File size: 29,548 Bytes
4c98977 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 |
from typing import *
import os, sys
import re
import glob
import torch
import torch.nn as nn
import torch.nn.functional as F
from modules import shared, devices, sd_models, errors
metadata_tags_order = {"ss_sd_model_name": 1, "ss_resolution": 2, "ss_clip_skip": 3, "ss_num_train_images": 10, "ss_tag_frequency": 20}
re_digits = re.compile(r"\d+")
re_x_proj = re.compile(r"(.*)_([qkv]_proj)$")
re_unet_conv_in = re.compile(r"lora_unet_conv_in(.+)")
re_unet_conv_out = re.compile(r"lora_unet_conv_out(.+)")
re_unet_time_embed = re.compile(r"lora_unet_time_embedding_linear_(\d+)(.+)")
re_unet_down_blocks = re.compile(r"lora_unet_down_blocks_(\d+)_attentions_(\d+)_(.+)")
re_unet_mid_blocks = re.compile(r"lora_unet_mid_block_attentions_(\d+)_(.+)")
re_unet_up_blocks = re.compile(r"lora_unet_up_blocks_(\d+)_attentions_(\d+)_(.+)")
re_unet_down_blocks_res = re.compile(r"lora_unet_down_blocks_(\d+)_resnets_(\d+)_(.+)")
re_unet_mid_blocks_res = re.compile(r"lora_unet_mid_block_resnets_(\d+)_(.+)")
re_unet_up_blocks_res = re.compile(r"lora_unet_up_blocks_(\d+)_resnets_(\d+)_(.+)")
re_unet_downsample = re.compile(r"lora_unet_down_blocks_(\d+)_downsamplers_0_conv(.+)")
re_unet_upsample = re.compile(r"lora_unet_up_blocks_(\d+)_upsamplers_0_conv(.+)")
re_text_block = re.compile(r"lora_te_text_model_encoder_layers_(\d+)_(.+)")
def convert_diffusers_name_to_compvis(key, is_sd2):
# I don't know why but some state dict has this kind of thing
key = key.replace('text_model_text_model', 'text_model')
def match(match_list, regex):
r = re.match(regex, key)
if not r:
return False
match_list.clear()
match_list.extend([int(x) if re.match(re_digits, x) else x for x in r.groups()])
return True
m = []
if match(m, re_unet_conv_in):
return f'diffusion_model_input_blocks_0_0{m[0]}'
if match(m, re_unet_conv_out):
return f'diffusion_model_out_2{m[0]}'
if match(m, re_unet_time_embed):
return f"diffusion_model_time_embed_{m[0]*2-2}{m[1]}"
if match(m, re_unet_down_blocks):
return f"diffusion_model_input_blocks_{1 + m[0] * 3 + m[1]}_1_{m[2]}"
if match(m, re_unet_mid_blocks):
return f"diffusion_model_middle_block_1_{m[1]}"
if match(m, re_unet_up_blocks):
return f"diffusion_model_output_blocks_{m[0] * 3 + m[1]}_1_{m[2]}"
if match(m, re_unet_down_blocks_res):
block = f"diffusion_model_input_blocks_{1 + m[0] * 3 + m[1]}_0_"
if m[2].startswith('conv1'):
return f"{block}in_layers_2{m[2][len('conv1'):]}"
elif m[2].startswith('conv2'):
return f"{block}out_layers_3{m[2][len('conv2'):]}"
elif m[2].startswith('time_emb_proj'):
return f"{block}emb_layers_1{m[2][len('time_emb_proj'):]}"
elif m[2].startswith('conv_shortcut'):
return f"{block}skip_connection{m[2][len('conv_shortcut'):]}"
if match(m, re_unet_mid_blocks_res):
block = f"diffusion_model_middle_block_{m[0]*2}_"
if m[1].startswith('conv1'):
return f"{block}in_layers_2{m[1][len('conv1'):]}"
elif m[1].startswith('conv2'):
return f"{block}out_layers_3{m[1][len('conv2'):]}"
elif m[1].startswith('time_emb_proj'):
return f"{block}emb_layers_1{m[1][len('time_emb_proj'):]}"
elif m[1].startswith('conv_shortcut'):
return f"{block}skip_connection{m[1][len('conv_shortcut'):]}"
if match(m, re_unet_up_blocks_res):
block = f"diffusion_model_output_blocks_{m[0] * 3 + m[1]}_0_"
if m[2].startswith('conv1'):
return f"{block}in_layers_2{m[2][len('conv1'):]}"
elif m[2].startswith('conv2'):
return f"{block}out_layers_3{m[2][len('conv2'):]}"
