Add new SentenceTransformer model.
Browse files- .gitattributes +1 -0
- 1_Pooling/config.json +10 -0
- README.md +1256 -0
- config.json +28 -0
- config_sentence_transformers.json +10 -0
- model.safetensors +3 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
- sentencepiece.bpe.model +3 -0
- special_tokens_map.json +15 -0
- tokenizer.json +3 -0
- tokenizer_config.json +54 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,1256 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
- multilingual
|
5 |
+
- ar
|
6 |
+
- bg
|
7 |
+
- ca
|
8 |
+
- cs
|
9 |
+
- da
|
10 |
+
- de
|
11 |
+
- el
|
12 |
+
- es
|
13 |
+
- et
|
14 |
+
- fa
|
15 |
+
- fi
|
16 |
+
- fr
|
17 |
+
- gl
|
18 |
+
- gu
|
19 |
+
- he
|
20 |
+
- hi
|
21 |
+
- hr
|
22 |
+
- hu
|
23 |
+
- hy
|
24 |
+
- id
|
25 |
+
- it
|
26 |
+
- ja
|
27 |
+
- ka
|
28 |
+
- ko
|
29 |
+
- ku
|
30 |
+
- lt
|
31 |
+
- lv
|
32 |
+
- mk
|
33 |
+
- mn
|
34 |
+
- mr
|
35 |
+
- ms
|
36 |
+
- my
|
37 |
+
- nb
|
38 |
+
- nl
|
39 |
+
- pl
|
40 |
+
- pt
|
41 |
+
- ro
|
42 |
+
- ru
|
43 |
+
- sk
|
44 |
+
- sl
|
45 |
+
- sq
|
46 |
+
- sr
|
47 |
+
- sv
|
48 |
+
- th
|
49 |
+
- tr
|
50 |
+
- uk
|
51 |
+
- ur
|
52 |
+
- vi
|
53 |
+
- zh
|
54 |
+
library_name: sentence-transformers
|
55 |
+
tags:
|
56 |
+
- sentence-transformers
|
57 |
+
- sentence-similarity
|
58 |
+
- feature-extraction
|
59 |
+
- loss:MSELoss
|
60 |
+
base_model: FacebookAI/xlm-roberta-base
|
61 |
+
metrics:
|
62 |
+
- negative_mse
|
63 |
+
- src2trg_accuracy
|
64 |
+
- trg2src_accuracy
|
65 |
+
- mean_accuracy
|
66 |
+
- pearson_cosine
|
67 |
+
- spearman_cosine
|
68 |
+
- pearson_manhattan
|
69 |
+
- spearman_manhattan
|
70 |
+
- pearson_euclidean
|
71 |
+
- spearman_euclidean
|
72 |
+
- pearson_dot
|
73 |
+
- spearman_dot
|
74 |
+
- pearson_max
|
75 |
+
- spearman_max
|
76 |
+
widget:
|
77 |
+
- source_sentence: Grazie tante.
|
78 |
+
sentences:
|
79 |
+
- Grazie infinite.
|
80 |
+
- Non c'è un solo architetto diplomato in tutta la Contea.
|
81 |
+
- Le aziende non credevano che fosse loro responsabilità.
|
82 |
+
- source_sentence: Avance rapide.
|
83 |
+
sentences:
|
84 |
+
- Très bien.
|
85 |
+
- Donc, je voulais faire quelque chose de spécial aujourd'hui.
|
86 |
+
- Et ils ne tiennent pas non plus compte des civils qui souffrent de façon plus
|
87 |
+
générale.
|
88 |
+
- source_sentence: E' importante.
|
89 |
+
sentences:
|
90 |
+
- E' una materia fondamentale.
|
91 |
+
- Sono qui oggi per mostrare le mie fotografie dei Lakota.
|
92 |
+
- Non ero seguito da un corteo di macchine.
|
93 |
+
- source_sentence: Müfettişler…
|
94 |
+
sentences:
|
95 |
+
- İşçi sınıfına dair birşey.
|
96 |
+
- Antlaşmaya göre, o topraklar bağımsız bir ulustur.
