File size: 27,441 Bytes
9992441 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 |
# LoRA network module
# reference:
# https://github.com/microsoft/LoRA/blob/main/loralib/layers.py
# https://github.com/cloneofsimo/lora/blob/master/lora_diffusion/lora.py
import copy
import math
import re
from typing import NamedTuple
import torch
class LoRAInfo(NamedTuple):
lora_name: str
module_name: str
module: torch.nn.Module
multiplier: float
dim: int
alpha: float
class LoRAModule(torch.nn.Module):
"""
replaces forward method of the original Linear, instead of replacing the original Linear module.
"""
def __init__(self, lora_name, org_module: torch.nn.Module, multiplier=1.0, lora_dim=4, alpha=1):
"""if alpha == 0 or None, alpha is rank (no scaling)."""
super().__init__()
self.lora_name = lora_name
self.lora_dim = lora_dim
if org_module.__class__.__name__ == "Conv2d":
in_dim = org_module.in_channels
out_dim = org_module.out_channels
# self.lora_dim = min(self.lora_dim, in_dim, out_dim)
# if self.lora_dim != lora_dim:
# print(f"{lora_name} dim (rank) is changed to: {self.lora_dim}")
kernel_size = org_module.kernel_size
stride = org_module.stride
padding = org_module.padding
self.lora_down = torch.nn.Conv2d(in_dim, self.lora_dim, kernel_size, stride, padding, bias=False)
self.lora_up = torch.nn.Conv2d(self.lora_dim, out_dim, (1, 1), (1, 1), bias=False)
else:
in_dim = org_module.in_features
out_dim = org_module.out_features
self.lora_down = torch.nn.Linear(in_dim, self.lora_dim, bias=False)
self.lora_up = torch.nn.Linear(self.lora_dim, out_dim, bias=False)
if type(alpha) == torch.Tensor:
alpha = alpha.detach().float().numpy() # without casting, bf16 causes error
alpha = self.lora_dim if alpha is None or alpha == 0 else alpha
self.scale = alpha / self.lora_dim
self.register_buffer("alpha", torch.tensor(alpha)) # 定数として扱える
# same as microsoft's
torch.nn.init.kaiming_uniform_(self.lora_down.weight, a=math.sqrt(5))
torch.nn.init.zeros_(self.lora_up.weight)
self.multiplier = multiplier
self.org_forward = org_module.forward
self.org_module = org_module # remove in applying
self.mask_dic = None
self.mask = None
self.mask_area = -1
def apply_to(self):
self.org_forward = self.org_module.forward
self.org_module.forward = self.forward
del self.org_module
def set_mask_dic(self, mask_dic):
# called before every generation
# check this module is related to h,w (not context and time emb)
if "attn2_to_k" in self.lora_name or "attn2_to_v" in self.lora_name or "emb_layers" in self.lora_name:
# print(f"LoRA for context or time emb: {self.lora_name}")
self.mask_dic = None
else:
self.mask_dic = mask_dic
self.mask = None
def forward(self, x):
"""
may be cascaded.
"""
if self.mask_dic is None:
return self.org_forward(x) + self.lora_up(self.lora_down(x)) * self.multiplier * self.scale
# regional LoRA
# calculate lora and get size
lx = self.lora_up(self.lora_down(x))
if len(lx.size()) == 4: # b,c,h,w
area = lx.size()[2] * lx.size()[3]
else:
area = lx.size()[1] # b,seq,dim
if self.mask is None or self.mask_area != area:
# get mask
# print(self.lora_name, x.size(), lx.size(), area)
mask = self.mask_dic[area]
if len(lx.size()) == 3:
mask = torch.reshape(mask, (1, -1, 1))
self.mask = mask
self.mask_area = area
return self.org_forward(x) + lx * self.multiplier * self.scale * self.mask
def create_network_and_apply_compvis(du_state_dict, multiplier_tenc, multiplier_unet, text_encoder, unet, **kwargs):
# get device and dtype from unet
for module in unet.modules():
if module.__class__.__name__ == "Linear":
param: torch.nn.Parameter = module.weight
# device = param.device
dtype = param.dtype
break
# get dims (rank) and alpha from state dict
modules_dim = {}
modules_alpha = {}
for key, value in du_state_dict.items():
if "." not in key:
continue
lora_name = key.split(".")[0]
if "alpha" in key:
modules_alpha[lora_name] = float(value.detach().to(torch.float).cpu().numpy())
elif "lora_down" in key:
dim = value.size()[0]
modules_dim[lora_name] = dim
# support old LoRA without alpha
for key in modules_dim.keys():
if key not in modules_alpha:
modules_alpha[key] = modules_dim[key]
print(
f"dimension: {set(modules_dim.values())}, alpha: {set(modules_alpha.values())}, multiplier_unet: {multiplier_unet}, multiplier_tenc: {multiplier_tenc}"
)
