0)
|
77 |
+
images, targets = images.to(device), targets.to(device)
|
78 |
+
|
79 |
+
prediction = model(images, text, targets=targets, train=False)
|
80 |
+
|
81 |
+
_, pred_class = prediction.max(1)
|
82 |
+
accuracy = (targets==pred_class).sum() / targets.size(0)
|
83 |
+
|
84 |
+
metric_logger.meters['acc'].update(accuracy.item(), n=image0.size(0))
|
85 |
+
|
86 |
+
# gather the stats from all processes
|
87 |
+
metric_logger.synchronize_between_processes()
|
88 |
+
|
89 |
+
print("Averaged stats:", metric_logger.global_avg())
|
90 |
+
return {k: "{:.4f}".format(meter.global_avg) for k, meter in metric_logger.meters.items()}
|
91 |
+
|
92 |
+
|
93 |
+
|
94 |
+
def main(args, config):
|
95 |
+
utils.init_distributed_mode(args)
|
96 |
+
|
97 |
+
device = torch.device(args.device)
|
98 |
+
|
99 |
+
# fix the seed for reproducibility
|
100 |
+
seed = args.seed + utils.get_rank()
|
101 |
+
torch.manual_seed(seed)
|
102 |
+
np.random.seed(seed)
|
103 |
+
random.seed(seed)
|
104 |
+
cudnn.benchmark = True
|
105 |
+
|
106 |
+
#### Dataset ####
|
107 |
+
print("Creating dataset")
|
108 |
+
datasets = create_dataset('nlvr', config)
|
109 |
+
|
110 |
+
if args.distributed:
|
111 |
+
num_tasks = utils.get_world_size()
|
112 |
+
global_rank = utils.get_rank()
|
113 |
+
samplers = create_sampler(datasets, [True,False,False], num_tasks, global_rank)
|
114 |
+
else:
|
115 |
+
samplers = [None, None, None]
|
116 |
+
|
117 |
+
batch_size=[config['batch_size_train'],config['batch_size_test'],config['batch_size_test']]
|
118 |
+
train_loader, val_loader, test_loader = create_loader(datasets,samplers,batch_size=batch_size,
|
119 |
+
num_workers=[4,4,4],is_trains=[True,False,False],
|
120 |
+
collate_fns=[None,None,None])
|
121 |
+
|
122 |
+
#### Model ####
|
123 |
+
print("Creating model")
|
124 |
+
model = blip_nlvr(pretrained=config['pretrained'], image_size=config['image_size'],
|
125 |
+
vit=config['vit'], vit_grad_ckpt=config['vit_grad_ckpt'], vit_ckpt_layer=config['vit_ckpt_layer'])
|
126 |
+
|
127 |
+
model = model.to(device)
|
128 |
+
|
129 |
+
model_without_ddp = model
|
130 |
+
if args.distributed:
|
131 |
+
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
|
132 |
+
model_without_ddp = model.module
|
133 |
+
|
134 |
+
optimizer = torch.optim.AdamW(params=model.parameters(), lr=config['init_lr'], weight_decay=config['weight_decay'])
|
135 |
+
|
136 |
+
print("Start training")
|
137 |
+
start_time = time.time()
|
138 |
+
best = 0
|
139 |
+
best_epoch = 0
|
140 |
+
|
141 |
+
for epoch in range(0, config['max_epoch']):
|
142 |
+
if not args.evaluate:
|
143 |
+
if args.distributed:
|
144 |
+
train_loader.sampler.set_epoch(epoch)
|
145 |
+
|
146 |
+
cosine_lr_schedule(optimizer, epoch, config['max_epoch'], config['init_lr'], config['min_lr'])
|
147 |
+
|
148 |
+
train_stats = train(model, train_loader, optimizer, epoch, device, config)
|
149 |
+
|
150 |
+
val_stats = evaluate(model, val_loader, device, config)
|
151 |
+
test_stats = evaluate(model, test_loader, device, config)
|
152 |
+
|
153 |
+
if utils.is_main_process():
|
154 |
+
if args.evaluate:
|
155 |
+
log_stats = {**{f'val_{k}': v for k, v in val_stats.items()},
|
156 |
+
**{f'test_{k}': v for k, v in test_stats.items()},
|
157 |
+
}
|
158 |
+
with open(os.path.join(args.output_dir, "log.txt"),"a") as f:
|
159 |
+
f.write(json.dumps(log_stats) + "\n")
|
160 |
+
|
161 |
+
else:
|
162 |
+
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
|
163 |
+
**{f'val_{k}': v for k, v in val_stats.items()},
|
164 |
+
**{f'test_{k}': v for k, v in test_stats.items()},
|
165 |
+
'epoch': epoch,
|
166 |
+
}
|
167 |
+
|
168 |
+
if float(val_stats['acc'])>best:
|
169 |
+
save_obj = {
|
170 |
+
'model': model_without_ddp.state_dict(),
|
171 |
+
'optimizer': optimizer.state_dict(),
|
172 |
+
'config': config,
|
173 |
+
'epoch': epoch,
|
174 |
+
}
|
175 |
+
torch.save(save_obj, os.path.join(args.output_dir, 'checkpoint_best.pth'))
|
176 |
+
best = float(val_stats['acc'])
|
177 |
+
best_epoch = epoch
|
178 |
+
|
179 |
+
with open(os.path.join(args.output_dir, "log.txt"),"a") as f:
|
180 |
+
f.write(json.dumps(log_stats) + "\n")
|
181 |
+
if args.evaluate:
|
182 |
+
break
|
183 |
+
|
184 |
+
dist.barrier()
|
185 |
+
|
186 |
+
if utils.is_main_process():
|
187 |
+
with open(os.path.join(args.output_dir, "log.txt"),"a") as f:
|
188 |
+
f.write("best epoch: %d"%best_epoch)
|
189 |
+
|
190 |
+
total_time = time.time() - start_time
|
191 |
+
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
|
192 |
+
print('Training time {}'.format(total_time_str))
|
193 |
+
|
194 |
+
|
195 |
+
if __name__ == '__main__':
|
196 |
+
parser = argparse.ArgumentParser()
|
197 |
+
parser.add_argument('--config', default='./configs/nlvr.yaml')
|
198 |
+
parser.add_argument('--output_dir', default='output/NLVR')
|
199 |
+
parser.add_argument('--evaluate', action='store_true')
|
200 |
+
parser.add_argument('--device', default='cuda')
|
201 |
+
parser.add_argument('--seed', default=42, type=int)
|
202 |
+
parser.add_argument('--world_size', default=1, type=int, help='number of distributed processes')
|
203 |
+
parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
|
204 |
+
parser.add_argument('--distributed', default=True, type=bool)
|
205 |
+
args = parser.parse_args()
|
206 |
+
|
207 |
+
config = yaml.load(open(args.config, 'r'), Loader=yaml.Loader)
|
208 |
+
|
209 |
+
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
|
210 |
+
|
211 |
+
yaml.dump(config, open(os.path.join(args.output_dir, 'config.yaml'), 'w'))
|
212 |
+
|
213 |
+
main(args, config)
|
repositories/BLIP/train_retrieval.py
ADDED
@@ -0,0 +1,345 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
'''
|
2 |
+
* Copyright (c) 2022, salesforce.com, inc.
|
3 |
+
* All rights reserved.
|
4 |
+
* SPDX-License-Identifier: BSD-3-Clause
|
5 |
+
* For full license text, see LICENSE.txt file in the repo root or https://opensource.org/licenses/BSD-3-Clause
|
6 |
+
* By Junnan Li
|
7 |
+
'''
|
8 |
+
import argparse
|
9 |
+
import os
|
10 |
+
import ruamel_yaml as yaml
|
11 |
+
import numpy as np
|
12 |
+
import random
|
13 |
+
import time
|
14 |
+
import datetime
|
15 |
+
import json
|
16 |
+
from pathlib import Path
|
17 |
+
|
18 |
+
import torch
|
19 |
+
import torch.nn as nn
|
20 |
+
import torch.nn.functional as F
|
21 |
+
import torch.backends.cudnn as cudnn
|
22 |
+
import torch.distributed as dist
|
23 |
+
from torch.utils.data import DataLoader
|
24 |
+
|
25 |
+
from models.blip_retrieval import blip_retrieval
|
26 |
+
import utils
|
27 |
+
from utils import cosine_lr_schedule
|
28 |
+
from data import create_dataset, create_sampler, create_loader
|
29 |
+
|
30 |
+
|
31 |
+
def train(model, data_loader, optimizer, epoch, device, config):
|
32 |
+
# train
|
33 |
+
model.train()
|
34 |
+
|
35 |
+
metric_logger = utils.MetricLogger(delimiter=" ")
|
36 |
+
metric_logger.add_meter('lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}'))
|
37 |
+
metric_logger.add_meter('loss_itm', utils.SmoothedValue(window_size=1, fmt='{value:.4f}'))
|
38 |
+
metric_logger.add_meter('loss_ita', utils.SmoothedValue(window_size=1, fmt='{value:.4f}'))
|
39 |
+
header = 'Train Epoch: [{}]'.format(epoch)
|
40 |
+
print_freq = 50
|
41 |
+
|
42 |
+
for i,(image, caption, idx) in enumerate(metric_logger.log_every(data_loader, print_freq, header)):
|
43 |
+
image = image.to(device,non_blocking=True)
|
44 |
+
idx = idx.to(device,non_blocking=True)
|
45 |
+
|
46 |
+
if epoch>0:
|
47 |
+
alpha = config['alpha']
|
48 |
+
else:
|
49 |
+
alpha = config['alpha']*min(1,i/len(data_loader))
|
50 |
+
|
51 |
+
loss_ita, loss_itm = model(image, caption, alpha=alpha, idx=idx)
|
52 |
+
loss = loss_ita + loss_itm
|
53 |
+
|
54 |
+
optimizer.zero_grad()
|
55 |
+
loss.backward()
|
56 |
+
optimizer.step()
|
57 |
+
|
58 |
+
metric_logger.update(loss_itm=loss_itm.item())
|
59 |
+
metric_logger.update(loss_ita=loss_ita.item())
|
60 |
+
metric_logger.update(lr=optimizer.param_groups[0]["lr"])
|
61 |
+
|
62 |
+
# gather the stats from all processes
|
63 |
+
metric_logger.synchronize_between_processes()
|
64 |
+
print("Averaged stats:", metric_logger.global_avg())
|
65 |
+
return {k: "{:.3f}".format(meter.global_avg) for k, meter in metric_logger.meters.items()}
|
66 |
+
|
67 |
+
|
68 |
+
@torch.no_grad()
|
69 |
+
def evaluation(model, data_loader, device, config):
|
70 |
+
# test
|
71 |
+
model.eval()
|
72 |
+
|
73 |
+
metric_logger = utils.MetricLogger(delimiter=" ")
|
74 |
+
header = 'Evaluation:'
|
75 |
+
|
76 |
+
print('Computing features for evaluation...')