|
97 |
+
- Son derece düz ve bataklık bir coğrafya.
|
98 |
+
- source_sentence: Wir sind eins.
|
99 |
+
sentences:
|
100 |
+
- Das versuchen wir zu bieten.
|
101 |
+
- Ihre Gehirne sind ungefähr 100 Millionen Mal komplizierter.
|
102 |
+
- Hinter mir war gar keine Autokolonne.
|
103 |
+
pipeline_tag: sentence-similarity
|
104 |
+
co2_eq_emissions:
|
105 |
+
emissions: 23.27766676567869
|
106 |
+
energy_consumed: 0.05988563672345058
|
107 |
+
source: codecarbon
|
108 |
+
training_type: fine-tuning
|
109 |
+
on_cloud: false
|
110 |
+
cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
|
111 |
+
ram_total_size: 31.777088165283203
|
112 |
+
hours_used: 0.179
|
113 |
+
hardware_used: 1 x NVIDIA GeForce RTX 3090
|
114 |
+
model-index:
|
115 |
+
- name: SentenceTransformer based on FacebookAI/xlm-roberta-base
|
116 |
+
results:
|
117 |
+
- task:
|
118 |
+
type: knowledge-distillation
|
119 |
+
name: Knowledge Distillation
|
120 |
+
dataset:
|
121 |
+
name: en ar
|
122 |
+
type: en-ar
|
123 |
+
metrics:
|
124 |
+
- type: negative_mse
|
125 |
+
value: -20.395545661449432
|
126 |
+
name: Negative Mse
|
127 |
+
- task:
|
128 |
+
type: translation
|
129 |
+
name: Translation
|
130 |
+
dataset:
|
131 |
+
name: en ar
|
132 |
+
type: en-ar
|
133 |
+
metrics:
|
134 |
+
- type: src2trg_accuracy
|
135 |
+
value: 0.7603222557905337
|
136 |
+
name: Src2Trg Accuracy
|
137 |
+
- type: trg2src_accuracy
|
138 |
+
value: 0.7824773413897281
|
139 |
+
name: Trg2Src Accuracy
|
140 |
+
- type: mean_accuracy
|
141 |
+
value: 0.7713997985901309
|
142 |
+
name: Mean Accuracy
|
143 |
+
- task:
|
144 |
+
type: semantic-similarity
|
145 |
+
name: Semantic Similarity
|
146 |
+
dataset:
|
147 |
+
name: sts17 en ar test
|
148 |
+
type: sts17-en-ar-test
|
149 |
+
metrics:
|
150 |
+
- type: pearson_cosine
|
151 |
+
value: 0.40984231242712876
|
152 |
+
name: Pearson Cosine
|
153 |
+
- type: spearman_cosine
|
154 |
+
value: 0.4425400227662121
|
155 |
+
name: Spearman Cosine
|
156 |
+
- type: pearson_manhattan
|
157 |
+
value: 0.4068582195810505
|
158 |
+
name: Pearson Manhattan
|
159 |
+
- type: spearman_manhattan
|
160 |
+
value: 0.4194184278683204
|
161 |
+
name: Spearman Manhattan
|
162 |
+
- type: pearson_euclidean
|
163 |
+
value: 0.38014538983821944
|
164 |
+
name: Pearson Euclidean
|
165 |
+
- type: spearman_euclidean
|
166 |
+
value: 0.38651157412220366
|
167 |
+
name: Spearman Euclidean
|
168 |
+
- type: pearson_dot
|
169 |
+
value: 0.4077636003696869
|
170 |
+
name: Pearson Dot
|
171 |
+
- type: spearman_dot
|
172 |
+
value: 0.37682818098716137
|
173 |
+
name: Spearman Dot
|
174 |
+
- type: pearson_max
|
175 |
+
value: 0.40984231242712876
|
176 |
+
name: Pearson Max
|
177 |
+
- type: spearman_max
|
178 |
+
value: 0.4425400227662121
|
179 |
+
name: Spearman Max
|
180 |
+
- task:
|
181 |
+
type: knowledge-distillation
|
182 |
+
name: Knowledge Distillation
|
183 |
+
dataset:
|
184 |
+
name: en fr
|
185 |
+
type: en-fr
|
186 |
+
metrics:
|
187 |
+
- type: negative_mse
|
188 |
+
value: -19.62321847677231
|
189 |
+
