tomascufaro
commited on
Commit
·
0d98e92
1
Parent(s):
067b320
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,205 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- common_voice
|
7 |
+
model-index:
|
8 |
+
- name: xls-r-es-test
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# xls-r-es-test
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the common_voice dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.1304
|
20 |
+
- Wer: 0.1260
|
21 |
+
|
22 |
+
## Model description
|
23 |
+
|
24 |
+
More information needed
|
25 |
+
|
26 |
+
## Intended uses & limitations
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Training and evaluation data
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training procedure
|
35 |
+
|
36 |
+
### Training hyperparameters
|
37 |
+
|
38 |
+
The following hyperparameters were used during training:
|
39 |
+
- learning_rate: 7.5e-05
|
40 |
+
- train_batch_size: 8
|
41 |
+
- eval_batch_size: 8
|
42 |
+
- seed: 42
|
43 |
+
- gradient_accumulation_steps: 4
|
44 |
+
- total_train_batch_size: 32
|
45 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
46 |
+
- lr_scheduler_type: linear
|
47 |
+
- lr_scheduler_warmup_steps: 2000
|
48 |
+
- num_epochs: 10.0
|
49 |
+
- mixed_precision_training: Native AMP
|
50 |
+
|
51 |
+
### Training results
|
52 |
+
|
53 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
54 |
+
|:-------------:|:-----:|:-----:|:---------------:|:------:|
|
55 |
+
| 2.9613 | 0.07 | 500 | 2.9647 | 1.0 |
|
56 |
+
| 2.604 | 0.14 | 1000 | 1.8300 | 0.9562 |
|
57 |
+
| 1.177 | 0.21 | 1500 | 0.3652 | 0.3077 |
|
58 |
+
| 1.0745 | 0.28 | 2000 | 0.2707 | 0.2504 |
|
59 |
+
| 1.0103 | 0.35 | 2500 | 0.2338 | 0.2157 |
|
60 |
+
| 0.9858 | 0.42 | 3000 | 0.2321 | 0.2129 |
|
61 |
+
| 0.974 | 0.49 | 3500 | 0.2164 | 0.2031 |
|
62 |
+
| 0.9699 | 0.56 | 4000 | 0.2078 | 0.1970 |
|
63 |
+
| 0.9513 | 0.63 | 4500 | 0.2173 | 0.2139 |
|
64 |
+
| 0.9657 | 0.7 | 5000 | 0.2050 | 0.1979 |
|
65 |
+
| 0.9484 | 0.77 | 5500 | 0.2008 | 0.1919 |
|
66 |
+
| 0.9317 | 0.84 | 6000 | 0.2012 | 0.1911 |
|
67 |
+
| 0.9366 | 0.91 | 6500 | 0.2024 | 0.1976 |
|
68 |
+
| 0.9242 | 0.98 | 7000 | 0.2062 | 0.2028 |
|
69 |
+
| 0.9138 | 1.05 | 7500 | 0.1924 | 0.1863 |
|
70 |
+
| 0.921 | 1.12 | 8000 | 0.1935 | 0.1836 |
|
71 |
+
| 0.9117 | 1.19 | 8500 | 0.1887 | 0.1815 |