elif m[2].startswith('time_emb_proj'):
return f"{block}emb_layers_1{m[2][len('time_emb_proj'):]}"
elif m[2].startswith('conv_shortcut'):
return f"{block}skip_connection{m[2][len('conv_shortcut'):]}"
if match(m, re_unet_downsample):
return f"diffusion_model_input_blocks_{m[0]*3+3}_0_op{m[1]}"
if match(m, re_unet_upsample):
return f"diffusion_model_output_blocks_{m[0]*3 + 2}_{1+(m[0]!=0)}_conv{m[1]}"
if match(m, r"lora_te_text_model_encoder_layers_(\d+)_(.+)"):
if is_sd2:
if 'mlp_fc1' in m[1]:
return f"model_transformer_resblocks_{m[0]}_{m[1].replace('mlp_fc1', 'mlp_c_fc')}"
elif 'mlp_fc2' in m[1]:
return f"model_transformer_resblocks_{m[0]}_{m[1].replace('mlp_fc2', 'mlp_c_proj')}"
else:
return f"model_transformer_resblocks_{m[0]}_{m[1].replace('self_attn', 'attn')}"
return f"transformer_text_model_encoder_layers_{m[0]}_{m[1]}"
return key
def assign_lyco_names_to_compvis_modules(sd_model):
lyco_layer_mapping = {}
for name, module in shared.sd_model.cond_stage_model.wrapped.named_modules():
lyco_name = name.replace(".", "_")
lyco_layer_mapping[lyco_name] = module
module.lyco_layer_name = lyco_name
for name, module in shared.sd_model.model.named_modules():
lyco_name = name.replace(".", "_")
lyco_layer_mapping[lyco_name] = module
module.lyco_layer_name = lyco_name
sd_model.lyco_layer_mapping = lyco_layer_mapping
class LycoOnDisk:
def __init__(self, name, filename):
self.name = name
self.filename = filename
self.metadata = {}
_, ext = os.path.splitext(filename)
if ext.lower() == ".safetensors":
try:
self.metadata = sd_models.read_metadata_from_safetensors(filename)
except Exception as e:
errors.display(e, f"reading lora {filename}")
if self.metadata:
m = {}
for k, v in sorted(self.metadata.items(), key=lambda x: metadata_tags_order.get(x[0], 999)):
m[k] = v
self.metadata = m
self.ssmd_cover_images = self.metadata.pop('ssmd_cover_images', None) # those are cover images and they are too big to display in UI as text
class LycoModule:
def __init__(self, name):
self.name = name
self.te_multiplier = 1.0
self.unet_multiplier = 1.0
self.dyn_dim = None
self.modules = {}
self.mtime = None
class FullModule:
def __init__(self):
self.weight = None
self.alpha = None
self.scale = None
self.dim = None
self.shape = None
class LycoUpDownModule:
def __init__(self):
self.up_model = None
self.mid_model = None
self.down_model = None
self.alpha = None
self.scale = None
self.dim = None
self.shape = None
self.bias = None
def make_weight_cp(t, wa, wb):
temp = torch.einsum('i j k l, j r -> i r k l', t, wb)
return torch.einsum('i j k l, i r -> r j k l', temp, wa)
class LycoHadaModule:
def __init__(self):
self.t1 = None
self.w1a = None
self.w1b = None
self.t2 = None
self.w2a = None
self.w2b = None
self.alpha = None
self.scale = None
self.dim = None
self.shape = None
self.bias = None
class IA3Module:
def __init__(self):
self.w = None
self.alpha = None
self.scale = None
self.dim = None
self.on_input = None
def make_kron(orig_shape, w1, w2):
if len(w2.shape) == 4:
w1 = w1.unsqueeze(2).unsqueeze(2)
w2 = w2.contiguous()
return torch.kron(w1, w2).reshape(orig_shape)
class LycoKronModule:
def __init__(self):
self.w1 = None
self.w1a = None
self.w1b = None
self.w2 = None
self.t2 = None
self.w2a = None
self.w2b = None
self._alpha = None
self.scale = None
self.dim = None
self.shape = None
self.bias = None
@property
def alpha(self):
if self.w1a is None and self.w2a is None:
return None
else:
return self._alpha
@alpha.setter
def alpha(self, x):
self._alpha = x
CON_KEY = {
"lora_up.weight", "dyn_up",