name: Negative Mse
|
190 |
+
- task:
|
191 |
+
type: translation
|
192 |
+
name: Translation
|
193 |
+
dataset:
|
194 |
+
name: en fr
|
195 |
+
type: en-fr
|
196 |
+
metrics:
|
197 |
+
- type: src2trg_accuracy
|
198 |
+
value: 0.8981854838709677
|
199 |
+
name: Src2Trg Accuracy
|
200 |
+
- type: trg2src_accuracy
|
201 |
+
value: 0.8901209677419355
|
202 |
+
name: Trg2Src Accuracy
|
203 |
+
- type: mean_accuracy
|
204 |
+
value: 0.8941532258064516
|
205 |
+
name: Mean Accuracy
|
206 |
+
- task:
|
207 |
+
type: semantic-similarity
|
208 |
+
name: Semantic Similarity
|
209 |
+
dataset:
|
210 |
+
name: sts17 fr en test
|
211 |
+
type: sts17-fr-en-test
|
212 |
+
metrics:
|
213 |
+
- type: pearson_cosine
|
214 |
+
value: 0.5017606394120642
|
215 |
+
name: Pearson Cosine
|
216 |
+
- type: spearman_cosine
|
217 |
+
value: 0.5333594401322842
|
218 |
+
name: Spearman Cosine
|
219 |
+
- type: pearson_manhattan
|
220 |
+
value: 0.4461108010622129
|
221 |
+
name: Pearson Manhattan
|
222 |
+
- type: spearman_manhattan
|
223 |
+
value: 0.45470883061015244
|
224 |
+
name: Spearman Manhattan
|
225 |
+
- type: pearson_euclidean
|
226 |
+
value: 0.44313058261278737
|
227 |
+
name: Pearson Euclidean
|
228 |
+
- type: spearman_euclidean
|
229 |
+
value: 0.44806261424208443
|
230 |
+
name: Spearman Euclidean
|
231 |
+
- type: pearson_dot
|
232 |
+
value: 0.40165874540768454
|
233 |
+
name: Pearson Dot
|
234 |
+
- type: spearman_dot
|
235 |
+
value: 0.41339619568003433
|
236 |
+
name: Spearman Dot
|
237 |
+
- type: pearson_max
|
238 |
+
value: 0.5017606394120642
|
239 |
+
name: Pearson Max
|
240 |
+
- type: spearman_max
|
241 |
+
value: 0.5333594401322842
|
242 |
+
name: Spearman Max
|
243 |
+
- task:
|
244 |
+
type: knowledge-distillation
|
245 |
+
name: Knowledge Distillation
|
246 |
+
dataset:
|
247 |
+
name: en de
|
248 |
+
type: en-de
|
249 |
+
metrics:
|
250 |
+
- type: negative_mse
|
251 |
+
value: -19.727922976017
|
252 |
+
name: Negative Mse
|
253 |
+
- task:
|
254 |
+
type: translation
|
255 |
+
name: Translation
|
256 |
+
dataset:
|
257 |
+
name: en de
|
258 |
+
type: en-de
|
259 |
+
metrics:
|
260 |
+
- type: src2trg_accuracy
|
261 |
+
value: 0.8920282542885973
|
262 |
+
name: Src2Trg Accuracy
|
263 |
+
- type: trg2src_accuracy
|
264 |
+
value: 0.8910191725529768
|
265 |
+
name: Trg2Src Accuracy
|
266 |
+
- type: mean_accuracy
|
267 |
+
value: 0.8915237134207871
|
268 |
+
name: Mean Accuracy
|
269 |
+
- task:
|
270 |
+
type: semantic-similarity
|
271 |
+
name: Semantic Similarity
|
272 |
+
dataset:
|
273 |
+
name: sts17 en de test
|
274 |
+
type: sts17-en-de-test
|
275 |
+
metrics:
|
276 |
+
- type: pearson_cosine
|
277 |
+
value: 0.5262798164154752
|
278 |
+
name: Pearson Cosine
|
279 |
+
- type: spearman_cosine
|
280 |
+
value: 0.5618005565496922
|
281 |
+
name: Spearman Cosine
|
282 |
+
- type: pearson_manhattan
|
283 |
+
value: 0.5084907192868734
|
284 |
+
name: Pearson Manhattan
|
285 |
+
- type: spearman_manhattan
|
286 |
+
value: 0.5218456102379673
|
287 |
+
name: Spearman Manhattan
|
288 |