|
77 |
+
start_time = time.time()
|
78 |
+
|
79 |
+
texts = data_loader.dataset.text
|
80 |
+
num_text = len(texts)
|
81 |
+
text_bs = 256
|
82 |
+
text_ids = []
|
83 |
+
text_embeds = []
|
84 |
+
text_atts = []
|
85 |
+
for i in range(0, num_text, text_bs):
|
86 |
+
text = texts[i: min(num_text, i+text_bs)]
|
87 |
+
text_input = model.tokenizer(text, padding='max_length', truncation=True, max_length=35, return_tensors="pt").to(device)
|
88 |
+
text_output = model.text_encoder(text_input.input_ids, attention_mask = text_input.attention_mask, mode='text')
|
89 |
+
text_embed = F.normalize(model.text_proj(text_output.last_hidden_state[:,0,:]))
|
90 |
+
text_embeds.append(text_embed)
|
91 |
+
text_ids.append(text_input.input_ids)
|
92 |
+
text_atts.append(text_input.attention_mask)
|
93 |
+
|
94 |
+
text_embeds = torch.cat(text_embeds,dim=0)
|
95 |
+
text_ids = torch.cat(text_ids,dim=0)
|
96 |
+
text_atts = torch.cat(text_atts,dim=0)
|
97 |
+
text_ids[:,0] = model.tokenizer.enc_token_id
|
98 |
+
|
99 |
+
image_feats = []
|
100 |
+
image_embeds = []
|
101 |
+
for image, img_id in data_loader:
|
102 |
+
image = image.to(device)
|
103 |
+
image_feat = model.visual_encoder(image)
|
104 |
+
image_embed = model.vision_proj(image_feat[:,0,:])
|
105 |
+
image_embed = F.normalize(image_embed,dim=-1)
|
106 |
+
|
107 |
+
image_feats.append(image_feat.cpu())
|
108 |
+
image_embeds.append(image_embed)
|
109 |
+
|
110 |
+
image_feats = torch.cat(image_feats,dim=0)
|
111 |
+
image_embeds = torch.cat(image_embeds,dim=0)
|
112 |
+
|
113 |
+
sims_matrix = image_embeds @ text_embeds.t()
|
114 |
+
score_matrix_i2t = torch.full((len(data_loader.dataset.image),len(texts)),-100.0).to(device)
|
115 |
+
|
116 |
+
num_tasks = utils.get_world_size()
|
117 |
+
rank = utils.get_rank()
|
118 |
+
step = sims_matrix.size(0)//num_tasks + 1
|
119 |
+
start = rank*step
|
120 |
+
end = min(sims_matrix.size(0),start+step)
|
121 |
+
|
122 |
+
for i,sims in enumerate(metric_logger.log_every(sims_matrix[start:end], 50, header)):
|
123 |
+
topk_sim, topk_idx = sims.topk(k=config['k_test'], dim=0)
|
124 |
+
|
125 |
+
encoder_output = image_feats[start+i].repeat(config['k_test'],1,1).to(device)
|
126 |
+
encoder_att = torch.ones(encoder_output.size()[:-1],dtype=torch.long).to(device)
|
127 |
+
output = model.text_encoder(text_ids[topk_idx],
|
128 |
+
attention_mask = text_atts[topk_idx],
|
129 |
+
encoder_hidden_states = encoder_output,
|
130 |
+
encoder_attention_mask = encoder_att,
|
131 |
+
return_dict = True,
|
132 |
+
)
|
133 |
+
score = model.itm_head(output.last_hidden_state[:,0,:])[:,1]
|
134 |
+
score_matrix_i2t[start+i,topk_idx] = score + topk_sim
|
135 |
+
|
136 |
+
sims_matrix = sims_matrix.t()
|
137 |
+
score_matrix_t2i = torch.full((len(texts),len(data_loader.dataset.image)),-100.0).to(device)
|
138 |
+
|
139 |
+
step = sims_matrix.size(0)//num_tasks + 1
|
140 |
+
start = rank*step
|
141 |
+
end = min(sims_matrix.size(0),start+step)
|
142 |
+
|
143 |
+
for i,sims in enumerate(metric_logger.log_every(sims_matrix[start:end], 50, header)):
|
144 |
+
|
145 |
+
topk_sim, topk_idx = sims.topk(k=config['k_test'], dim=0)
|
146 |
+
encoder_output = image_feats[topk_idx].to(device)
|
147 |
+
encoder_att = torch.ones(encoder_output.size()[:-1],dtype=torch.long).to(device)
|
148 |
+
output = model.text_encoder(text_ids[start+i].repeat(config['k_test'],1),
|
149 |
+
attention_mask = text_atts[start+i].repeat(config['k_test'],1),
|
150 |
+
encoder_hidden_states = encoder_output,
|
151 |
+
encoder_attention_mask = encoder_att,
|
152 |
+
return_dict = True,
|
153 |
+
)
|
154 |
+
score = model.itm_head(output.last_hidden_state[:,0,:])[:,1]
|
155 |
+
score_matrix_t2i[start+i,topk_idx] = score + topk_sim
|
156 |
+
|
157 |
+
if args.distributed:
|
158 |
+
dist.barrier()
|
159 |
+
torch.distributed.all_reduce(score_matrix_i2t, op=torch.distributed.ReduceOp.SUM)
|
160 |
+
torch.distributed.all_reduce(score_matrix_t2i, op=torch.distributed.ReduceOp.SUM)
|
161 |
+
|
162 |
+
total_time = time.time() - start_time
|
163 |
+
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
|
164 |
+
print('Evaluation time {}'.format(total_time_str))
|
165 |
+
|
166 |
+
return score_matrix_i2t.cpu().numpy(), score_matrix_t2i.cpu().numpy()
|
167 |
+
|
168 |
+
|
169 |
+
|
170 |
+
@torch.no_grad()
|
171 |
+
def itm_eval(scores_i2t, scores_t2i, txt2img, img2txt):
|
172 |
+
|
173 |
+
#Images->Text
|
174 |
+
ranks = np.zeros(scores_i2t.shape[0])
|
175 |
+
for index,score in enumerate(scores_i2t):
|
176 |
+
inds = np.argsort(score)[::-1]
|
177 |
+
# Score
|
178 |
+
rank = 1e20
|
179 |
+
for i in img2txt[index]:
|
180 |
+
tmp = np.where(inds == i)[0][0]
|
181 |
+
if tmp < rank:
|
182 |
+
rank = tmp
|
183 |
+
ranks[index] = rank
|
184 |
+
|
185 |
+
# Compute metrics
|
186 |
+
tr1 = 100.0 * len(np.where(ranks < 1)[0]) / len(ranks)
|
187 |
+
tr5 = 100.0 * len(np.where(ranks < 5)[0]) / len(ranks)
|
188 |
+
tr10 = 100.0 * len(np.where(ranks < 10)[0]) / len(ranks)
|
189 |
+
|
190 |
+
#Text->Images
|
191 |
+
ranks = np.zeros(scores_t2i.shape[0])
|
192 |
+
|
193 |
+
for index,score in enumerate(scores_t2i):
|
194 |
+
inds = np.argsort(score)[::-1]
|
195 |
+
ranks[index] = np.where(inds == txt2img[index])[0][0]
|
196 |
+
|
197 |
+
# Compute metrics
|
198 |
+
ir1 = 100.0 * len(np.where(ranks < 1)[0]) / len(ranks)
|
199 |
+
ir5 = 100.0 * len(np.where(ranks < 5)[0]) / len(ranks)
|
200 |
+
ir10 = 100.0 * len(np.where(ranks < 10)[0]) / len(ranks)
|
201 |
+
|
202 |
+
tr_mean = (tr1 + tr5 + tr10) / 3
|
203 |
+
ir_mean = (ir1 + ir5 + ir10) / 3
|
204 |
+
r_mean = (tr_mean + ir_mean) / 2
|
205 |
+
|
206 |
+
eval_result = {'txt_r1': tr1,
|
207 |
+
'txt_r5': tr5,
|
208 |
+
'txt_r10': tr10,
|
209 |
+
'txt_r_mean': tr_mean,
|
210 |
+
'img_r1': ir1,
|
211 |
+
'img_r5': ir5,
|
212 |
+
'img_r10': ir10,
|
213 |
+
'img_r_mean': ir_mean,
|
214 |
+
'r_mean': r_mean}
|
215 |
+
return eval_result
|
216 |
+
|
217 |
+
|
218 |
+
def main(args, config):
|
219 |
+
utils.init_distributed_mode(args)
|
220 |
+
|
221 |
+
device = torch.device(args.device)
|
222 |
+
|
223 |
+
# fix the seed for reproducibility
|
224 |
+
seed = args.seed + utils.get_rank()
|
225 |
+
torch.manual_seed(seed)
|
226 |
+
np.random.seed(seed)
|
227 |
+
random.seed(seed)
|
228 |
+
cudnn.benchmark = True
|
229 |
+
|
230 |
+
#### Dataset ####
|
231 |
+
print("Creating retrieval dataset")
|
232 |
+
train_dataset, val_dataset, test_dataset = create_dataset('retrieval_%s'%config['dataset'], config)
|
233 |
+
|
234 |
+
if args.distributed:
|
235 |
+
num_tasks = utils.get_world_size()
|
236 |
+
global_rank = utils.get_rank()
|
237 |
+
samplers = create_sampler([train_dataset], [True], num_tasks, global_rank) + [None, None]
|
238 |
+
else:
|
239 |
+
samplers = [None, None, None]
|
240 |
+
|
241 |
+
train_loader, val_loader, test_loader = create_loader([train_dataset, val_dataset, test_dataset],samplers,
|
242 |
+
batch_size=[config['batch_size_train']]+[config['batch_size_test']]*2,
|
243 |
+
num_workers=[4,4,4],
|
244 |
+
is_trains=[True, False, False],
|
245 |
+
collate_fns=[None,None,None])
|
246 |
+
|
247 |
+
|
248 |
+
#### Model ####
|
249 |
+
print("Creating model")
|
250 |
+
model = blip_retrieval(pretrained=config['pretrained'], image_size=config['image_size'], vit=config['vit'],
|
251 |
+
vit_grad_ckpt=config['vit_grad_ckpt'], vit_ckpt_layer=config['vit_ckpt_layer'],
|
252 |
+
queue_size=config['queue_size'], negative_all_rank=config['negative_all_rank'])
|
253 |