|
72 |
+
| 0.9064 | 1.26 | 9000 | 0.1909 | 0.1839 |
|
73 |
+
| 0.9118 | 1.32 | 9500 | 0.1869 | 0.1830 |
|
74 |
+
| 0.9121 | 1.39 | 10000 | 0.1863 | 0.1802 |
|
75 |
+
| 0.9048 | 1.46 | 10500 | 0.1845 | 0.1791 |
|
76 |
+
| 0.8955 | 1.53 | 11000 | 0.1863 | 0.1774 |
|
77 |
+
| 0.8947 | 1.6 | 11500 | 0.1907 | 0.1814 |
|
78 |
+
| 0.9073 | 1.67 | 12000 | 0.1892 | 0.1853 |
|
79 |
+
| 0.8927 | 1.74 | 12500 | 0.1821 | 0.1750 |
|
80 |
+
| 0.8732 | 1.81 | 13000 | 0.1815 | 0.1768 |
|
81 |
+
| 0.8761 | 1.88 | 13500 | 0.1822 | 0.1749 |
|
82 |
+
| 0.8751 | 1.95 | 14000 | 0.1789 | 0.1715 |
|
83 |
+
| 0.8889 | 2.02 | 14500 | 0.1819 | 0.1791 |
|
84 |
+
| 0.8864 | 2.09 | 15000 | 0.1826 | 0.1794 |
|
85 |
+
| 0.886 | 2.16 | 15500 | 0.1788 | 0.1776 |
|
86 |
+
| 0.8915 | 2.23 | 16000 | 0.1756 | 0.1719 |
|
87 |
+
| 0.8689 | 2.3 | 16500 | 0.1769 | 0.1711 |
|
88 |
+
| 0.879 | 2.37 | 17000 | 0.1777 | 0.1739 |
|
89 |
+
| 0.8692 | 2.44 | 17500 | 0.1765 | 0.1705 |
|
90 |
+
| 0.8504 | 2.51 | 18000 | 0.1699 | 0.1652 |
|
91 |
+
| 0.8728 | 2.58 | 18500 | 0.1705 | 0.1694 |
|
92 |
+
| 0.8523 | 2.65 | 19000 | 0.1674 | 0.1645 |
|
93 |
+
| 0.8513 | 2.72 | 19500 | 0.1661 | 0.1611 |
|
94 |
+
| 0.8498 | 2.79 | 20000 | 0.1660 | 0.1631 |
|
95 |
+
| 0.8432 | 2.86 | 20500 | 0.1636 | 0.1610 |
|
96 |
+
| 0.8492 | 2.93 | 21000 | 0.1708 | 0.1688 |
|
97 |
+
| 0.8561 | 3.0 | 21500 | 0.1663 | 0.1604 |
|
98 |
+
| 0.842 | 3.07 | 22000 | 0.1690 | 0.1625 |
|
99 |
+
| 0.857 | 3.14 | 22500 | 0.1642 | 0.1605 |
|
100 |
+
| 0.8518 | 3.21 | 23000 | 0.1626 | 0.1585 |
|
101 |
+
| 0.8506 | 3.28 | 23500 | 0.1651 | 0.1605 |
|
102 |
+
| 0.8394 | 3.35 | 24000 | 0.1647 | 0.1585 |
|
103 |
+
| 0.8431 | 3.42 | 24500 | 0.1632 | 0.1573 |
|
104 |
+
| 0.8566 | 3.49 | 25000 | 0.1614 | 0.1550 |
|
105 |
+
| 0.8534 | 3.56 | 25500 | 0.1645 | 0.1589 |
|
106 |
+
| 0.8386 | 3.63 | 26000 | 0.1632 | 0.1582 |
|
107 |
+
| 0.8357 | 3.7 | 26500 | 0.1631 | 0.1556 |
|
108 |
+
| 0.8299 | 3.77 | 27000 | 0.1612 | 0.1550 |
|
109 |
+
| 0.8421 | 3.84 | 27500 | 0.1602 | 0.1552 |
|
110 |
+
| 0.8375 | 3.91 | 28000 | 0.1592 | 0.1537 |
|
111 |
+
| 0.8328 | 3.97 | 28500 | 0.1587 | 0.1537 |
|
112 |
+
| 0.8155 | 4.04 | 29000 | 0.1587 | 0.1520 |
|
113 |
+
| 0.8335 | 4.11 | 29500 | 0.1624 | 0.1556 |
|
114 |
+
| 0.8138 | 4.18 | 30000 | 0.1581 | 0.1547 |
|
115 |
+