+
- type: pearson_euclidean
|
289 |
+
value: 0.5055278909013912
|
290 |
+
name: Pearson Euclidean
|
291 |
+
- type: spearman_euclidean
|
292 |
+
value: 0.5206420646365548
|
293 |
+
name: Spearman Euclidean
|
294 |
+
- type: pearson_dot
|
295 |
+
value: 0.3742195121194434
|
296 |
+
name: Pearson Dot
|
297 |
+
- type: spearman_dot
|
298 |
+
value: 0.3691237073066472
|
299 |
+
name: Spearman Dot
|
300 |
+
- type: pearson_max
|
301 |
+
value: 0.5262798164154752
|
302 |
+
name: Pearson Max
|
303 |
+
- type: spearman_max
|
304 |
+
value: 0.5618005565496922
|
305 |
+
name: Spearman Max
|
306 |
+
- task:
|
307 |
+
type: knowledge-distillation
|
308 |
+
name: Knowledge Distillation
|
309 |
+
dataset:
|
310 |
+
name: en es
|
311 |
+
type: en-es
|
312 |
+
metrics:
|
313 |
+
- type: negative_mse
|
314 |
+
value: -19.472387433052063
|
315 |
+
name: Negative Mse
|
316 |
+
- task:
|
317 |
+
type: translation
|
318 |
+
name: Translation
|
319 |
+
dataset:
|
320 |
+
name: en es
|
321 |
+
type: en-es
|
322 |
+
metrics:
|
323 |
+
- type: src2trg_accuracy
|
324 |
+
value: 0.9434343434343434
|
325 |
+
name: Src2Trg Accuracy
|
326 |
+
- type: trg2src_accuracy
|
327 |
+
value: 0.9464646464646465
|
328 |
+
name: Trg2Src Accuracy
|
329 |
+
- type: mean_accuracy
|
330 |
+
value: 0.944949494949495
|
331 |
+
name: Mean Accuracy
|
332 |
+
- task:
|
333 |
+
type: semantic-similarity
|
334 |
+
name: Semantic Similarity
|
335 |
+
dataset:
|
336 |
+
name: sts17 es en test
|
337 |
+
type: sts17-es-en-test
|
338 |
+
metrics:
|
339 |
+
- type: pearson_cosine
|
340 |
+
value: 0.4944989376773328
|
341 |
+
name: Pearson Cosine
|
342 |
+
- type: spearman_cosine
|
343 |
+
value: 0.502096516024397
|
344 |
+
name: Spearman Cosine
|
345 |
+
- type: pearson_manhattan
|
346 |
+
value: 0.44447965250345656
|
347 |
+
name: Pearson Manhattan
|
348 |
+
- type: spearman_manhattan
|
349 |
+
value: 0.428444032581959
|
350 |
+
name: Spearman Manhattan
|
351 |
+
- type: pearson_euclidean
|
352 |
+
value: 0.43569887867301704
|
353 |
+
name: Pearson Euclidean
|
354 |
+
- type: spearman_euclidean
|
355 |
+
value: 0.4169602915053127
|
356 |
+
name: Spearman Euclidean
|
357 |
+
- type: pearson_dot
|
358 |
+
value: 0.3751122541083453
|
359 |
+
name: Pearson Dot
|
360 |
+
- type: spearman_dot
|
361 |
+
value: 0.37961391381473436
|
362 |
+
name: Spearman Dot
|
363 |
+
- type: pearson_max
|
364 |
+
value: 0.4944989376773328
|
365 |
+
name: Pearson Max
|
366 |
+
- type: spearman_max
|
367 |
+
value: 0.502096516024397
|
368 |
+
name: Spearman Max
|
369 |
+
- task:
|
370 |
+
type: knowledge-distillation
|
371 |
+
name: Knowledge Distillation
|
372 |
+
dataset:
|
373 |
+
name: en tr
|
374 |
+
type: en-tr
|
375 |
+
metrics:
|
376 |
+
- type: negative_mse
|
377 |
+
value: -20.754697918891907
|
378 |
+
name: Negative Mse
|
379 |
+
- task:
|
380 |
+
type: translation
|
381 |
+
name: Translation
|
382 |
+
dataset:
|
383 |
+
name: en tr
|
384 |
+
type: en-tr
|
385 |
+
metrics:
|
386 |
+
- type: src2trg_accuracy
|
387 |
+
value: 0.743202416918429
|
388 |
+