"lora_down.weight", "dyn_down",
"lora_mid.weight"
}
HADA_KEY = {
"hada_t1",
"hada_w1_a",
"hada_w1_b",
"hada_t2",
"hada_w2_a",
"hada_w2_b",
}
IA3_KEY = {
"weight",
"on_input"
}
KRON_KEY = {
"lokr_w1",
"lokr_w1_a",
"lokr_w1_b",
"lokr_t2",
"lokr_w2",
"lokr_w2_a",
"lokr_w2_b",
}
def load_lyco(name, filename):
lyco = LycoModule(name)
lyco.mtime = os.path.getmtime(filename)
sd = sd_models.read_state_dict(filename)
is_sd2 = 'model_transformer_resblocks' in shared.sd_model.lyco_layer_mapping
keys_failed_to_match = []
for key_diffusers, weight in sd.items():
fullkey = convert_diffusers_name_to_compvis(key_diffusers, is_sd2)
key, lyco_key = fullkey.split(".", 1)
sd_module = shared.sd_model.lyco_layer_mapping.get(key, None)
if sd_module is None:
m = re_x_proj.match(key)
if m:
sd_module = shared.sd_model.lyco_layer_mapping.get(m.group(1), None)
if sd_module is None:
print(key)
keys_failed_to_match.append(key_diffusers)
continue
lyco_module = lyco.modules.get(key, None)
if lyco_module is None:
lyco_module = LycoUpDownModule()
lyco.modules[key] = lyco_module
if lyco_key == "alpha":
lyco_module.alpha = weight.item()
continue
if lyco_key == "scale":
lyco_module.scale = weight.item()
continue
if lyco_key == "diff":
weight = weight.to(device=devices.cpu, dtype=devices.dtype)
weight.requires_grad_(False)
lyco_module = FullModule()
lyco.modules[key] = lyco_module
lyco_module.weight = weight
continue
if 'bias_' in lyco_key:
if lyco_module.bias is None:
lyco_module.bias = [None, None, None]
if 'bias_indices' == lyco_key:
lyco_module.bias[0] = weight
elif 'bias_values' == lyco_key:
lyco_module.bias[1] = weight
elif 'bias_size' == lyco_key:
lyco_module.bias[2] = weight
if all((i is not None) for i in lyco_module.bias):
print('build bias')
lyco_module.bias = torch.sparse_coo_tensor(
lyco_module.bias[0],
lyco_module.bias[1],
tuple(lyco_module.bias[2]),
).to(device=devices.cpu, dtype=devices.dtype)
lyco_module.bias.requires_grad_(False)
continue
if lyco_key in CON_KEY:
if (type(sd_module) == torch.nn.Linear
or type(sd_module) == torch.nn.modules.linear.NonDynamicallyQuantizableLinear
or type(sd_module) == torch.nn.MultiheadAttention):
weight = weight.reshape(weight.shape[0], -1)
module = torch.nn.Linear(weight.shape[1], weight.shape[0], bias=False)
elif type(sd_module) == torch.nn.Conv2d:
if lyco_key == "lora_down.weight" or lyco_key == "dyn_up":
if len(weight.shape) == 2:
weight = weight.reshape(weight.shape[0], -1, 1, 1)
if weight.shape[2] != 1 or weight.shape[3] != 1:
module = torch.nn.Conv2d(weight.shape[1], weight.shape[0], sd_module.kernel_size, sd_module.stride, sd_module.padding, bias=False)
else:
module = torch.nn.Conv2d(weight.shape[1], weight.shape[0], (1, 1), bias=False)
elif lyco_key == "lora_mid.weight":
module = torch.nn.Conv2d(weight.shape[1], weight.shape[0], sd_module.kernel_size, sd_module.stride, sd_module.padding, bias=False)
elif lyco_key == "lora_up.weight" or lyco_key == "dyn_down":
module = torch.nn.Conv2d(weight.shape[1], weight.shape[0], (1, 1), bias=False)
else:
assert False, f'Lyco layer {key_diffusers} matched a layer with unsupported type: {type(sd_module).__name__}'
if hasattr(sd_module, 'weight'):
lyco_module.shape = sd_module.weight.shape
with torch.no_grad():
if weight.shape != module.weight.shape:
weight = weight.reshape(module.weight.shape)
module.weight.copy_(weight)
module.to(device=devices.cpu, dtype=devices.dtype)
module.requires_grad_(False)
if lyco_key == "lora_up.weight" or lyco_key == "dyn_up":