+
|
254 |
+
model = model.to(device)
|
255 |
+
|
256 |
+
model_without_ddp = model
|
257 |
+
if args.distributed:
|
258 |
+
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
|
259 |
+
model_without_ddp = model.module
|
260 |
+
|
261 |
+
optimizer = torch.optim.AdamW(params=model.parameters(), lr=config['init_lr'], weight_decay=config['weight_decay'])
|
262 |
+
|
263 |
+
best = 0
|
264 |
+
best_epoch = 0
|
265 |
+
|
266 |
+
print("Start training")
|
267 |
+
start_time = time.time()
|
268 |
+
|
269 |
+
for epoch in range(0, config['max_epoch']):
|
270 |
+
if not args.evaluate:
|
271 |
+
if args.distributed:
|
272 |
+
train_loader.sampler.set_epoch(epoch)
|
273 |
+
|
274 |
+
cosine_lr_schedule(optimizer, epoch, config['max_epoch'], config['init_lr'], config['min_lr'])
|
275 |
+
|
276 |
+
train_stats = train(model, train_loader, optimizer, epoch, device, config)
|
277 |
+
|
278 |
+
score_val_i2t, score_val_t2i, = evaluation(model_without_ddp, val_loader, device, config)
|
279 |
+
score_test_i2t, score_test_t2i = evaluation(model_without_ddp, test_loader, device, config)
|
280 |
+
|
281 |
+
if utils.is_main_process():
|
282 |
+
|
283 |
+
val_result = itm_eval(score_val_i2t, score_val_t2i, val_loader.dataset.txt2img, val_loader.dataset.img2txt)
|
284 |
+
print(val_result)
|
285 |
+
|
286 |
+
if val_result['r_mean']>best:
|
287 |
+
save_obj = {
|
288 |
+
'model': model_without_ddp.state_dict(),
|
289 |
+
'optimizer': optimizer.state_dict(),
|
290 |
+
'config': config,
|
291 |
+
'epoch': epoch,
|
292 |
+
}
|
293 |
+
torch.save(save_obj, os.path.join(args.output_dir, 'checkpoint_best.pth'))
|
294 |
+
best = val_result['r_mean']
|
295 |
+
best_epoch = epoch
|
296 |
+
|
297 |
+
test_result = itm_eval(score_test_i2t, score_test_t2i, test_loader.dataset.txt2img, test_loader.dataset.img2txt)
|
298 |
+
print(test_result)
|
299 |
+
|
300 |
+
if args.evaluate:
|
301 |
+
log_stats = {**{f'val_{k}': v for k, v in val_result.items()},
|
302 |
+
**{f'test_{k}': v for k, v in test_result.items()},
|
303 |
+
}
|
304 |
+
with open(os.path.join(args.output_dir, "evaluate.txt"),"a") as f:
|
305 |
+
f.write(json.dumps(log_stats) + "\n")
|
306 |
+
else:
|
307 |
+
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
|
308 |
+
**{f'val_{k}': v for k, v in val_result.items()},
|
309 |
+
**{f'test_{k}': v for k, v in test_result.items()},
|
310 |
+
'epoch': epoch,
|
311 |
+
'best_epoch': best_epoch,
|
312 |
+
}
|
313 |
+
with open(os.path.join(args.output_dir, "log.txt"),"a") as f:
|
314 |
+
f.write(json.dumps(log_stats) + "\n")
|
315 |
+
|
316 |
+
if args.evaluate:
|
317 |
+
break
|
318 |
+
|
319 |
+
dist.barrier()
|
320 |
+
torch.cuda.empty_cache()
|
321 |
+
|
322 |
+
total_time = time.time() - start_time
|
323 |
+
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
|
324 |
+
print('Training time {}'.format(total_time_str))
|
325 |
+
|
326 |
+
|
327 |
+
if __name__ == '__main__':
|
328 |
+
parser = argparse.ArgumentParser()
|
329 |
+
parser.add_argument('--config', default='./configs/retrieval_flickr.yaml')
|
330 |
+
parser.add_argument('--output_dir', default='output/Retrieval_flickr')
|
331 |
+
parser.add_argument('--evaluate', action='store_true')
|
332 |
+
parser.add_argument('--device', default='cuda')
|
333 |
+
parser.add_argument('--seed', default=42, type=int)
|
334 |
+
parser.add_argument('--world_size', default=1, type=int, help='number of distributed processes')
|
335 |
+
parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
|
336 |
+
parser.add_argument('--distributed', default=True, type=bool)
|
337 |
+
args = parser.parse_args()
|
338 |
+
|
339 |
+
config = yaml.load(open(args.config, 'r'), Loader=yaml.Loader)
|
340 |
+
|
341 |
+
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
|
342 |
+
|
343 |
+
yaml.dump(config, open(os.path.join(args.output_dir, 'config.yaml'), 'w'))
|
344 |
+
|
345 |
+
main(args, config)
|
repositories/BLIP/train_vqa.py
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
'''
|
2 |
+
* Copyright (c) 2022, salesforce.com, inc.
|
3 |
+
* All rights reserved.
|
4 |
+
* SPDX-License-Identifier: BSD-3-Clause
|
5 |
+
* For full license text, see LICENSE.txt file in the repo root or https://opensource.org/licenses/BSD-3-Clause
|
6 |
+
* By Junnan Li
|
7 |
+
'''
|
8 |
+
import argparse
|
9 |
+
import os
|
10 |
+
import ruamel_yaml as yaml
|
11 |
+
import numpy as np
|
12 |
+
import random
|
13 |
+
import time
|
14 |
+
import datetime
|
15 |
+
import json
|
16 |
+
from pathlib import Path
|
17 |
+
|
18 |
+
import torch
|
19 |
+
import torch.nn as nn
|
20 |
+
import torch.nn.functional as F
|
21 |
+
from torch.utils.data import DataLoader
|
22 |
+
import torch.backends.cudnn as cudnn
|
23 |
+
import torch.distributed as dist
|
24 |
+
|
25 |
+
from models.blip_vqa import blip_vqa
|
26 |
+
import utils
|
27 |
+
from utils import cosine_lr_schedule
|
28 |
+
from data import create_dataset, create_sampler, create_loader
|
29 |
+
from data.vqa_dataset import vqa_collate_fn
|
30 |
+
from data.utils import save_result
|
31 |
+
|
32 |
+
|
33 |
+
def train(model, data_loader, optimizer, epoch, device):
|
34 |
+
# train
|
35 |
+
model.train()
|
36 |
+
|
37 |
+
metric_logger = utils.MetricLogger(delimiter=" ")
|
38 |
+
metric_logger.add_meter('lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}'))
|
39 |
+
metric_logger.add_meter('loss', utils.SmoothedValue(window_size=1, fmt='{value:.4f}'))
|
40 |
+
|
41 |
+
header = 'Train Epoch: [{}]'.format(epoch)
|
42 |
+
print_freq = 50
|
43 |
+
|
44 |
+
for i,(image, question, answer, weights, n) in enumerate(metric_logger.log_every(data_loader, print_freq, header)):
|
45 |
+
image, weights = image.to(device,non_blocking=True), weights.to(device,non_blocking=True)
|
46 |
+
|
47 |
+
loss = model(image, question, answer, train=True, n=n, weights=weights)
|
48 |
+
|
49 |
+
optimizer.zero_grad()
|
50 |
+
loss.backward()
|
51 |
+
optimizer.step()
|
52 |
+
|
53 |
+
metric_logger.update(loss=loss.item())
|
54 |
+
metric_logger.update(lr=optimizer.param_groups[0]["lr"])
|
55 |
+
|
56 |
+
# gather the stats from all processes
|
57 |
+
metric_logger.synchronize_between_processes()
|
58 |
+
print("Averaged stats:", metric_logger.global_avg())
|
59 |
+
return {k: "{:.3f}".format(meter.global_avg) for k, meter in metric_logger.meters.items()}
|
60 |
+
|
61 |
+
|
62 |
+
@torch.no_grad()
|
63 |
+
def evaluation(model, data_loader, device, config) :
|
64 |
+
# test
|
65 |
+
model.eval()
|
66 |
+
|
67 |
+
metric_logger = utils.MetricLogger(delimiter=" ")
|
68 |
+
header = 'Generate VQA test result:'
|
69 |
+
print_freq = 50
|
70 |
+
|
71 |
+
result = []
|
72 |
+
|
73 |
+
if config['inference']=='rank':
|
74 |
+
answer_list = data_loader.dataset.answer_list
|
75 |
+
answer_candidates = model.tokenizer(answer_list, padding='longest', return_tensors='pt').to(device)
|
76 |
+
answer_candidates.input_ids[:,0] = model.tokenizer.bos_token_id
|
77 |
+
|
78 |
+
for n, (image, question, question_id) in enumerate(metric_logger.log_every(data_loader, print_freq, header)):
|
79 |
+
image = image.to(device,non_blocking=True)
|
80 |
+
|
81 |
+
if config['inference']=='generate':
|
82 |
+
answers = model(image, question, train=False, inference='generate')
|
83 |
+
|
84 |
+
for answer, ques_id in zip(answers, question_id):
|
85 |
+
ques_id = int(ques_id.item())
|
86 |
+
result.append({"question_id":ques_id, "answer":answer})
|
87 |
+
|
88 |
+
elif config['inference']=='rank':
|
89 |
+