# if network_dim is None:
# print(f"The selected model is not LoRA or not trained by `sd-scripts`?")
# network_dim = 4
# network_alpha = 1
# create, apply and load weights
network = LoRANetworkCompvis(text_encoder, unet, multiplier_tenc, multiplier_unet, modules_dim, modules_alpha)
state_dict = network.apply_lora_modules(du_state_dict) # some weights are applied to text encoder
network.to(dtype) # with this, if error comes from next line, the model will be used
info = network.load_state_dict(state_dict, strict=False)
# remove redundant warnings
if len(info.missing_keys) > 4:
missing_keys = []
alpha_count = 0
for key in info.missing_keys:
if "alpha" not in key:
missing_keys.append(key)
else:
if alpha_count == 0:
missing_keys.append(key)
alpha_count += 1
if alpha_count > 1:
missing_keys.append(
f"... and {alpha_count-1} alphas. The model doesn't have alpha, use dim (rannk) as alpha. You can ignore this message."
)
info = torch.nn.modules.module._IncompatibleKeys(missing_keys, info.unexpected_keys)
return network, info
class LoRANetworkCompvis(torch.nn.Module):
# UNET_TARGET_REPLACE_MODULE = ["Transformer2DModel", "Attention"]
# TEXT_ENCODER_TARGET_REPLACE_MODULE = ["CLIPAttention", "CLIPMLP"]
UNET_TARGET_REPLACE_MODULE = ["SpatialTransformer", "ResBlock", "Downsample", "Upsample"] # , "Attention"]
TEXT_ENCODER_TARGET_REPLACE_MODULE = ["ResidualAttentionBlock", "CLIPAttention", "CLIPMLP"]
LORA_PREFIX_UNET = "lora_unet"
LORA_PREFIX_TEXT_ENCODER = "lora_te"
@classmethod
def convert_diffusers_name_to_compvis(cls, v2, du_name):
"""
convert diffusers's LoRA name to CompVis
"""
cv_name = None
if "lora_unet_" in du_name:
m = re.search(r"_down_blocks_(\d+)_attentions_(\d+)_(.+)", du_name)
if m:
du_block_index = int(m.group(1))
du_attn_index = int(m.group(2))
du_suffix = m.group(3)
cv_index = 1 + du_block_index * 3 + du_attn_index # 1,2, 4,5, 7,8
cv_name = f"lora_unet_input_blocks_{cv_index}_1_{du_suffix}"
return cv_name
m = re.search(r"_mid_block_attentions_(\d+)_(.+)", du_name)
if m:
du_suffix = m.group(2)
cv_name = f"lora_unet_middle_block_1_{du_suffix}"
return cv_name
m = re.search(r"_up_blocks_(\d+)_attentions_(\d+)_(.+)", du_name)
if m:
du_block_index = int(m.group(1))
du_attn_index = int(m.group(2))
du_suffix = m.group(3)
cv_index = du_block_index * 3 + du_attn_index # 3,4,5, 6,7,8, 9,10,11
cv_name = f"lora_unet_output_blocks_{cv_index}_1_{du_suffix}"
return cv_name
m = re.search(r"_down_blocks_(\d+)_resnets_(\d+)_(.+)", du_name)
if m:
du_block_index = int(m.group(1))
du_res_index = int(m.group(2))