lyco_module.up_model = module
elif lyco_key == "lora_mid.weight":
lyco_module.mid_model = module
elif lyco_key == "lora_down.weight" or lyco_key == "dyn_down":
lyco_module.down_model = module
lyco_module.dim = weight.shape[0]
else:
print(lyco_key)
elif lyco_key in HADA_KEY:
if type(lyco_module) != LycoHadaModule:
alpha = lyco_module.alpha
bias = lyco_module.bias
lyco_module = LycoHadaModule()
lyco_module.alpha = alpha
lyco_module.bias = bias
lyco.modules[key] = lyco_module
if hasattr(sd_module, 'weight'):
lyco_module.shape = sd_module.weight.shape
weight = weight.to(device=devices.cpu, dtype=devices.dtype)
weight.requires_grad_(False)
if lyco_key == 'hada_w1_a':
lyco_module.w1a = weight
elif lyco_key == 'hada_w1_b':
lyco_module.w1b = weight
lyco_module.dim = weight.shape[0]
elif lyco_key == 'hada_w2_a':
lyco_module.w2a = weight
elif lyco_key == 'hada_w2_b':
lyco_module.w2b = weight
lyco_module.dim = weight.shape[0]
elif lyco_key == 'hada_t1':
lyco_module.t1 = weight
elif lyco_key == 'hada_t2':
lyco_module.t2 = weight
elif lyco_key in IA3_KEY:
if type(lyco_module) != IA3Module:
lyco_module = IA3Module()
lyco.modules[key] = lyco_module
if lyco_key == "weight":
lyco_module.w = weight.to(devices.device, dtype=devices.dtype)
elif lyco_key == "on_input":
lyco_module.on_input = weight
elif lyco_key in KRON_KEY:
if not isinstance(lyco_module, LycoKronModule):
alpha = lyco_module.alpha
bias = lyco_module.bias
lyco_module = LycoKronModule()
lyco_module.alpha = alpha
lyco_module.bias = bias
lyco.modules[key] = lyco_module
if hasattr(sd_module, 'weight'):
lyco_module.shape = sd_module.weight.shape
weight = weight.to(device=devices.cpu, dtype=devices.dtype)
weight.requires_grad_(False)
if lyco_key == 'lokr_w1':
lyco_module.w1 = weight
elif lyco_key == 'lokr_w1_a':
lyco_module.w1a = weight
elif lyco_key == 'lokr_w1_b':
lyco_module.w1b = weight
lyco_module.dim = weight.shape[0]
elif lyco_key == 'lokr_w2':
lyco_module.w2 = weight
elif lyco_key == 'lokr_w2_a':
lyco_module.w2a = weight
elif lyco_key == 'lokr_w2_b':
lyco_module.w2b = weight
lyco_module.dim = weight.shape[0]
elif lyco_key == 'lokr_t2':
lyco_module.t2 = weight
else:
assert False, f'Bad Lyco layer name: {key_diffusers} - must end in lyco_up.weight, lyco_down.weight or alpha'
if len(keys_failed_to_match) > 0:
print(shared.sd_model.lyco_layer_mapping)
print(f"Failed to match keys when loading Lyco {filename}: {keys_failed_to_match}")
return lyco
def load_lycos(names, te_multipliers=None, unet_multipliers=None, dyn_dims=None):
already_loaded = {}
for lyco in loaded_lycos:
if lyco.name in names:
already_loaded[lyco.name] = lyco
loaded_lycos.clear()
lycos_on_disk = [available_lycos.get(name, None) for name in names]
if any([x is None for x in lycos_on_disk]):
list_available_lycos()
lycos_on_disk = [available_lycos.get(name, None) for name in names]
for i, name in enumerate(names):
lyco = already_loaded.get(name, None)
lyco_on_disk = lycos_on_disk[i]
if lyco_on_disk is not None:
if lyco is None or os.path.getmtime(lyco_on_disk.filename) > lyco.mtime:
lyco = load_lyco(name, lyco_on_disk.filename)
if lyco is None:
print(f"Couldn't find Lora with name {name}")
continue
lyco.te_multiplier = te_multipliers[i] if te_multipliers else 1.0
lyco.unet_multiplier = unet_multipliers[i] if unet_multipliers else lyco.te_multiplier
lyco.dyn_dim = dyn_dims[i] if dyn_dims else None
loaded_lycos.append(lyco)
def _rebuild_conventional(up, down, shape, dyn_dim=None):
up = up.reshape(up.size(0), -1)