answer_ids = model(image, question, answer_candidates, train=False, inference='rank', k_test=config['k_test'])
|
90 |
+
|
91 |
+
for ques_id, answer_id in zip(question_id, answer_ids):
|
92 |
+
result.append({"question_id":int(ques_id.item()), "answer":answer_list[answer_id]})
|
93 |
+
|
94 |
+
return result
|
95 |
+
|
96 |
+
|
97 |
+
def main(args, config):
|
98 |
+
utils.init_distributed_mode(args)
|
99 |
+
|
100 |
+
device = torch.device(args.device)
|
101 |
+
|
102 |
+
# fix the seed for reproducibility
|
103 |
+
seed = args.seed + utils.get_rank()
|
104 |
+
torch.manual_seed(seed)
|
105 |
+
np.random.seed(seed)
|
106 |
+
random.seed(seed)
|
107 |
+
cudnn.benchmark = True
|
108 |
+
|
109 |
+
#### Dataset ####
|
110 |
+
print("Creating vqa datasets")
|
111 |
+
datasets = create_dataset('vqa', config)
|
112 |
+
|
113 |
+
if args.distributed:
|
114 |
+
num_tasks = utils.get_world_size()
|
115 |
+
global_rank = utils.get_rank()
|
116 |
+
samplers = create_sampler(datasets, [True, False], num_tasks, global_rank)
|
117 |
+
else:
|
118 |
+
samplers = [None, None]
|
119 |
+
|
120 |
+
train_loader, test_loader = create_loader(datasets,samplers,
|
121 |
+
batch_size=[config['batch_size_train'],config['batch_size_test']],
|
122 |
+
num_workers=[4,4],is_trains=[True, False],
|
123 |
+
collate_fns=[vqa_collate_fn,None])
|
124 |
+
#### Model ####
|
125 |
+
print("Creating model")
|
126 |
+
model = blip_vqa(pretrained=config['pretrained'], image_size=config['image_size'],
|
127 |
+
vit=config['vit'], vit_grad_ckpt=config['vit_grad_ckpt'], vit_ckpt_layer=config['vit_ckpt_layer'])
|
128 |
+
|
129 |
+
model = model.to(device)
|
130 |
+
|
131 |
+
model_without_ddp = model
|
132 |
+
if args.distributed:
|
133 |
+
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
|
134 |
+
model_without_ddp = model.module
|
135 |
+
|
136 |
+
optimizer = torch.optim.AdamW(params=model.parameters(), lr=config['init_lr'], weight_decay=config['weight_decay'])
|
137 |
+
|
138 |
+
best = 0
|
139 |
+
best_epoch = 0
|
140 |
+
|
141 |
+
print("Start training")
|
142 |
+
start_time = time.time()
|
143 |
+
for epoch in range(0, config['max_epoch']):
|
144 |
+
if not args.evaluate:
|
145 |
+
if args.distributed:
|
146 |
+
train_loader.sampler.set_epoch(epoch)
|
147 |
+
|
148 |
+
cosine_lr_schedule(optimizer, epoch, config['max_epoch'], config['init_lr'], config['min_lr'])
|
149 |
+
|
150 |
+
train_stats = train(model, train_loader, optimizer, epoch, device)
|
151 |
+
|
152 |
+
else:
|
153 |
+
break
|
154 |
+
|
155 |
+
if utils.is_main_process():
|
156 |
+
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
|
157 |
+
'epoch': epoch,
|
158 |
+
}
|
159 |
+
with open(os.path.join(args.output_dir, "log.txt"),"a") as f:
|
160 |
+
f.write(json.dumps(log_stats) + "\n")
|
161 |
+
|
162 |
+
save_obj = {
|
163 |
+
'model': model_without_ddp.state_dict(),
|
164 |
+
'optimizer': optimizer.state_dict(),
|
165 |
+
'config': config,
|
166 |
+
'epoch': epoch,
|
167 |
+
}
|
168 |
+
torch.save(save_obj, os.path.join(args.output_dir, 'checkpoint_%02d.pth'%epoch))
|
169 |
+
|
170 |
+
dist.barrier()
|
171 |
+
|
172 |
+
vqa_result = evaluation(model_without_ddp, test_loader, device, config)
|
173 |
+
result_file = save_result(vqa_result, args.result_dir, 'vqa_result')
|
174 |
+
|
175 |
+
total_time = time.time() - start_time
|
176 |
+
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
|
177 |
+
print('Training time {}'.format(total_time_str))
|
178 |
+
|
179 |
+
|
180 |
+
|
181 |
+
if __name__ == '__main__':
|
182 |
+
parser = argparse.ArgumentParser()
|
183 |
+
parser.add_argument('--config', default='./configs/vqa.yaml')
|
184 |
+
parser.add_argument('--output_dir', default='output/VQA')
|
185 |
+
parser.add_argument('--evaluate', action='store_true')
|
186 |
+
parser.add_argument('--device', default='cuda')
|
187 |
+
parser.add_argument('--seed', default=42, type=int)
|
188 |
+
parser.add_argument('--world_size', default=1, type=int, help='number of distributed processes')
|
189 |
+
parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
|
190 |
+
parser.add_argument('--distributed', default=True, type=bool)
|
191 |
+
args = parser.parse_args()
|
192 |
+
|
193 |
+
config = yaml.load(open(args.config, 'r'), Loader=yaml.Loader)
|
194 |
+
|
195 |
+
args.result_dir = os.path.join(args.output_dir, 'result')
|
196 |
+
|
197 |
+
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
|
198 |
+
Path(args.result_dir).mkdir(parents=True, exist_ok=True)
|
199 |
+
|
200 |
+
yaml.dump(config, open(os.path.join(args.output_dir, 'config.yaml'), 'w'))
|
201 |
+
|
202 |
+
main(args, config)
|
repositories/BLIP/transform/randaugment.py
ADDED
@@ -0,0 +1,340 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import numpy as np
|
3 |
+
|
4 |
+
|
5 |
+
## aug functions
|
6 |
+
def identity_func(img):
|
7 |
+
return img
|
8 |
+
|
9 |
+
|
10 |
+
def autocontrast_func(img, cutoff=0):
|
11 |
+
'''
|
12 |
+
same output as PIL.ImageOps.autocontrast
|
13 |
+
'''
|
14 |
+
n_bins = 256
|
15 |
+
|
16 |
+
def tune_channel(ch):
|
17 |
+
n = ch.size
|
18 |
+
cut = cutoff * n // 100
|
19 |
+
if cut == 0:
|
20 |
+
high, low = ch.max(), ch.min()
|
21 |
+
else:
|
22 |
+
hist = cv2.calcHist([ch], [0], None, [n_bins], [0, n_bins])
|
23 |
+
low = np.argwhere(np.cumsum(hist) > cut)
|
24 |
+
low = 0 if low.shape[0] == 0 else low[0]
|
25 |
+
high = np.argwhere(np.cumsum(hist[::-1]) > cut)
|
26 |
+
high = n_bins - 1 if high.shape[0] == 0 else n_bins - 1 - high[0]
|
27 |
+
if high <= low:
|
28 |
+
table = np.arange(n_bins)
|
29 |
+
else:
|
30 |
+
scale = (n_bins - 1) / (high - low)
|
31 |
+
offset = -low * scale
|
32 |
+
table = np.arange(n_bins) * scale + offset
|
33 |
+
table[table < 0] = 0
|
34 |
+
table[table > n_bins - 1] = n_bins - 1
|
35 |
+
table = table.clip(0, 255).astype(np.uint8)
|
36 |
+
return table[ch]
|
37 |
+
|
38 |
+
channels = [tune_channel(ch) for ch in cv2.split(img)]
|
39 |
+
out = cv2.merge(channels)
|
40 |
+
return out
|
41 |
+
|
42 |
+
|
43 |
+
def equalize_func(img):
|
44 |
+
'''
|
45 |
+
same output as PIL.ImageOps.equalize
|
46 |
+
PIL's implementation is different from cv2.equalize
|
47 |
+
'''
|
48 |
+
n_bins = 256
|
49 |
+
|
50 |
+
def tune_channel(ch):
|
51 |
+
hist = cv2.calcHist([ch], [0], None, [n_bins], [0, n_bins])
|
52 |
+
non_zero_hist = hist[hist != 0].reshape(-1)
|
53 |
+
step = np.sum(non_zero_hist[:-1]) // (n_bins - 1)
|
54 |
+
if step == 0: return ch
|
55 |
+
n = np.empty_like(hist)
|
56 |
+
n[0] = step // 2
|
57 |
+
n[1:] = hist[:-1]
|
58 |
+
table = (np.cumsum(n) // step).clip(0, 255).astype(np.uint8)
|
59 |
+
return table[ch]
|
60 |
+
|
61 |
+
channels = [tune_channel(ch) for ch in cv2.split(img)]
|
62 |
+
out = cv2.merge(channels)
|
63 |
+
return out
|
64 |
+
|
65 |
+
|
66 |
+
def rotate_func(img, degree, fill=(0, 0, 0)):
|
67 |
+
'''
|
68 |
+
like PIL, rotate by degree, not radians
|
69 |
+
'''
|
70 |
+
H, W = img.shape[0], img.shape[1]
|
71 |
+
center = W / 2, H / 2
|
72 |
+
M = cv2.getRotationMatrix2D(center, degree, 1)
|
73 |
+
out = cv2.warpAffine(img, M, (W, H), borderValue=fill)
|
74 |
+
return out
|
75 |
+
|
76 |
+
|
77 |
+
def solarize_func(img, thresh=128):
|
78 |
+
'''
|
79 |
+
same output as PIL.ImageOps.posterize
|
80 |
+
'''
|
81 |
+
table = np.array([el if el < thresh else 255 - el for el in range(256)])
|
82 |
+
table = table.clip(0, 255).astype(np.uint8)
|
83 |
+
out = table[img]
|
84 |
+
return out
|
85 |
+
|
86 |
+
|
87 |
+
def color_func(img, factor):
|
88 |
+
'''
|