name: Src2Trg Accuracy
|
389 |
+
- type: trg2src_accuracy
|
390 |
+
value: 0.743202416918429
|
391 |
+
name: Trg2Src Accuracy
|
392 |
+
- type: mean_accuracy
|
393 |
+
value: 0.743202416918429
|
394 |
+
name: Mean Accuracy
|
395 |
+
- task:
|
396 |
+
type: semantic-similarity
|
397 |
+
name: Semantic Similarity
|
398 |
+
dataset:
|
399 |
+
name: sts17 en tr test
|
400 |
+
type: sts17-en-tr-test
|
401 |
+
metrics:
|
402 |
+
- type: pearson_cosine
|
403 |
+
value: 0.5544917743538167
|
404 |
+
name: Pearson Cosine
|
405 |
+
- type: spearman_cosine
|
406 |
+
value: 0.581923120433332
|
407 |
+
name: Spearman Cosine
|
408 |
+
- type: pearson_manhattan
|
409 |
+
value: 0.5103770986779784
|
410 |
+
name: Pearson Manhattan
|
411 |
+
- type: spearman_manhattan
|
412 |
+
value: 0.5087986920849596
|
413 |
+
name: Spearman Manhattan
|
414 |
+
- type: pearson_euclidean
|
415 |
+
value: 0.5045523005860614
|
416 |
+
name: Pearson Euclidean
|
417 |
+
- type: spearman_euclidean
|
418 |
+
value: 0.5053157708914061
|
419 |
+
name: Spearman Euclidean
|
420 |
+
- type: pearson_dot
|
421 |
+
value: 0.47262046401401747
|
422 |
+
name: Pearson Dot
|
423 |
+
- type: spearman_dot
|
424 |
+
value: 0.4297595645819756
|
425 |
+
name: Spearman Dot
|
426 |
+
- type: pearson_max
|
427 |
+
value: 0.5544917743538167
|
428 |
+
name: Pearson Max
|
429 |
+
- type: spearman_max
|
430 |
+
value: 0.581923120433332
|
431 |
+
name: Spearman Max
|
432 |
+
- task:
|
433 |
+
type: knowledge-distillation
|
434 |
+
name: Knowledge Distillation
|
435 |
+
dataset:
|
436 |
+
name: en it
|
437 |
+
type: en-it
|
438 |
+
metrics:
|
439 |
+
- type: negative_mse
|
440 |
+
value: -19.76993829011917
|
441 |
+
name: Negative Mse
|
442 |
+
- task:
|
443 |
+
type: translation
|
444 |
+
name: Translation
|
445 |
+
dataset:
|
446 |
+
name: en it
|
447 |
+
type: en-it
|
448 |
+
metrics:
|
449 |
+
- type: src2trg_accuracy
|
450 |
+
value: 0.878147029204431
|
451 |
+
name: Src2Trg Accuracy
|
452 |
+
- type: trg2src_accuracy
|
453 |
+
value: 0.8831822759315207
|
454 |
+
name: Trg2Src Accuracy
|
455 |
+
- type: mean_accuracy
|
456 |
+
value: 0.8806646525679758
|
457 |
+
name: Mean Accuracy
|
458 |
+
- task:
|
459 |
+
type: semantic-similarity
|
460 |
+
name: Semantic Similarity
|
461 |
+
dataset:
|
462 |
+
name: sts17 it en test
|
463 |
+
type: sts17-it-en-test
|
464 |
+
metrics:
|
465 |
+
- type: pearson_cosine
|
466 |
+
value: 0.506365733914274
|
467 |
+
name: Pearson Cosine
|
468 |
+
- type: spearman_cosine
|
469 |
+
value: 0.5250284136808592
|
470 |
+
name: Spearman Cosine
|
471 |
+
- type: pearson_manhattan
|
472 |
+
value: 0.45167598168533407
|
473 |
+
name: Pearson Manhattan
|
474 |
+
- type: spearman_manhattan
|
475 |
+
value: 0.46227952068355316
|
476 |
+
name: Spearman Manhattan
|
477 |
+
- type: pearson_euclidean
|
478 |
+
value: 0.4423426674780287
|
479 |
+
name: Pearson Euclidean
|
480 |
+
- type: spearman_euclidean
|
481 |
+
value: 0.45072801992723094
|
482 |
+
name: Spearman Euclidean
|
483 |
+
- type: pearson_dot
|
484 |
+
value: 0.4201989776020174