down = down.reshape(down.size(0), -1)
if dyn_dim is not None:
up = up[:, :dyn_dim]
down = down[:dyn_dim, :]
return (up @ down).reshape(shape)
def _rebuild_cp_decomposition(up, down, mid):
up = up.reshape(up.size(0), -1)
down = down.reshape(down.size(0), -1)
return torch.einsum('n m k l, i n, m j -> i j k l', mid, up, down)
def rebuild_weight(module, orig_weight: torch.Tensor, dyn_dim: int=None) -> torch.Tensor:
output_shape: Sized
if module.__class__.__name__ == 'LycoUpDownModule':
up = module.up_model.weight.to(orig_weight.device, dtype=orig_weight.dtype)
down = module.down_model.weight.to(orig_weight.device, dtype=orig_weight.dtype)
output_shape = [up.size(0), down.size(1)]
if (mid:=module.mid_model) is not None:
# cp-decomposition
mid = mid.weight.to(orig_weight.device, dtype=orig_weight.dtype)
updown = _rebuild_cp_decomposition(up, down, mid)
output_shape += mid.shape[2:]
else:
if len(down.shape) == 4:
output_shape += down.shape[2:]
updown = _rebuild_conventional(up, down, output_shape, dyn_dim)
elif module.__class__.__name__ == 'LycoHadaModule':
w1a = module.w1a.to(orig_weight.device, dtype=orig_weight.dtype)
w1b = module.w1b.to(orig_weight.device, dtype=orig_weight.dtype)
w2a = module.w2a.to(orig_weight.device, dtype=orig_weight.dtype)
w2b = module.w2b.to(orig_weight.device, dtype=orig_weight.dtype)
output_shape = [w1a.size(0), w1b.size(1)]
if module.t1 is not None:
output_shape = [w1a.size(1), w1b.size(1)]
t1 = module.t1.to(orig_weight.device, dtype=orig_weight.dtype)
updown1 = make_weight_cp(t1, w1a, w1b)
output_shape += t1.shape[2:]
else:
if len(w1b.shape) == 4:
output_shape += w1b.shape[2:]
updown1 = _rebuild_conventional(w1a, w1b, output_shape)
if module.t2 is not None:
t2 = module.t2.to(orig_weight.device, dtype=orig_weight.dtype)
updown2 = make_weight_cp(t2, w2a, w2b)
else:
updown2 = _rebuild_conventional(w2a, w2b, output_shape)
updown = updown1 * updown2
elif module.__class__.__name__ == 'FullModule':
output_shape = module.weight.shape
updown = module.weight.to(orig_weight.device, dtype=orig_weight.dtype)
elif module.__class__.__name__ == 'IA3Module':
output_shape = [module.w.size(0), orig_weight.size(1)]
if module.on_input:
output_shape.reverse()
else:
module.w = module.w.reshape(-1, 1)
updown = orig_weight * module.w
elif module.__class__.__name__ == 'LycoKronModule':
if module.w1 is not None:
w1 = module.w1.to(orig_weight.device, dtype=orig_weight.dtype)
else:
w1a = module.w1a.to(orig_weight.device, dtype=orig_weight.dtype)
w1b = module.w1b.to(orig_weight.device, dtype=orig_weight.dtype)
w1 = w1a @ w1b
if module.w2 is not None:
w2 = module.w2.to(orig_weight.device, dtype=orig_weight.dtype)
elif module.t2 is None:
w2a = module.w2a.to(orig_weight.device, dtype=orig_weight.dtype)
w2b = module.w2b.to(orig_weight.device, dtype=orig_weight.dtype)
w2 = w2a @ w2b
else:
t2 = module.t2.to(orig_weight.device, dtype=orig_weight.dtype)
w2a = module.w2a.to(orig_weight.device, dtype=orig_weight.dtype)
w2b = module.w2b.to(orig_weight.device, dtype=orig_weight.dtype)
w2 = make_weight_cp(t2, w2a, w2b)
output_shape = [w1.size(0)*w2.size(0), w1.size(1)*w2.size(1)]
if len(orig_weight.shape) == 4:
output_shape = orig_weight.shape
updown = make_kron(
output_shape, w1, w2
)
else:
raise NotImplementedError(
f"Unknown module type: {module.__class__.__name__}\n"
"If the type is one of "
"'LycoUpDownModule', 'LycoHadaModule', 'FullModule', 'IA3Module', 'LycoKronModule'"
"You may have other lyco extension that conflict with locon extension."