du_suffix = m.group(3)
cv_suffix = {
"conv1": "in_layers_2",
"conv2": "out_layers_3",
"time_emb_proj": "emb_layers_1",
"conv_shortcut": "skip_connection",
}[du_suffix]
cv_index = 1 + du_block_index * 3 + du_res_index # 1,2, 4,5, 7,8
cv_name = f"lora_unet_input_blocks_{cv_index}_0_{cv_suffix}"
return cv_name
m = re.search(r"_down_blocks_(\d+)_downsamplers_0_conv", du_name)
if m:
block_index = int(m.group(1))
cv_index = 3 + block_index * 3
cv_name = f"lora_unet_input_blocks_{cv_index}_0_op"
return cv_name
m = re.search(r"_mid_block_resnets_(\d+)_(.+)", du_name)
if m:
index = int(m.group(1))
du_suffix = m.group(2)
cv_suffix = {
"conv1": "in_layers_2",
"conv2": "out_layers_3",
"time_emb_proj": "emb_layers_1",
"conv_shortcut": "skip_connection",
}[du_suffix]
cv_name = f"lora_unet_middle_block_{index*2}_{cv_suffix}"
return cv_name
m = re.search(r"_up_blocks_(\d+)_resnets_(\d+)_(.+)", du_name)
if m:
du_block_index = int(m.group(1))
du_res_index = int(m.group(2))
du_suffix = m.group(3)
cv_suffix = {
"conv1": "in_layers_2",
"conv2": "out_layers_3",
"time_emb_proj": "emb_layers_1",
"conv_shortcut": "skip_connection",
}[du_suffix]
cv_index = du_block_index * 3 + du_res_index # 1,2, 4,5, 7,8
cv_name = f"lora_unet_output_blocks_{cv_index}_0_{cv_suffix}"
return cv_name
m = re.search(r"_up_blocks_(\d+)_upsamplers_0_conv", du_name)
if m:
block_index = int(m.group(1))
cv_index = block_index * 3 + 2
cv_name = f"lora_unet_output_blocks_{cv_index}_{bool(block_index)+1}_conv"
return cv_name
elif "lora_te_" in du_name:
m = re.search(r"_model_encoder_layers_(\d+)_(.+)", du_name)
if m:
du_block_index = int(m.group(1))
du_suffix = m.group(2)
cv_index = du_block_index
if v2:
if "mlp_fc1" in du_suffix:
cv_name = (
f"lora_te_wrapped_model_transformer_resblocks_{cv_index}_{du_suffix.replace('mlp_fc1', 'mlp_c_fc')}"
)
elif "mlp_fc2" in du_suffix:
cv_name = (
f"lora_te_wrapped_model_transformer_resblocks_{cv_index}_{du_suffix.replace('mlp_fc2', 'mlp_c_proj')}"
)
elif "self_attn":
# handled later
cv_name = f"lora_te_wrapped_model_transformer_resblocks_{cv_index}_{du_suffix.replace('self_attn', 'attn')}"
else:
cv_name = f"lora_te_wrapped_transformer_text_model_encoder_layers_{cv_index}_{du_suffix}"
assert cv_name is not None, f"conversion failed: {du_name}. the model may not be trained by `sd-scripts`."
return cv_name
@classmethod
def convert_state_dict_name_to_compvis(cls, v2, state_dict):
"""
convert keys in state dict to load it by load_state_dict
"""
new_sd = {}
for key, value in state_dict.items():
tokens = key.split(".")