|
485 |
+
name: Pearson Dot
|
486 |
+
- type: spearman_dot
|
487 |
+
value: 0.42253906764732746
|
488 |
+
name: Spearman Dot
|
489 |
+
- type: pearson_max
|
490 |
+
value: 0.506365733914274
|
491 |
+
name: Pearson Max
|
492 |
+
- type: spearman_max
|
493 |
+
value: 0.5250284136808592
|
494 |
+
name: Spearman Max
|
495 |
+
---
|
496 |
+
|
497 |
+
# SentenceTransformer based on FacebookAI/xlm-roberta-base
|
498 |
+
|
499 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [FacebookAI/xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base) on the [en-ar](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks), [en-fr](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks), [en-de](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks), [en-es](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks), [en-tr](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks) and [en-it](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks) datasets. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
500 |
+
|
501 |
+
## Model Details
|
502 |
+
|
503 |
+
### Model Description
|
504 |
+
- **Model Type:** Sentence Transformer
|
505 |
+
- **Base model:** [FacebookAI/xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base) <!-- at revision e73636d4f797dec63c3081bb6ed5c7b0bb3f2089 -->
|
506 |
+
- **Maximum Sequence Length:** 128 tokens
|
507 |
+
- **Output Dimensionality:** 768 tokens
|
508 |
+
- **Similarity Function:** Cosine Similarity
|
509 |
+
- **Training Datasets:**
|
510 |
+
- [en-ar](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks)
|
511 |
+
- [en-fr](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks)
|
512 |
+
- [en-de](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks)
|
513 |
+
- [en-es](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks)
|
514 |
+
- [en-tr](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks)
|
515 |
+
- [en-it](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks)
|
516 |
+
- **Languages:** en, multilingual, ar, bg, ca, cs, da, de, el, es, et, fa, fi, fr, gl, gu, he, hi, hr, hu, hy, id, it, ja, ka, ko, ku, lt, lv, mk, mn, mr, ms, my, nb, nl, pl, pt, ro, ru, sk, sl, sq, sr, sv, th, tr, uk, ur, vi, zh
|
517 |
+
<!-- - **License:** Unknown -->
|
518 |
+
|
519 |
+
### Model Sources
|
520 |
+
|
521 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
522 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
523 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
524 |
+
|
525 |
+
### Full Model Architecture
|
526 |
+
|
527 |
+
```
|
528 |
+
SentenceTransformer(
|
529 |
+
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
|
530 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
531 |
+
)
|
532 |
+
```
|
533 |
+
|
534 |
+
## Usage
|
535 |
+
|
536 |
+
### Direct Usage (Sentence Transformers)
|
537 |
+
|
538 |
+
First install the Sentence Transformers library:
|
539 |
+
|
540 |
+
```bash
|
541 |
+
pip install -U sentence-transformers
|
542 |
+
```
|
543 |
+
|
544 |
+
Then you can load this model and run inference.