)
if hasattr(module, 'bias') and module.bias != None:
updown = updown.reshape(module.bias.shape)
updown += module.bias.to(orig_weight.device, dtype=orig_weight.dtype)
updown = updown.reshape(output_shape)
if len(output_shape) == 4:
updown = updown.reshape(output_shape)
if orig_weight.size().numel() == updown.size().numel():
updown = updown.reshape(orig_weight.shape)
# print(torch.sum(updown))
return updown
def lyco_calc_updown(lyco, module, target):
with torch.no_grad():
updown = rebuild_weight(module, target, lyco.dyn_dim)
if lyco.dyn_dim and module.dim:
dim = min(lyco.dyn_dim, module.dim)
elif lyco.dyn_dim:
dim = lyco.dyn_dim
elif module.dim:
dim = module.dim
else:
dim = None
scale = (
module.scale if module.scale is not None
else module.alpha / dim if dim is not None and module.alpha is not None
else 1.0
)
# print(scale, module.alpha, module.dim, lyco.dyn_dim)
updown = updown * scale
return updown
def lyco_apply_weights(self: Union[torch.nn.Conv2d, torch.nn.Linear, torch.nn.MultiheadAttention]):
"""
Applies the currently selected set of Lycos to the weights of torch layer self.
If weights already have this particular set of lycos applied, does nothing.
If not, restores orginal weights from backup and alters weights according to lycos.
"""
lyco_layer_name = getattr(self, 'lyco_layer_name', None)
if lyco_layer_name is None:
return
current_names = getattr(self, "lyco_current_names", ())
lora_prev_names = getattr(self, "lora_prev_names", ())
lora_names = getattr(self, "lora_current_names", ())
wanted_names = tuple((x.name, x.te_multiplier, x.unet_multiplier, x.dyn_dim) for x in loaded_lycos)
weights_backup = getattr(self, "lyco_weights_backup", None)
lora_weights_backup = getattr(self, "lora_weights_backup", None)
if weights_backup is None and len(loaded_lycos):
# print('lyco save weight')
if isinstance(self, torch.nn.MultiheadAttention):
weights_backup = (
self.in_proj_weight.to(devices.cpu, copy=True),
self.out_proj.weight.to(devices.cpu, copy=True)
)
else:
weights_backup = self.weight.to(devices.cpu, copy=True)
self.lyco_weights_backup = weights_backup
elif lora_prev_names != lora_names:
# print('lyco remove weight')
self.lyco_weights_backup = None
lora_weights_backup = None
elif len(loaded_lycos) == 0:
self.lyco_weights_backup = None
if current_names != wanted_names or lora_prev_names != lora_names:
if weights_backup is not None and lora_names == lora_prev_names:
# print('lyco restore weight')
if isinstance(self, torch.nn.MultiheadAttention):
self.in_proj_weight.copy_(weights_backup[0])
self.out_proj.weight.copy_(weights_backup[1])
else:
self.weight.copy_(weights_backup)
elif lora_weights_backup is not None and lora_names == ():
# print('lora restore weight')
if isinstance(self, torch.nn.MultiheadAttention):
self.in_proj_weight.copy_(lora_weights_backup[0])
self.out_proj.weight.copy_(lora_weights_backup[1])
else:
self.weight.copy_(lora_weights_backup)
for lyco in loaded_lycos:
module = lyco.modules.get(lyco_layer_name, None)
multiplier = (
lyco.te_multiplier if 'transformer' in lyco_layer_name[:20]
else lyco.unet_multiplier