89 |
+
same output as PIL.ImageEnhance.Color
|
90 |
+
'''
|
91 |
+
## implementation according to PIL definition, quite slow
|
92 |
+
# degenerate = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)[:, :, np.newaxis]
|
93 |
+
# out = blend(degenerate, img, factor)
|
94 |
+
# M = (
|
95 |
+
# np.eye(3) * factor
|
96 |
+
# + np.float32([0.114, 0.587, 0.299]).reshape(3, 1) * (1. - factor)
|
97 |
+
# )[np.newaxis, np.newaxis, :]
|
98 |
+
M = (
|
99 |
+
np.float32([
|
100 |
+
[0.886, -0.114, -0.114],
|
101 |
+
[-0.587, 0.413, -0.587],
|
102 |
+
[-0.299, -0.299, 0.701]]) * factor
|
103 |
+
+ np.float32([[0.114], [0.587], [0.299]])
|
104 |
+
)
|
105 |
+
out = np.matmul(img, M).clip(0, 255).astype(np.uint8)
|
106 |
+
return out
|
107 |
+
|
108 |
+
|
109 |
+
def contrast_func(img, factor):
|
110 |
+
"""
|
111 |
+
same output as PIL.ImageEnhance.Contrast
|
112 |
+
"""
|
113 |
+
mean = np.sum(np.mean(img, axis=(0, 1)) * np.array([0.114, 0.587, 0.299]))
|
114 |
+
table = np.array([(
|
115 |
+
el - mean) * factor + mean
|
116 |
+
for el in range(256)
|
117 |
+
]).clip(0, 255).astype(np.uint8)
|
118 |
+
out = table[img]
|
119 |
+
return out
|
120 |
+
|
121 |
+
|
122 |
+
def brightness_func(img, factor):
|
123 |
+
'''
|
124 |
+
same output as PIL.ImageEnhance.Contrast
|
125 |
+
'''
|
126 |
+
table = (np.arange(256, dtype=np.float32) * factor).clip(0, 255).astype(np.uint8)
|
127 |
+
out = table[img]
|
128 |
+
return out
|
129 |
+
|
130 |
+
|
131 |
+
def sharpness_func(img, factor):
|
132 |
+
'''
|
133 |
+
The differences the this result and PIL are all on the 4 boundaries, the center
|
134 |
+
areas are same
|
135 |
+
'''
|
136 |
+
kernel = np.ones((3, 3), dtype=np.float32)
|
137 |
+
kernel[1][1] = 5
|
138 |
+
kernel /= 13
|
139 |
+
degenerate = cv2.filter2D(img, -1, kernel)
|
140 |
+
if factor == 0.0:
|
141 |
+
out = degenerate
|
142 |
+
elif factor == 1.0:
|
143 |
+
out = img
|
144 |
+
else:
|
145 |
+
out = img.astype(np.float32)
|
146 |
+
degenerate = degenerate.astype(np.float32)[1:-1, 1:-1, :]
|
147 |
+
out[1:-1, 1:-1, :] = degenerate + factor * (out[1:-1, 1:-1, :] - degenerate)
|
148 |
+
out = out.astype(np.uint8)
|
149 |
+
return out
|
150 |
+
|
151 |
+
|
152 |
+
def shear_x_func(img, factor, fill=(0, 0, 0)):
|
153 |
+
H, W = img.shape[0], img.shape[1]
|
154 |
+
M = np.float32([[1, factor, 0], [0, 1, 0]])
|
155 |
+
out = cv2.warpAffine(img, M, (W, H), borderValue=fill, flags=cv2.INTER_LINEAR).astype(np.uint8)
|
156 |
+
return out
|
157 |
+
|
158 |
+
|
159 |
+
def translate_x_func(img, offset, fill=(0, 0, 0)):
|
160 |
+
'''
|
161 |
+
same output as PIL.Image.transform
|
162 |
+
'''
|
163 |
+
H, W = img.shape[0], img.shape[1]
|
164 |
+
M = np.float32([[1, 0, -offset], [0, 1, 0]])
|
165 |
+
out = cv2.warpAffine(img, M, (W, H), borderValue=fill, flags=cv2.INTER_LINEAR).astype(np.uint8)
|
166 |
+
return out
|
167 |
+
|
168 |
+
|
169 |
+
def translate_y_func(img, offset, fill=(0, 0, 0)):
|
170 |
+
'''
|
171 |
+
same output as PIL.Image.transform
|
172 |
+
'''
|
173 |
+
H, W = img.shape[0], img.shape[1]
|
174 |
+
M = np.float32([[1, 0, 0], [0, 1, -offset]])
|
175 |
+
out = cv2.warpAffine(img, M, (W, H), borderValue=fill, flags=cv2.INTER_LINEAR).astype(np.uint8)
|
176 |
+
return out
|
177 |
+
|
178 |
+
|
179 |
+
def posterize_func(img, bits):
|
180 |
+
'''
|
181 |
+
same output as PIL.ImageOps.posterize
|
182 |
+
'''
|
183 |
+
out = np.bitwise_and(img, np.uint8(255 << (8 - bits)))
|
184 |
+
return out
|
185 |
+
|
186 |
+
|
187 |
+
def shear_y_func(img, factor, fill=(0, 0, 0)):
|
188 |
+
H, W = img.shape[0], img.shape[1]
|
189 |
+
M = np.float32([[1, 0, 0], [factor, 1, 0]])
|
190 |
+
out = cv2.warpAffine(img, M, (W, H), borderValue=fill, flags=cv2.INTER_LINEAR).astype(np.uint8)
|
191 |
+
return out
|
192 |
+
|
193 |
+
|
194 |
+
def cutout_func(img, pad_size, replace=(0, 0, 0)):
|
195 |
+
replace = np.array(replace, dtype=np.uint8)
|
196 |
+
H, W = img.shape[0], img.shape[1]
|
197 |
+
rh, rw = np.random.random(2)
|
198 |
+
pad_size = pad_size // 2
|
199 |
+
ch, cw = int(rh * H), int(rw * W)
|
200 |
+
x1, x2 = max(ch - pad_size, 0), min(ch + pad_size, H)
|
201 |
+
y1, y2 = max(cw - pad_size, 0), min(cw + pad_size, W)
|
202 |
+
out = img.copy()
|
203 |
+
out[x1:x2, y1:y2, :] = replace
|
204 |
+
return out
|
205 |
+
|
206 |
+
|
207 |
+
### level to args
|
208 |
+
def enhance_level_to_args(MAX_LEVEL):
|
209 |
+
def level_to_args(level):
|
210 |
+
return ((level / MAX_LEVEL) * 1.8 + 0.1,)
|
211 |
+
return level_to_args
|
212 |
+
|
213 |
+
|
214 |
+
def shear_level_to_args(MAX_LEVEL, replace_value):
|
215 |
+
def level_to_args(level):
|
216 |
+
level = (level / MAX_LEVEL) * 0.3
|
217 |
+
if np.random.random() > 0.5: level = -level
|
218 |
+
return (level, replace_value)
|
219 |
+
|
220 |
+
return level_to_args
|
221 |
+
|
222 |
+
|
223 |
+
def translate_level_to_args(translate_const, MAX_LEVEL, replace_value):
|
224 |
+
def level_to_args(level):
|
225 |
+
level = (level / MAX_LEVEL) * float(translate_const)
|
226 |
+
if np.random.random() > 0.5: level = -level
|
227 |
+
return (level, replace_value)
|
228 |
+
|
229 |
+
return level_to_args
|
230 |
+
|
231 |
+
|
232 |
+
def cutout_level_to_args(cutout_const, MAX_LEVEL, replace_value):
|
233 |
+
def level_to_args(level):
|
234 |
+
level = int((level / MAX_LEVEL) * cutout_const)
|
235 |
+
return (level, replace_value)
|
236 |
+
|
237 |
+
return level_to_args
|
238 |
+
|
239 |
+
|
240 |
+
def solarize_level_to_args(MAX_LEVEL):
|
241 |
+
def level_to_args(level):
|
242 |
+
level = int((level / MAX_LEVEL) * 256)
|
243 |
+
return (level, )
|
244 |
+
return level_to_args
|
245 |
+
|
246 |
+
|
247 |
+
def none_level_to_args(level):
|
248 |
+
return ()
|
249 |
+
|
250 |
+
|
251 |
+
def posterize_level_to_args(MAX_LEVEL):
|
252 |
+
def level_to_args(level):
|
253 |
+
level = int((level / MAX_LEVEL) * 4)
|
254 |
+
return (level, )
|
255 |
+
return level_to_args
|
256 |
+
|
257 |
+
|
258 |
+
def rotate_level_to_args(MAX_LEVEL, replace_value):
|
259 |
+
def level_to_args(level):
|
260 |
+
level = (level / MAX_LEVEL) * 30
|
261 |
+
if np.random.random() < 0.5:
|
262 |
+
level = -level
|
263 |
+
return (level, replace_value)
|
264 |
+
|
265 |
+
return level_to_args
|
266 |
+
|
267 |
+
|
268 |
+
func_dict = {
|
269 |
+
'Identity': identity_func,
|
270 |
+
'AutoContrast': autocontrast_func,
|
271 |
+
'Equalize': equalize_func,
|
272 |
+
'Rotate': rotate_func,
|
273 |
+
'Solarize': solarize_func,
|
274 |
+
'Color': color_func,
|
275 |
+
'Contrast': contrast_func,
|
276 |
+
'Brightness': brightness_func,
|
277 |
+
'Sharpness': sharpness_func,
|
278 |
+
'ShearX': shear_x_func,
|
279 |
+
'TranslateX': translate_x_func,
|
280 |
+
'TranslateY': translate_y_func,
|
281 |
+
'Posterize': posterize_func,
|
282 |
+
'ShearY': shear_y_func,
|
283 |
+
}
|
284 |
+
|
285 |
+
translate_const = 10
|
286 |
+
MAX_LEVEL = 10
|
287 |
+
replace_value = (128, 128, 128)
|
288 |
+
arg_dict = {
|
289 |
+
'Identity': none_level_to_args,
|
290 |
+
'AutoContrast': none_level_to_args,
|
291 |
+
'Equalize': none_level_to_args,
|
292 |
+
'Rotate': rotate_level_to_args(MAX_LEVEL, replace_value),
|
293 |
+
'Solarize': solarize_level_to_args(MAX_LEVEL),
|
294 |
+
'Color': enhance_level_to_args(MAX_LEVEL),
|
295 |
+
'Contrast': enhance_level_to_args(MAX_LEVEL),
|
296 |
+
'Brightness': enhance_level_to_args(MAX_LEVEL),
|
297 |
+
'Sharpness': enhance_level_to_args(MAX_LEVEL),
|
298 |
+
'ShearX': shear_level_to_args(MAX_LEVEL, replace_value),
|