| 0.8195 | 4.25 | 30500 | 0.1560 | 0.1507 |
|
116 |
+
| 0.8092 | 4.32 | 31000 | 0.1561 | 0.1534 |
|
117 |
+
| 0.8191 | 4.39 | 31500 | 0.1549 | 0.1493 |
|
118 |
+
| 0.8008 | 4.46 | 32000 | 0.1540 | 0.1493 |
|
119 |
+
| 0.8138 | 4.53 | 32500 | 0.1544 | 0.1493 |
|
120 |
+
| 0.8173 | 4.6 | 33000 | 0.1553 | 0.1511 |
|
121 |
+
| 0.8081 | 4.67 | 33500 | 0.1541 | 0.1484 |
|
122 |
+
| 0.8192 | 4.74 | 34000 | 0.1560 | 0.1506 |
|
123 |
+
| 0.8068 | 4.81 | 34500 | 0.1540 | 0.1503 |
|
124 |
+
| 0.8105 | 4.88 | 35000 | 0.1529 | 0.1483 |
|
125 |
+
| 0.7976 | 4.95 | 35500 | 0.1507 | 0.1451 |
|
126 |
+
| 0.8143 | 5.02 | 36000 | 0.1505 | 0.1462 |
|
127 |
+
| 0.8053 | 5.09 | 36500 | 0.1517 | 0.1476 |
|
128 |
+
| 0.785 | 5.16 | 37000 | 0.1526 | 0.1478 |
|
129 |
+
| 0.7936 | 5.23 | 37500 | 0.1489 | 0.1421 |
|
130 |
+
| 0.807 | 5.3 | 38000 | 0.1483 | 0.1420 |
|
131 |
+
| 0.8092 | 5.37 | 38500 | 0.1481 | 0.1435 |
|
132 |
+
| 0.793 | 5.44 | 39000 | 0.1503 | 0.1438 |
|
133 |
+
| 0.814 | 5.51 | 39500 | 0.1495 | 0.1480 |
|
134 |
+
| 0.807 | 5.58 | 40000 | 0.1472 | 0.1424 |
|
135 |
+
| 0.7913 | 5.65 | 40500 | 0.1471 | 0.1422 |
|
136 |
+
| 0.7844 | 5.72 | 41000 | 0.1473 | 0.1422 |
|
137 |
+
| 0.7888 | 5.79 | 41500 | 0.1445 | 0.1385 |
|
138 |
+
| 0.7806 | 5.86 | 42000 | 0.1435 | 0.1394 |
|
139 |
+
| 0.7773 | 5.93 | 42500 | 0.1461 | 0.1424 |
|
140 |
+
| 0.786 | 6.0 | 43000 | 0.1450 | 0.1413 |
|
141 |
+
| 0.7784 | 6.07 | 43500 | 0.1463 | 0.1424 |
|
142 |
+
| 0.7937 | 6.14 | 44000 | 0.1438 | 0.1386 |
|
143 |
+
| 0.7738 | 6.21 | 44500 | 0.1437 | 0.1383 |
|
144 |
+
| 0.7728 | 6.28 | 45000 | 0.1424 | 0.1371 |
|
145 |
+
| 0.7681 | 6.35 | 45500 | 0.1416 | 0.1376 |
|
146 |
+
| 0.776 | 6.42 | 46000 | 0.1415 | 0.1380 |
|
147 |
+
| 0.7773 | 6.49 | 46500 | 0.1416 | 0.1371 |
|
148 |
+
| 0.7692 | 6.56 | 47000 | 0.1398 | 0.1345 |
|
149 |
+
| 0.7642 | 6.62 | 47500 | 0.1381 | 0.1341 |
|
150 |
+
| 0.7692 | 6.69 | 48000 | 0.1392 | 0.1334 |
|
151 |
+
| 0.7667 | 6.76 | 48500 | 0.1392 | 0.1348 |
|
152 |
+
| 0.7712 | 6.83 | 49000 | 0.1398 | 0.1333 |
|
153 |
+
| 0.7628 | 6.9 | 49500 | 0.1392 | 0.1344 |
|
154 |
+
| 0.7622 | 6.97 | 50000 | 0.1377 | 0.1329 |
|
155 |
+
| 0.7639 | 7.04 | 50500 | 0.1361 | 0.1316 |
|
156 |
+
| 0.742 | 7.11 | 51000 | 0.1376 | 0.1327 |
|
157 |
+
| 0.7526 | 7.18 | 51500 | 0.1387 | 0.1342 |
|
158 |
+