|
545 |
+
```python
|
546 |
+
from sentence_transformers import SentenceTransformer
|
547 |
+
|
548 |
+
# Download from the 🤗 Hub
|
549 |
+
model = SentenceTransformer("tomaarsen/xlm-roberta-base-multilingual-en-ar-fr-de-es-tr-it")
|
550 |
+
# Run inference
|
551 |
+
sentences = [
|
552 |
+
'Wir sind eins.',
|
553 |
+
'Das versuchen wir zu bieten.',
|
554 |
+
'Ihre Gehirne sind ungefähr 100 Millionen Mal komplizierter.',
|
555 |
+
]
|
556 |
+
embeddings = model.encode(sentences)
|
557 |
+
print(embeddings.shape)
|
558 |
+
# [3, 768]
|
559 |
+
|
560 |
+
# Get the similarity scores for the embeddings
|
561 |
+
similarities = model.similarity(embeddings)
|
562 |
+
print(similarities.shape)
|
563 |
+
# [3, 3]
|
564 |
+
```
|
565 |
+
|
566 |
+
<!--
|
567 |
+
### Direct Usage (Transformers)
|
568 |
+
|
569 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
570 |
+
|
571 |
+
</details>
|
572 |
+
-->
|
573 |
+
|
574 |
+
<!--
|
575 |
+
### Downstream Usage (Sentence Transformers)
|
576 |
+
|
577 |
+
You can finetune this model on your own dataset.
|
578 |
+
|
579 |
+
<details><summary>Click to expand</summary>
|
580 |
+
|
581 |
+
</details>
|
582 |
+
-->
|
583 |
+
|
584 |
+
<!--
|
585 |
+
### Out-of-Scope Use
|
586 |
+
|
587 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
588 |
+
-->
|
589 |
+
|
590 |
+
## Evaluation
|
591 |
+
|
592 |
+
### Metrics
|
593 |
+
|
594 |
+
#### Knowledge Distillation
|
595 |
+
* Dataset: `en-ar`
|
596 |
+
* Evaluated with [<code>MSEEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.MSEEvaluator)
|
597 |
+
|
598 |
+
| Metric | Value |
|
599 |
+
|:-----------------|:-------------|
|
600 |
+
| **negative_mse** | **-20.3955** |
|
601 |
+
|
602 |
+
#### Translation
|
603 |
+
* Dataset: `en-ar`
|
604 |
+
* Evaluated with [<code>TranslationEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.TranslationEvaluator)
|
605 |
+
|
606 |
+
| Metric | Value |
|
607 |
+
|:------------------|:-----------|
|
608 |
+
| src2trg_accuracy | 0.7603 |
|
609 |
+
| trg2src_accuracy | 0.7825 |
|
610 |
+
| **mean_accuracy** | **0.7714** |
|
611 |
+
|
612 |
+
#### Semantic Similarity
|
613 |
+
* Dataset: `sts17-en-ar-test`
|
614 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
615 |
+
|
616 |
+
| Metric | Value |
|
617 |
+
|:-------------------|:-----------|
|
618 |
+
| pearson_cosine | 0.4098 |
|
619 |
+
| spearman_cosine | 0.4425 |
|
620 |
+
| pearson_manhattan | 0.4069 |
|
621 |
+
| spearman_manhattan | 0.4194 |
|
622 |
+
| pearson_euclidean | 0.3801 |
|
623 |
+
| spearman_euclidean | 0.3865 |
|
624 |
+
| pearson_dot | 0.4078 |
|
625 |
+
| spearman_dot | 0.3768 |
|
626 |
+
| pearson_max | 0.4098 |
|
627 |
+
| **spearman_max** | **0.4425** |
|
628 |
+
|
629 |
+
#### Knowledge Distillation
|
630 |
+
* Dataset: `en-fr`
|
631 |
+
* Evaluated with [<code>MSEEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.MSEEvaluator)
|
632 |
+
|
633 |
+
| Metric | Value |
|
634 |
+
|:-----------------|:-------------|