299 |
+
'TranslateX': translate_level_to_args(
|
300 |
+
translate_const, MAX_LEVEL, replace_value
|
301 |
+
),
|
302 |
+
'TranslateY': translate_level_to_args(
|
303 |
+
translate_const, MAX_LEVEL, replace_value
|
304 |
+
),
|
305 |
+
'Posterize': posterize_level_to_args(MAX_LEVEL),
|
306 |
+
'ShearY': shear_level_to_args(MAX_LEVEL, replace_value),
|
307 |
+
}
|
308 |
+
|
309 |
+
|
310 |
+
class RandomAugment(object):
|
311 |
+
|
312 |
+
def __init__(self, N=2, M=10, isPIL=False, augs=[]):
|
313 |
+
self.N = N
|
314 |
+
self.M = M
|
315 |
+
self.isPIL = isPIL
|
316 |
+
if augs:
|
317 |
+
self.augs = augs
|
318 |
+
else:
|
319 |
+
self.augs = list(arg_dict.keys())
|
320 |
+
|
321 |
+
def get_random_ops(self):
|
322 |
+
sampled_ops = np.random.choice(self.augs, self.N)
|
323 |
+
return [(op, 0.5, self.M) for op in sampled_ops]
|
324 |
+
|
325 |
+
def __call__(self, img):
|
326 |
+
if self.isPIL:
|
327 |
+
img = np.array(img)
|
328 |
+
ops = self.get_random_ops()
|
329 |
+
for name, prob, level in ops:
|
330 |
+
if np.random.random() > prob:
|
331 |
+
continue
|
332 |
+
args = arg_dict[name](level)
|
333 |
+
img = func_dict[name](img, *args)
|
334 |
+
return img
|
335 |
+
|
336 |
+
|
337 |
+
if __name__ == '__main__':
|
338 |
+
a = RandomAugment()
|
339 |
+
img = np.random.randn(32, 32, 3)
|
340 |
+
a(img)
|
repositories/BLIP/utils.py
ADDED
@@ -0,0 +1,278 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
def cosine_lr_schedule(optimizer, epoch, max_epoch, init_lr, min_lr):
|
3 |
+
"""Decay the learning rate"""
|
4 |
+
lr = (init_lr - min_lr) * 0.5 * (1. + math.cos(math.pi * epoch / max_epoch)) + min_lr
|
5 |
+
for param_group in optimizer.param_groups:
|
6 |
+
param_group['lr'] = lr
|
7 |
+
|
8 |
+
def warmup_lr_schedule(optimizer, step, max_step, init_lr, max_lr):
|
9 |
+
"""Warmup the learning rate"""
|
10 |
+
lr = min(max_lr, init_lr + (max_lr - init_lr) * step / max_step)
|
11 |
+
for param_group in optimizer.param_groups:
|
12 |
+
param_group['lr'] = lr
|
13 |
+
|
14 |
+
def step_lr_schedule(optimizer, epoch, init_lr, min_lr, decay_rate):
|
15 |
+
"""Decay the learning rate"""
|
16 |
+
lr = max(min_lr, init_lr * (decay_rate**epoch))
|
17 |
+
for param_group in optimizer.param_groups:
|
18 |
+
param_group['lr'] = lr
|
19 |
+
|
20 |
+
import numpy as np
|
21 |
+
import io
|
22 |
+
import os
|
23 |
+
import time
|
24 |
+
from collections import defaultdict, deque
|
25 |
+
import datetime
|
26 |
+
|
27 |
+
import torch
|
28 |
+
import torch.distributed as dist
|
29 |
+
|
30 |
+
class SmoothedValue(object):
|
31 |
+
"""Track a series of values and provide access to smoothed values over a
|
32 |
+
window or the global series average.
|
33 |
+
"""
|
34 |
+
|
35 |
+
def __init__(self, window_size=20, fmt=None):
|
36 |
+
if fmt is None:
|
37 |
+
fmt = "{median:.4f} ({global_avg:.4f})"
|
38 |
+
self.deque = deque(maxlen=window_size)
|
39 |
+
self.total = 0.0
|
40 |
+
self.count = 0
|
41 |
+
self.fmt = fmt
|
42 |
+
|
43 |
+
def update(self, value, n=1):
|
44 |
+
self.deque.append(value)
|
45 |
+
self.count += n
|
46 |
+
self.total += value * n
|
47 |
+
|
48 |
+
def synchronize_between_processes(self):
|
49 |
+
"""
|
50 |
+
Warning: does not synchronize the deque!
|
51 |
+
"""
|
52 |
+
if not is_dist_avail_and_initialized():
|
53 |
+
return
|
54 |
+
t = torch.tensor([self.count, self.total], dtype=torch.float64, device='cuda')
|
55 |
+
dist.barrier()
|
56 |
+
dist.all_reduce(t)
|
57 |
+
t = t.tolist()
|
58 |
+
self.count = int(t[0])
|
59 |
+
self.total = t[1]
|
60 |
+
|
61 |
+
@property
|
62 |
+
def median(self):
|
63 |
+
d = torch.tensor(list(self.deque))
|
64 |
+
return d.median().item()
|
65 |
+
|
66 |
+
@property
|
67 |
+
def avg(self):
|
68 |
+
d = torch.tensor(list(self.deque), dtype=torch.float32)
|
69 |
+
return d.mean().item()
|
70 |
+
|
71 |
+
@property
|
72 |
+
def global_avg(self):
|
73 |
+
return self.total / self.count
|
74 |
+
|
75 |
+
@property
|
76 |
+
def max(self):
|
77 |
+
return max(self.deque)
|
78 |
+
|
79 |
+
@property
|
80 |
+
def value(self):
|
81 |
+
return self.deque[-1]
|
82 |
+
|
83 |
+
def __str__(self):
|
84 |
+
return self.fmt.format(
|
85 |
+
median=self.median,
|
86 |
+
avg=self.avg,
|
87 |
+
global_avg=self.global_avg,
|
88 |
+
max=self.max,
|
89 |
+
value=self.value)
|
90 |
+
|
91 |
+
|
92 |
+
class MetricLogger(object):
|
93 |
+
def __init__(self, delimiter="\t"):
|
94 |
+
self.meters = defaultdict(SmoothedValue)
|
95 |
+
self.delimiter = delimiter
|
96 |
+
|
97 |
+
def update(self, **kwargs):
|
98 |
+
for k, v in kwargs.items():
|
99 |
+
if isinstance(v, torch.Tensor):
|
100 |
+
v = v.item()
|
101 |
+
assert isinstance(v, (float, int))
|
102 |
+
self.meters[k].update(v)
|
103 |
+
|
104 |
+
def __getattr__(self, attr):
|
105 |
+
if attr in self.meters:
|
106 |
+
return self.meters[attr]
|
107 |
+
if attr in self.__dict__:
|
108 |
+
return self.__dict__[attr]
|
109 |
+
raise AttributeError("'{}' object has no attribute '{}'".format(
|
110 |
+
type(self).__name__, attr))
|
111 |
+
|
112 |
+
def __str__(self):
|
113 |
+
loss_str = []
|
114 |
+
for name, meter in self.meters.items():
|
115 |
+
loss_str.append(
|
116 |
+
"{}: {}".format(name, str(meter))
|
117 |
+
)
|
118 |
+
return self.delimiter.join(loss_str)
|
119 |
+
|
120 |
+
def global_avg(self):
|
121 |
+
loss_str = []
|
122 |
+
for name, meter in self.meters.items():
|
123 |
+
loss_str.append(
|
124 |
+
"{}: {:.4f}".format(name, meter.global_avg)
|
125 |
+
)
|
126 |
+
return self.delimiter.join(loss_str)
|
127 |
+
|
128 |
+
def synchronize_between_processes(self):
|
129 |
+
for meter in self.meters.values():
|
130 |
+
meter.synchronize_between_processes()
|
131 |
+
|
132 |
+
def add_meter(self, name, meter):
|
133 |
+
self.meters[name] = meter
|
134 |
+
|
135 |
+
def log_every(self, iterable, print_freq, header=None):
|
136 |
+
i = 0
|
137 |
+
if not header:
|
138 |
+
header = ''
|
139 |
+
start_time = time.time()
|
140 |
+
end = time.time()
|
141 |
+
iter_time = SmoothedValue(fmt='{avg:.4f}')
|
142 |
+
data_time = SmoothedValue(fmt='{avg:.4f}')
|
143 |
+
space_fmt = ':' + str(len(str(len(iterable)))) + 'd'
|
144 |
+
log_msg = [
|
145 |
+
header,
|
146 |
+
'[{0' + space_fmt + '}/{1}]',
|
147 |
+
'eta: {eta}',
|
148 |
+
'{meters}',
|
149 |
+
'time: {time}',
|
150 |
+
'data: {data}'
|
151 |
+
]
|
152 |
+
if torch.cuda.is_available():
|
153 |
+
log_msg.append('max mem: {memory:.0f}')
|
154 |
+
log_msg = self.delimiter.join(log_msg)
|
155 |
+
MB = 1024.0 * 1024.0
|
156 |
+
for obj in iterable:
|
157 |
+
data_time.update(time.time() - end)
|
158 |
+
yield obj
|
159 |
+
iter_time.update(time.time() - end)
|
160 |
+
if i % print_freq == 0 or i == len(iterable) - 1:
|
161 |
+
eta_seconds = iter_time.global_avg * (len(iterable) - i)
|
162 |
+
eta_string = str(datetime.timedelta(seconds=int(eta_seconds)))
|
163 |
+
if torch.cuda.is_available():
|
164 |
+
print(log_msg.format(
|
165 |
+
i, len(iterable), eta=eta_string,
|
166 |
+
meters=str(self),
|
167 |
+
time=str(iter_time), data=str(data_time),
|
168 |
+
memory=torch.cuda.max_memory_allocated() / MB))
|
169 |
+
else:
|
170 |
+
print(log_msg.format(
|
171 |
+
i, len(iterable), eta=eta_string,
|
172 |
+
meters=str(self),
|
173 |
+
time=str(iter_time), data=str(data_time)))
|
174 |
+
i += 1
|
175 |
+
end = time.time()
|
176 |
+
total_time = time.time() - start_time
|
177 |
+
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
|
178 |
+
print('{} Total time: {} ({:.4f} s / it)'.format(
|
179 |