)
if module is not None and hasattr(self, 'weight'):
# print(lyco_layer_name, multiplier)
updown = lyco_calc_updown(lyco, module, self.weight)
if len(self.weight.shape) == 4 and self.weight.shape[1] == 9:
# inpainting model. zero pad updown to make channel[1] 4 to 9
updown = F.pad(updown, (0, 0, 0, 0, 0, 5))
self.weight += updown * multiplier
continue
module_q = lyco.modules.get(lyco_layer_name + "_q_proj", None)
module_k = lyco.modules.get(lyco_layer_name + "_k_proj", None)
module_v = lyco.modules.get(lyco_layer_name + "_v_proj", None)
module_out = lyco.modules.get(lyco_layer_name + "_out_proj", None)
if isinstance(self, torch.nn.MultiheadAttention) and module_q and module_k and module_v and module_out:
updown_q = lyco_calc_updown(lyco, module_q, self.in_proj_weight)
updown_k = lyco_calc_updown(lyco, module_k, self.in_proj_weight)
updown_v = lyco_calc_updown(lyco, module_v, self.in_proj_weight)
updown_qkv = torch.vstack([updown_q, updown_k, updown_v])
self.in_proj_weight += updown_qkv
self.out_proj.weight += lyco_calc_updown(lyco, module_out, self.out_proj.weight)
continue
if module is None:
continue
print(3, f'failed to calculate lyco weights for layer {lyco_layer_name}')
# print(lyco_his, lyco.name not in lyco_his)
setattr(self, "lora_prev_names", lora_names)
setattr(self, "lyco_current_names", wanted_names)
def lyco_reset_cached_weight(self: Union[torch.nn.Conv2d, torch.nn.Linear]):
setattr(self, "lyco_current_names", ())
setattr(self, "lyco_weights_backup", None)
def lyco_Linear_forward(self, input):
lyco_apply_weights(self)
return torch.nn.Linear_forward_before_lyco(self, input)
def lyco_Linear_load_state_dict(self, *args, **kwargs):
lyco_reset_cached_weight(self)
return torch.nn.Linear_load_state_dict_before_lyco(self, *args, **kwargs)
def lyco_Conv2d_forward(self, input):
lyco_apply_weights(self)
return torch.nn.Conv2d_forward_before_lyco(self, input)
def lyco_Conv2d_load_state_dict(self, *args, **kwargs):
lyco_reset_cached_weight(self)
return torch.nn.Conv2d_load_state_dict_before_lyco(self, *args, **kwargs)
def lyco_MultiheadAttention_forward(self, *args, **kwargs):
lyco_apply_weights(self)
return torch.nn.MultiheadAttention_forward_before_lyco(self, *args, **kwargs)
def lyco_MultiheadAttention_load_state_dict(self, *args, **kwargs):
lyco_reset_cached_weight(self)
return torch.nn.MultiheadAttention_load_state_dict_before_lyco(self, *args, **kwargs)
def list_available_lycos():
available_lycos.clear()
os.makedirs(shared.cmd_opts.lyco_dir, exist_ok=True)
candidates = \
glob.glob(os.path.join(shared.cmd_opts.lyco_dir, '**/*.pt'), recursive=True) + \
glob.glob(os.path.join(shared.cmd_opts.lyco_dir, '**/*.safetensors'), recursive=True) + \
glob.glob(os.path.join(shared.cmd_opts.lyco_dir, '**/*.ckpt'), recursive=True)
for filename in sorted(candidates, key=str.lower):
if os.path.isdir(filename):
continue
name = os.path.splitext(os.path.basename(filename))[0]
available_lycos[name] = LycoOnDisk(name, filename)
available_lycos: Dict[str, LycoOnDisk] = {}
loaded_lycos: List[LycoModule] = []
list_available_lycos()
|