| 0.7606 | 7.25 | 52000 | 0.1363 | 0.1316 |
|
159 |
+
| 0.7626 | 7.32 | 52500 | 0.1365 | 0.1313 |
|
160 |
+
| 0.752 | 7.39 | 53000 | 0.1354 | 0.1309 |
|
161 |
+
| 0.7562 | 7.46 | 53500 | 0.1362 | 0.1312 |
|
162 |
+
| 0.7557 | 7.53 | 54000 | 0.1358 | 0.1325 |
|
163 |
+
| 0.7588 | 7.6 | 54500 | 0.1343 | 0.1311 |
|
164 |
+
| 0.7485 | 7.67 | 55000 | 0.1346 | 0.1301 |
|
165 |
+
| 0.7466 | 7.74 | 55500 | 0.1354 | 0.1314 |
|
166 |
+
| 0.7558 | 7.81 | 56000 | 0.1359 | 0.1325 |
|
167 |
+
| 0.7578 | 7.88 | 56500 | 0.1363 | 0.1334 |
|
168 |
+
| 0.7411 | 7.95 | 57000 | 0.1346 | 0.1301 |
|
169 |
+
| 0.7478 | 8.02 | 57500 | 0.1355 | 0.1305 |
|
170 |
+
| 0.7451 | 8.09 | 58000 | 0.1349 | 0.1302 |
|
171 |
+
| 0.7383 | 8.16 | 58500 | 0.1349 | 0.1294 |
|
172 |
+
| 0.7482 | 8.23 | 59000 | 0.1341 | 0.1293 |
|
173 |
+
| 0.742 | 8.3 | 59500 | 0.1338 | 0.1296 |
|
174 |
+
| 0.7343 | 8.37 | 60000 | 0.1348 | 0.1307 |
|
175 |
+
| 0.7385 | 8.44 | 60500 | 0.1324 | 0.1282 |
|
176 |
+
| 0.7567 | 8.51 | 61000 | 0.1334 | 0.1281 |
|
177 |
+
| 0.7342 | 8.58 | 61500 | 0.1338 | 0.1289 |
|
178 |
+
| 0.7401 | 8.65 | 62000 | 0.1331 | 0.1285 |
|
179 |
+
| 0.7362 | 8.72 | 62500 | 0.1329 | 0.1283 |
|
180 |
+
| 0.7241 | 8.79 | 63000 | 0.1323 | 0.1277 |
|
181 |
+
| 0.7244 | 8.86 | 63500 | 0.1317 | 0.1269 |
|
182 |
+
| 0.7274 | 8.93 | 64000 | 0.1308 | 0.1260 |
|
183 |
+
| 0.7411 | 9.0 | 64500 | 0.1309 | 0.1256 |
|
184 |
+
| 0.7255 | 9.07 | 65000 | 0.1316 | 0.1265 |
|
185 |
+
| 0.7406 | 9.14 | 65500 | 0.1315 | 0.1270 |
|
186 |
+
| 0.7418 | 9.21 | 66000 | 0.1315 | 0.1269 |
|
187 |
+
| 0.7301 | 9.27 | 66500 | 0.1315 | 0.1273 |
|
188 |
+
| 0.7248 | 9.34 | 67000 | 0.1323 | 0.1274 |
|
189 |
+
| 0.7423 | 9.41 | 67500 | 0.1309 | 0.1267 |
|
190 |
+
| 0.7152 | 9.48 | 68000 | 0.1312 | 0.1271 |
|
191 |
+
| 0.7295 | 9.55 | 68500 | 0.1306 | 0.1262 |
|
192 |
+
| 0.7231 | 9.62 | 69000 | 0.1308 | 0.1263 |
|
193 |
+
| 0.7344 | 9.69 | 69500 | 0.1313 | 0.1267 |
|
194 |
+
| 0.7264 | 9.76 | 70000 | 0.1305 | 0.1263 |
|
195 |
+
| 0.7309 | 9.83 | 70500 | 0.1303 | 0.1262 |
|
196 |
+
| 0.73 | 9.9 | 71000 | 0.1303 | 0.1261 |
|
197 |
+
| 0.7353 | 9.97 | 71500 | 0.1304 | 0.1260 |
|
198 |
+
|
199 |
+
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- Transformers 4.17.0.dev0
|
203 |
+
- Pytorch 1.10.2+cu102
|
204 |
+
- Datasets 1.18.3
|
205 |
+
- Tokenizers 0.11.0
|