+
header, total_time_str, total_time / len(iterable)))
|
180 |
+
|
181 |
+
|
182 |
+
class AttrDict(dict):
|
183 |
+
def __init__(self, *args, **kwargs):
|
184 |
+
super(AttrDict, self).__init__(*args, **kwargs)
|
185 |
+
self.__dict__ = self
|
186 |
+
|
187 |
+
|
188 |
+
def compute_acc(logits, label, reduction='mean'):
|
189 |
+
ret = (torch.argmax(logits, dim=1) == label).float()
|
190 |
+
if reduction == 'none':
|
191 |
+
return ret.detach()
|
192 |
+
elif reduction == 'mean':
|
193 |
+
return ret.mean().item()
|
194 |
+
|
195 |
+
def compute_n_params(model, return_str=True):
|
196 |
+
tot = 0
|
197 |
+
for p in model.parameters():
|
198 |
+
w = 1
|
199 |
+
for x in p.shape:
|
200 |
+
w *= x
|
201 |
+
tot += w
|
202 |
+
if return_str:
|
203 |
+
if tot >= 1e6:
|
204 |
+
return '{:.1f}M'.format(tot / 1e6)
|
205 |
+
else:
|
206 |
+
return '{:.1f}K'.format(tot / 1e3)
|
207 |
+
else:
|
208 |
+
return tot
|
209 |
+
|
210 |
+
def setup_for_distributed(is_master):
|
211 |
+
"""
|
212 |
+
This function disables printing when not in master process
|
213 |
+
"""
|
214 |
+
import builtins as __builtin__
|
215 |
+
builtin_print = __builtin__.print
|
216 |
+
|
217 |
+
def print(*args, **kwargs):
|
218 |
+
force = kwargs.pop('force', False)
|
219 |
+
if is_master or force:
|
220 |
+
builtin_print(*args, **kwargs)
|
221 |
+
|
222 |
+
__builtin__.print = print
|
223 |
+
|
224 |
+
|
225 |
+
def is_dist_avail_and_initialized():
|
226 |
+
if not dist.is_available():
|
227 |
+
return False
|
228 |
+
if not dist.is_initialized():
|
229 |
+
return False
|
230 |
+
return True
|
231 |
+
|
232 |
+
|
233 |
+
def get_world_size():
|
234 |
+
if not is_dist_avail_and_initialized():
|
235 |
+
return 1
|
236 |
+
return dist.get_world_size()
|
237 |
+
|
238 |
+
|
239 |
+
def get_rank():
|
240 |
+
if not is_dist_avail_and_initialized():
|
241 |
+
return 0
|
242 |
+
return dist.get_rank()
|
243 |
+
|
244 |
+
|
245 |
+
def is_main_process():
|
246 |
+
return get_rank() == 0
|
247 |
+
|
248 |
+
|
249 |
+
def save_on_master(*args, **kwargs):
|
250 |
+
if is_main_process():
|
251 |
+
torch.save(*args, **kwargs)
|
252 |
+
|
253 |
+
|
254 |
+
def init_distributed_mode(args):
|
255 |
+
if 'RANK' in os.environ and 'WORLD_SIZE' in os.environ:
|
256 |
+
args.rank = int(os.environ["RANK"])
|
257 |
+
args.world_size = int(os.environ['WORLD_SIZE'])
|
258 |
+
args.gpu = int(os.environ['LOCAL_RANK'])
|
259 |
+
elif 'SLURM_PROCID' in os.environ:
|
260 |
+
args.rank = int(os.environ['SLURM_PROCID'])
|
261 |
+
args.gpu = args.rank % torch.cuda.device_count()
|
262 |
+
else:
|
263 |
+
print('Not using distributed mode')
|
264 |
+
args.distributed = False
|
265 |
+
return
|
266 |
+
|
267 |
+
args.distributed = True
|
268 |
+
|
269 |
+
torch.cuda.set_device(args.gpu)
|
270 |
+
args.dist_backend = 'nccl'
|
271 |
+
print('| distributed init (rank {}, word {}): {}'.format(
|
272 |
+
args.rank, args.world_size, args.dist_url), flush=True)
|
273 |
+
torch.distributed.init_process_group(backend=args.dist_backend, init_method=args.dist_url,
|
274 |
+
world_size=args.world_size, rank=args.rank)
|
275 |
+
torch.distributed.barrier()
|
276 |
+
setup_for_distributed(args.rank == 0)
|
277 |
+
|
278 |
+
|
repositories/CodeFormer/.gitignore
ADDED
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
.vscode
|
2 |
+
|
3 |
+
# ignored files
|
4 |
+
version.py
|
5 |
+
|
6 |
+
# ignored files with suffix
|
7 |
+
*.html
|
8 |
+
# *.png
|
9 |
+
# *.jpeg
|
10 |
+
# *.jpg
|
11 |
+
*.pt
|
12 |
+
*.gif
|
13 |
+
*.pth
|
14 |
+
*.dat
|
15 |
+
*.zip
|
16 |
+
|
17 |
+
# template
|
18 |
+
|
19 |
+
# Byte-compiled / optimized / DLL files
|
20 |
+
__pycache__/
|
21 |
+
*.py[cod]
|
22 |
+
*$py.class
|
23 |
+
|
24 |
+
# C extensions
|
25 |
+
*.so
|
26 |
+
|
27 |
+
# Distribution / packaging
|
28 |
+
.Python
|
29 |
+
build/
|
30 |
+
develop-eggs/
|
31 |
+
dist/
|
32 |
+
downloads/
|
33 |
+
eggs/
|
34 |
+
.eggs/
|
35 |
+
lib/
|
36 |
+
lib64/
|
37 |
+
parts/
|
38 |
+
sdist/
|
39 |
+
var/
|
40 |
+
wheels/
|
41 |
+
*.egg-info/
|
42 |
+
.installed.cfg
|
43 |
+
*.egg
|
44 |
+
MANIFEST
|
45 |
+
|
46 |
+
# PyInstaller
|
47 |
+
# Usually these files are written by a python script from a template
|
48 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
49 |
+
*.manifest
|
50 |
+
*.spec
|
51 |
+
|
52 |
+
# Installer logs
|
53 |
+
pip-log.txt
|
54 |
+
pip-delete-this-directory.txt
|
55 |
+
|
56 |
+
# Unit test / coverage reports
|
57 |
+
htmlcov/
|
58 |
+
.tox/
|
59 |
+
.coverage
|
60 |
+
.coverage.*
|
61 |
+
.cache
|
62 |
+
nosetests.xml
|
63 |
+
coverage.xml
|
64 |
+
*.cover
|
65 |
+
.hypothesis/
|
66 |
+
.pytest_cache/
|
67 |
+
|
68 |
+
# Translations
|
69 |
+
*.mo
|
70 |
+
*.pot
|
71 |
+
|
72 |
+
# Django stuff:
|
73 |
+
*.log
|
74 |
+
local_settings.py
|
75 |
+
db.sqlite3
|
76 |
+
|
77 |
+
# Flask stuff:
|
78 |
+
instance/
|
79 |
+
.webassets-cache
|
80 |
+
|
81 |
+
# Scrapy stuff:
|
82 |
+
.scrapy
|
83 |
+
|
84 |
+
# Sphinx documentation
|
85 |
+
docs/_build/
|
86 |
+
|
87 |
+
# PyBuilder
|
88 |
+
target/
|
89 |
+
|
90 |
+
# Jupyter Notebook
|
91 |
+
.ipynb_checkpoints
|
92 |
+
|
93 |
+
# pyenv
|
94 |
+
.python-version
|
95 |
+
|
96 |
+
# celery beat schedule file
|
97 |
+
celerybeat-schedule
|
98 |
+
|
99 |
+
# SageMath parsed files
|
100 |
+
*.sage.py
|
101 |
+
|
102 |
+
# Environments
|
103 |
+
.env
|
104 |
+
.venv
|
105 |
+
env/
|
106 |
+
venv/
|
107 |
+
ENV/
|
108 |
+
env.bak/
|
109 |
+
venv.bak/
|
110 |
+
|
111 |
+
# Spyder project settings
|
112 |
+
.spyderproject
|
113 |
+
.spyproject
|
114 |
+
|
115 |
+
# Rope project settings
|
116 |
+
.ropeproject
|
117 |
+
|
118 |
+
# mkdocs documentation
|
119 |
+
/site
|
120 |
+
|
121 |
+
# mypy
|
122 |
+
.mypy_cache/
|
123 |
+
|
124 |
+
# project
|
125 |
+
results/
|
126 |
+
dlib/
|
127 |
+
*_old*
|
128 |
+
|
repositories/CodeFormer/README.md
ADDED
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<p align="center">
|
2 |
+
<img src="assets/CodeFormer_logo.png" height=110>
|
3 |
+
</p>
|
4 |
+
|
5 |
+
## Towards Robust Blind Face Restoration with Codebook Lookup Transformer
|
6 |
+
|
7 |
+
[Paper](https://arxiv.org/abs/2206.11253) | [Project Page](https://shangchenzhou.com/projects/CodeFormer/) | [Video](https://youtu.be/d3VDpkXlueI)
|
8 |
+
|
9 |
+
|
10 |
+
<a href="https://colab.research.google.com/drive/1m52PNveE4PBhYrecj34cnpEeiHcC5LTb?usp=sharing"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="google colab logo"></a> [![Replicate](https://img.shields.io/badge/Demo-%F0%9F%9A%80%20Replicate-blue)](https://replicate.com/sczhou/codeformer) ![visitors](https://visitor-badge.glitch.me/badge?page_id=sczhou/CodeFormer)
|
11 |
+
|
12 |
+
[Shangchen Zhou](https://shangchenzhou.com/), [Kelvin C.K. Chan](https://ckkelvinchan.github.io/), [Chongyi Li](https://li-chongyi.github.io/), [Chen Change Loy](https://www.mmlab-ntu.com/person/ccloy/)
|
13 |
+
|
14 |
+
S-Lab, Nanyang Technological University
|
15 |
+
|
16 |
+
<img src="assets/network.jpg" width="800px"/>
|
17 |
+
|
18 |
+
|
19 |
+
:star: If CodeFormer is helpful to your images or projects, please help star this repo. Thanks! :hugs:
|
20 |
+
|
21 |
+
### Update
|
22 |
+
|
23 |
+
- **2022.09.09**: Integrated to [Replicate](https://replicate.com/). Try out online demo! [![Replicate](https://img.shields.io/badge/Demo-%F0%9F%9A%80%20Replicate-blue)](https://replicate.com/sczhou/codeformer)
|
24 |
+
- **2022.09.04**: Add face upsampling `--face_upsample` for high-resolution AI-created face enhancement.