compvis_name = LoRANetworkCompvis.convert_diffusers_name_to_compvis(v2, tokens[0])
new_key = compvis_name + "." + ".".join(tokens[1:])
new_sd[new_key] = value
return new_sd
def __init__(self, text_encoder, unet, multiplier_tenc=1.0, multiplier_unet=1.0, modules_dim=None, modules_alpha=None) -> None:
super().__init__()
self.multiplier_unet = multiplier_unet
self.multiplier_tenc = multiplier_tenc
self.latest_mask_info = None
# check v1 or v2
self.v2 = False
for _, module in text_encoder.named_modules():
for _, child_module in module.named_modules():
if child_module.__class__.__name__ == "MultiheadAttention":
self.v2 = True
break
if self.v2:
break
# convert lora name to CompVis and get dim and alpha
comp_vis_loras_dim_alpha = {}
for du_lora_name in modules_dim.keys():
dim = modules_dim[du_lora_name]
alpha = modules_alpha[du_lora_name]
comp_vis_lora_name = LoRANetworkCompvis.convert_diffusers_name_to_compvis(self.v2, du_lora_name)
comp_vis_loras_dim_alpha[comp_vis_lora_name] = (dim, alpha)
# create module instances
def create_modules(prefix, root_module: torch.nn.Module, target_replace_modules, multiplier):
loras = []
replaced_modules = []
for name, module in root_module.named_modules():
if module.__class__.__name__ in target_replace_modules:
for child_name, child_module in module.named_modules():
# enumerate all Linear and Conv2d
if child_module.__class__.__name__ == "Linear" or child_module.__class__.__name__ == "Conv2d":
lora_name = prefix + "." + name + "." + child_name
lora_name = lora_name.replace(".", "_")
if "_resblocks_23_" in lora_name: # ignore last block in StabilityAi Text Encoder
break
if lora_name not in comp_vis_loras_dim_alpha:
continue
dim, alpha = comp_vis_loras_dim_alpha[lora_name]
lora = LoRAModule(lora_name, child_module, multiplier, dim, alpha)
loras.append(lora)
replaced_modules.append(child_module)
elif child_module.__class__.__name__ == "MultiheadAttention":
# make four modules: not replacing forward method but merge weights later
for suffix in ["q_proj", "k_proj", "v_proj", "out_proj"]:
module_name = prefix + "." + name + "." + child_name # ~.attn
module_name = module_name.replace(".", "_")
if "_resblocks_23_" in module_name: # ignore last block in StabilityAi Text Encoder
break
lora_name = module_name + "_" + suffix
if lora_name not in comp_vis_loras_dim_alpha:
continue
dim, alpha = comp_vis_loras_dim_alpha[lora_name]
lora_info = LoRAInfo(lora_name, module_name, child_module, multiplier, dim, alpha)
loras.append(lora_info)
replaced_modules.append(child_module)
return loras, replaced_modules
self.text_encoder_loras, te_rep_modules = create_modules(
LoRANetworkCompvis.LORA_PREFIX_TEXT_ENCODER,
text_encoder,
LoRANetworkCompvis.TEXT_ENCODER_TARGET_REPLACE_MODULE,
self.multiplier_tenc,
)
print(f"create LoRA for Text Encoder: {len(self.text_encoder_loras)} modules.")
self.unet_loras, unet_rep_modules = create_modules(
LoRANetworkCompvis.LORA_PREFIX_UNET, unet, LoRANetworkCompvis.UNET_TARGET_REPLACE_MODULE, self.multiplier_unet
)
print(f"create LoRA for U-Net: {len(self.unet_loras)} modules.")
# make backup of original forward/weights, if multiple modules are applied, do in 1st module only
backed_up = False # messaging purpose only
for rep_module in te_rep_modules + unet_rep_modules:
if (
rep_module.__class__.__name__ == "MultiheadAttention"
): # multiple MHA modules are in list, prevent to backed up forward
if not hasattr(rep_module, "_lora_org_weights"):
# avoid updating of original weights. state_dict is reference to original weights
rep_module._lora_org_weights = copy.deepcopy(rep_module.state_dict())
backed_up = True
elif not hasattr(rep_module, "_lora_org_forward"):
rep_module._lora_org_forward = rep_module.forward
backed_up = True
if backed_up:
print("original forward/weights is backed up.")
