File size: 1,874 Bytes
6cd9f65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7febcab
6cd9f65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
license: apache-2.0
base_model: distilbert-base-cased
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: distilBERT-infoExtract-v3
  results: []
---


# distilBERT-infoExtract-v3

This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on an [conllpp dataset](https://huggingface.co/datasets/conllpp).
It achieves the following results on the evaluation set:
- Loss: 0.0871
- Precision: 0.9239
- Recall: 0.9440
- F1: 0.9338
- Accuracy: 0.9843

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 6

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.0945        | 1.0   | 1756  | 0.0958          | 0.8746    | 0.9170 | 0.8953 | 0.9736   |
| 0.0521        | 2.0   | 3512  | 0.0727          | 0.9090    | 0.9276 | 0.9182 | 0.9810   |
| 0.0334        | 3.0   | 5268  | 0.0736          | 0.9091    | 0.9372 | 0.9229 | 0.9827   |
| 0.0149        | 4.0   | 7024  | 0.0755          | 0.9248    | 0.9411 | 0.9329 | 0.9847   |
| 0.0079        | 5.0   | 8780  | 0.0847          | 0.9216    | 0.9433 | 0.9323 | 0.9840   |
| 0.0075        | 6.0   | 10536 | 0.0871          | 0.9239    | 0.9440 | 0.9338 | 0.9843   |


### Framework versions

- Transformers 4.37.2
- Pytorch 2.1.0+cu121
- Datasets 2.17.1
- Tokenizers 0.15.2