|
25 |
+
- **2022.08.23**: Some modifications on face detection and fusion for better AI-created face enhancement.
|
26 |
+
- **2022.08.07**: Integrate [Real-ESRGAN](https://github.com/xinntao/Real-ESRGAN) to support background image enhancement.
|
27 |
+
- **2022.07.29**: Integrate new face detectors of `['RetinaFace'(default), 'YOLOv5']`.
|
28 |
+
- **2022.07.17**: Add Colab demo of CodeFormer. <a href="https://colab.research.google.com/drive/1m52PNveE4PBhYrecj34cnpEeiHcC5LTb?usp=sharing"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="google colab logo"></a>
|
29 |
+
- **2022.07.16**: Release inference code for face restoration. :blush:
|
30 |
+
- **2022.06.21**: This repo is created.
|
31 |
+
|
32 |
+
### TODO
|
33 |
+
- [ ] Add checkpoint for face inpainting
|
34 |
+
- [ ] Add training code and config files
|
35 |
+
- [x] ~~Add background image enhancement~~
|
36 |
+
|
37 |
+
#### Face Restoration
|
38 |
+
|
39 |
+
<img src="assets/restoration_result1.png" width="400px"/> <img src="assets/restoration_result2.png" width="400px"/>
|
40 |
+
<img src="assets/restoration_result3.png" width="400px"/> <img src="assets/restoration_result4.png" width="400px"/>
|
41 |
+
|
42 |
+
#### Face Color Enhancement and Restoration
|
43 |
+
|
44 |
+
<img src="assets/color_enhancement_result1.png" width="400px"/> <img src="assets/color_enhancement_result2.png" width="400px"/>
|
45 |
+
|
46 |
+
#### Face Inpainting
|
47 |
+
|
48 |
+
<img src="assets/inpainting_result1.png" width="400px"/> <img src="assets/inpainting_result2.png" width="400px"/>
|
49 |
+
|
50 |
+
|
51 |
+
|
52 |
+
### Dependencies and Installation
|
53 |
+
|
54 |
+
- Pytorch >= 1.7.1
|
55 |
+
- CUDA >= 10.1
|
56 |
+
- Other required packages in `requirements.txt`
|
57 |
+
```
|
58 |
+
# git clone this repository
|
59 |
+
git clone https://github.com/sczhou/CodeFormer
|
60 |
+
cd CodeFormer
|
61 |
+
|
62 |
+
# create new anaconda env
|
63 |
+
conda create -n codeformer python=3.8 -y
|
64 |
+
conda activate codeformer
|
65 |
+
|
66 |
+
# install python dependencies
|
67 |
+
pip3 install -r requirements.txt
|
68 |
+
python basicsr/setup.py develop
|
69 |
+
```
|
70 |
+
<!-- conda install -c conda-forge dlib -->
|
71 |
+
|
72 |
+
### Quick Inference
|
73 |
+
|
74 |
+
##### Download Pre-trained Models:
|
75 |
+
Download the facelib pretrained models from [[Google Drive](https://drive.google.com/drive/folders/1b_3qwrzY_kTQh0-SnBoGBgOrJ_PLZSKm?usp=sharing) | [OneDrive](https://entuedu-my.sharepoint.com/:f:/g/personal/s200094_e_ntu_edu_sg/EvDxR7FcAbZMp_MA9ouq7aQB8XTppMb3-T0uGZ_2anI2mg?e=DXsJFo)] to the `weights/facelib` folder. You can manually download the pretrained models OR download by runing the following command.
|
76 |
+
```
|
77 |
+
python scripts/download_pretrained_models.py facelib
|
78 |
+
```
|
79 |
+
|
80 |
+
Download the CodeFormer pretrained models from [[Google Drive](https://drive.google.com/drive/folders/1CNNByjHDFt0b95q54yMVp6Ifo5iuU6QS?usp=sharing) | [OneDrive](https://entuedu-my.sharepoint.com/:f:/g/personal/s200094_e_ntu_edu_sg/EoKFj4wo8cdIn2-TY2IV6CYBhZ0pIG4kUOeHdPR_A5nlbg?e=AO8UN9)] to the `weights/CodeFormer` folder. You can manually download the pretrained models OR download by runing the following command.
|
81 |
+
```
|
82 |
+
python scripts/download_pretrained_models.py CodeFormer
|
83 |
+
```
|
84 |
+
|
85 |
+
##### Prepare Testing Data:
|
86 |
+
You can put the testing images in the `inputs/TestWhole` folder. If you would like to test on cropped and aligned faces, you can put them in the `inputs/cropped_faces` folder.
|
87 |
+
|
88 |
+
|
89 |
+
##### Testing on Face Restoration:
|
90 |
+
```
|
91 |
+
# For cropped and aligned faces
|
92 |
+
python inference_codeformer.py --w 0.5 --has_aligned --test_path [input folder]
|
93 |
+
|
94 |
+
# For the whole images
|
95 |
+
# Add '--bg_upsampler realesrgan' to enhance the background regions with Real-ESRGAN
|
96 |
+
# Add '--face_upsample' to further upsample restorated face with Real-ESRGAN
|
97 |
+
python inference_codeformer.py --w 0.7 --test_path [input folder]
|
98 |
+
```
|
99 |
+
|
100 |
+
NOTE that *w* is in [0, 1]. Generally, smaller *w* tends to produce a higher-quality result, while larger *w* yields a higher-fidelity result.
|
101 |
+
|
102 |
+
The results will be saved in the `results` folder.
|
103 |
+
|
104 |
+
### Citation
|
105 |
+
If our work is useful for your research, please consider citing:
|
106 |
+
|
107 |
+
@article{zhou2022codeformer,
|
108 |
+
author = {Zhou, Shangchen and Chan, Kelvin C.K. and Li, Chongyi and Loy, Chen Change},
|
109 |
+
title = {Towards Robust Blind Face Restoration with Codebook Lookup TransFormer},
|
110 |
+
journal = {arXiv preprint arXiv:2206.11253},
|
111 |
+
year = {2022}
|
112 |
+
}
|
113 |
+
|
114 |
+
### License
|
115 |
+
|
116 |
+
<a rel="license" href="http://creativecommons.org/licenses/by-nc-sa/4.0/"><img alt="Creative Commons License" style="border-width:0" src="https://i.creativecommons.org/l/by-nc-sa/4.0/88x31.png" /></a><br />This work is licensed under a <a rel="license" href="http://creativecommons.org/licenses/by-nc-sa/4.0/">Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License</a>.
|
117 |
+
|
118 |
+
### Acknowledgement
|
119 |
+
|
120 |
+
This project is based on [BasicSR](https://github.com/XPixelGroup/BasicSR). We also borrow some codes from [Unleashing Transformers](https://github.com/samb-t/unleashing-transformers), [YOLOv5-face](https://github.com/deepcam-cn/yolov5-face), and [FaceXLib](https://github.com/xinntao/facexlib). Thanks for their awesome works.
|
121 |
+
|
122 |
+
### Contact
|
123 |
+
If you have any question, please feel free to reach me out at `[email protected]`.
|
repositories/CodeFormer/assets/CodeFormer_logo.png
ADDED
repositories/CodeFormer/assets/color_enhancement_result1.png
ADDED
repositories/CodeFormer/assets/color_enhancement_result2.png
ADDED
repositories/CodeFormer/assets/inpainting_result1.png
ADDED
repositories/CodeFormer/assets/inpainting_result2.png
ADDED
repositories/CodeFormer/assets/network.jpg
ADDED
repositories/CodeFormer/assets/restoration_result1.png
ADDED
repositories/CodeFormer/assets/restoration_result2.png
ADDED
repositories/CodeFormer/assets/restoration_result3.png
ADDED