# assertion
names = set()
for lora in self.text_encoder_loras + self.unet_loras:
assert lora.lora_name not in names, f"duplicated lora name: {lora.lora_name}"
names.add(lora.lora_name)
def restore(self, text_encoder, unet):
# restore forward/weights from property for all modules
restored = False # messaging purpose only
modules = []
modules.extend(text_encoder.modules())
modules.extend(unet.modules())
for module in modules:
if hasattr(module, "_lora_org_forward"):
module.forward = module._lora_org_forward
del module._lora_org_forward
restored = True
if hasattr(
module, "_lora_org_weights"
): # module doesn't have forward and weights at same time currently, but supports it for future changing
module.load_state_dict(module._lora_org_weights)
del module._lora_org_weights
restored = True
if restored:
print("original forward/weights is restored.")
def apply_lora_modules(self, du_state_dict):
# conversion 1st step: convert names in state_dict
state_dict = LoRANetworkCompvis.convert_state_dict_name_to_compvis(self.v2, du_state_dict)
# check state_dict has text_encoder or unet
weights_has_text_encoder = weights_has_unet = False
for key in state_dict.keys():
if key.startswith(LoRANetworkCompvis.LORA_PREFIX_TEXT_ENCODER):
weights_has_text_encoder = True
elif key.startswith(LoRANetworkCompvis.LORA_PREFIX_UNET):
weights_has_unet = True
if weights_has_text_encoder and weights_has_unet:
break
apply_text_encoder = weights_has_text_encoder
apply_unet = weights_has_unet
if apply_text_encoder:
print("enable LoRA for text encoder")
else:
self.text_encoder_loras = []
if apply_unet:
print("enable LoRA for U-Net")
else:
self.unet_loras = []
# add modules to network: this makes state_dict can be got from LoRANetwork
mha_loras = {}
for lora in self.text_encoder_loras + self.unet_loras:
if type(lora) == LoRAModule:
lora.apply_to() # ensure remove reference to original Linear: reference makes key of state_dict
self.add_module(lora.lora_name, lora)
else:
# SD2.x MultiheadAttention merge weights to MHA weights
lora_info: LoRAInfo = lora
if lora_info.module_name not in mha_loras:
mha_loras[lora_info.module_name] = {}
lora_dic = mha_loras[lora_info.module_name]
lora_dic[lora_info.lora_name] = lora_info
if len(lora_dic) == 4:
# calculate and apply
module = lora_info.module
module_name = lora_info.module_name
w_q_dw = state_dict.get(module_name + "_q_proj.lora_down.weight")
if w_q_dw is not None: # corresponding LoRA module exists
w_q_up = state_dict[module_name + "_q_proj.lora_up.weight"]
w_k_dw = state_dict[module_name + "_k_proj.lora_down.weight"]
w_k_up = state_dict[module_name + "_k_proj.lora_up.weight"]
w_v_dw = state_dict[module_name + "_v_proj.lora_down.weight"]
w_v_up = state_dict[module_name + "_v_proj.lora_up.weight"]
w_out_dw = state_dict[module_name + "_out_proj.lora_down.weight"]
w_out_up = state_dict[module_name + "_out_proj.lora_up.weight"]
q_lora_info = lora_dic[module_name + "_q_proj"]
k_lora_info = lora_dic[module_name + "_k_proj"]
v_lora_info = lora_dic[module_name + "_v_proj"]
out_lora_info = lora_dic[module_name + "_out_proj"]
sd = module.state_dict()
qkv_weight = sd["in_proj_weight"]
out_weight = sd["out_proj.weight"]
dev = qkv_weight.device
def merge_weights(l_info, weight, up_weight, down_weight):
# calculate in float
scale = l_info.alpha / l_info.dim
dtype = weight.dtype
weight = (
weight.float()
+ l_info.multiplier
* (up_weight.to(dev, dtype=torch.float) @ down_weight.to(dev, dtype=torch.float))
* scale
)
weight = weight.to(dtype)
