File size: 2,131 Bytes
468d04c 3ddf7a3 468d04c 3ddf7a3 468d04c 3ddf7a3 468d04c 3ddf7a3 468d04c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
---
library_name: transformers
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: distilbert-base-uncased-finetuned-clinic-best
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-clinic-best
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1552
- Accuracy: 0.9410
## Model description
“The parameters are as follows:
```python
{'num_train_epoch': 9, 'alpha': 0.16484386886358915, 'temperature': 2}
These were obtained using grid search with Optuna.
```
## Training and evaluation data
Clinic dataset from 'datasets'
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 48
- eval_batch_size: 48
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 9
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 318 | 0.8641 | 0.7094 |
| 1.1497 | 2.0 | 636 | 0.4002 | 0.8703 |
| 1.1497 | 3.0 | 954 | 0.2381 | 0.9113 |
| 0.3873 | 4.0 | 1272 | 0.1893 | 0.9313 |
| 0.2047 | 5.0 | 1590 | 0.1716 | 0.9339 |
| 0.2047 | 6.0 | 1908 | 0.1632 | 0.9387 |
| 0.165 | 7.0 | 2226 | 0.1589 | 0.9394 |
| 0.151 | 8.0 | 2544 | 0.1561 | 0.94 |
| 0.151 | 9.0 | 2862 | 0.1552 | 0.9410 |
### Framework versions
- Transformers 4.47.0
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0
|