return weight
q_weight, k_weight, v_weight = torch.chunk(qkv_weight, 3)
if q_weight.size()[1] == w_q_up.size()[0]:
q_weight = merge_weights(q_lora_info, q_weight, w_q_up, w_q_dw)
k_weight = merge_weights(k_lora_info, k_weight, w_k_up, w_k_dw)
v_weight = merge_weights(v_lora_info, v_weight, w_v_up, w_v_dw)
qkv_weight = torch.cat([q_weight, k_weight, v_weight])
out_weight = merge_weights(out_lora_info, out_weight, w_out_up, w_out_dw)
sd["in_proj_weight"] = qkv_weight.to(dev)
sd["out_proj.weight"] = out_weight.to(dev)
lora_info.module.load_state_dict(sd)
else:
# different dim, version mismatch
print(f"shape of weight is different: {module_name}. SD version may be different")
for t in ["q", "k", "v", "out"]:
del state_dict[f"{module_name}_{t}_proj.lora_down.weight"]
del state_dict[f"{module_name}_{t}_proj.lora_up.weight"]
alpha_key = f"{module_name}_{t}_proj.alpha"
if alpha_key in state_dict:
del state_dict[alpha_key]
else:
# corresponding weight not exists: version mismatch
pass
# conversion 2nd step: convert weight's shape (and handle wrapped)
state_dict = self.convert_state_dict_shape_to_compvis(state_dict)
return state_dict
def convert_state_dict_shape_to_compvis(self, state_dict):
# shape conversion
current_sd = self.state_dict() # to get target shape
wrapped = False
count = 0
for key in list(state_dict.keys()):
if key not in current_sd:
continue # might be error or another version
if "wrapped" in key:
wrapped = True
value: torch.Tensor = state_dict[key]
if value.size() != current_sd[key].size():
# print(f"convert weights shape: {key}, from: {value.size()}, {len(value.size())}")
count += 1
if len(value.size()) == 4:
value = value.squeeze(3).squeeze(2)
else:
value = value.unsqueeze(2).unsqueeze(3)
state_dict[key] = value
if tuple(value.size()) != tuple(current_sd[key].size()):
print(
f"weight's shape is different: {key} expected {current_sd[key].size()} found {value.size()}. SD version may be different"
)
del state_dict[key]
print(f"shapes for {count} weights are converted.")
# convert wrapped
if not wrapped:
print("remove 'wrapped' from keys")
for key in list(state_dict.keys()):
if "_wrapped_" in key:
new_key = key.replace("_wrapped_", "_")
state_dict[new_key] = state_dict[key]
del state_dict[key]
return state_dict
def set_mask(self, mask, height=None, width=None, hr_height=None, hr_width=None):
if mask is None:
# clear latest mask
# print("clear mask")
self.latest_mask_info = None
for lora in self.unet_loras:
lora.set_mask_dic(None)
return
# check mask image and h/w are same
if (
self.latest_mask_info is not None
and torch.equal(mask, self.latest_mask_info[0])
and (height, width, hr_height, hr_width) == self.latest_mask_info[1:]
):
# print("mask not changed")
return
self.latest_mask_info = (mask, height, width, hr_height, hr_width)
org_dtype = mask.dtype
if mask.dtype == torch.bfloat16:
mask = mask.to(torch.float)
mask_dic = {}
mask = mask.unsqueeze(0).unsqueeze(1) # b(1),c(1),h,w
def resize_add(mh, mw):
# print(mh, mw, mh * mw)
m = torch.nn.functional.interpolate(mask, (mh, mw), mode="bilinear") # doesn't work in bf16
m = m.to(org_dtype)
mask_dic[mh * mw] = m
for h, w in [(height, width), (hr_height, hr_width)]:
if not h or not w:
continue
h = h // 8
w = w // 8
for i in range(4):
resize_add(h, w)
if h % 2 == 1 or w % 2 == 1: # add extra shape if h/w is not divisible by 2
resize_add(h + h % 2, w + w % 2)
h = (h + 1) // 2
w = (w + 1) // 2
for lora in self.unet_loras:
lora.set_mask_dic(mask_dic)
return
|