|
635 |
+
| **negative_mse** | **-19.6232** |
|
636 |
+
|
637 |
+
#### Translation
|
638 |
+
* Dataset: `en-fr`
|
639 |
+
* Evaluated with [<code>TranslationEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.TranslationEvaluator)
|
640 |
+
|
641 |
+
| Metric | Value |
|
642 |
+
|:------------------|:-----------|
|
643 |
+
| src2trg_accuracy | 0.8982 |
|
644 |
+
| trg2src_accuracy | 0.8901 |
|
645 |
+
| **mean_accuracy** | **0.8942** |
|
646 |
+
|
647 |
+
#### Semantic Similarity
|
648 |
+
* Dataset: `sts17-fr-en-test`
|
649 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
650 |
+
|
651 |
+
| Metric | Value |
|
652 |
+
|:-------------------|:-----------|
|
653 |
+
| pearson_cosine | 0.5018 |
|
654 |
+
| spearman_cosine | 0.5334 |
|
655 |
+
| pearson_manhattan | 0.4461 |
|
656 |
+
| spearman_manhattan | 0.4547 |
|
657 |
+
| pearson_euclidean | 0.4431 |
|
658 |
+
| spearman_euclidean | 0.4481 |
|
659 |
+
| pearson_dot | 0.4017 |
|
660 |
+
| spearman_dot | 0.4134 |
|
661 |
+
| pearson_max | 0.5018 |
|
662 |
+
| **spearman_max** | **0.5334** |
|
663 |
+
|
664 |
+
#### Knowledge Distillation
|
665 |
+
* Dataset: `en-de`
|
666 |
+
* Evaluated with [<code>MSEEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.MSEEvaluator)
|
667 |
+
|
668 |
+
| Metric | Value |
|
669 |
+
|:-----------------|:-------------|
|
670 |
+
| **negative_mse** | **-19.7279** |
|
671 |
+
|
672 |
+
#### Translation
|
673 |
+
* Dataset: `en-de`
|
674 |
+
* Evaluated with [<code>TranslationEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.TranslationEvaluator)
|
675 |
+
|
676 |
+
| Metric | Value |
|
677 |
+
|:------------------|:-----------|
|
678 |
+
| src2trg_accuracy | 0.892 |
|
679 |
+
| trg2src_accuracy | 0.891 |
|
680 |
+
| **mean_accuracy** | **0.8915** |
|
681 |
+
|
682 |
+
#### Semantic Similarity
|
683 |
+
* Dataset: `sts17-en-de-test`
|
684 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
685 |
+
|
686 |
+
| Metric | Value |
|
687 |
+
|:-------------------|:-----------|
|
688 |
+
| pearson_cosine | 0.5263 |
|
689 |
+
| spearman_cosine | 0.5618 |
|
690 |
+
| pearson_manhattan | 0.5085 |
|
691 |
+
| spearman_manhattan | 0.5218 |
|
692 |
+
| pearson_euclidean | 0.5055 |
|
693 |
+
| spearman_euclidean | 0.5206 |
|
694 |
+
| pearson_dot | 0.3742 |
|
695 |
+
| spearman_dot | 0.3691 |
|
696 |
+
| pearson_max | 0.5263 |
|
697 |
+
| **spearman_max** | **0.5618** |
|
698 |
+
|
699 |
+
#### Knowledge Distillation
|
700 |
+
* Dataset: `en-es`
|
701 |
+
* Evaluated with [<code>MSEEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.MSEEvaluator)
|
702 |
+
|
703 |
+
| Metric | Value |
|
704 |
+
|:-----------------|:-------------|
|
705 |
+
| **negative_mse** | **-19.4724** |
|
706 |
+
|
707 |
+
#### Translation
|
708 |
+
* Dataset: `en-es`
|
709 |
+
* Evaluated with [<code>TranslationEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.TranslationEvaluator)
|
710 |
+
|
711 |
+
| Metric | Value |
|
712 |
+
|:------------------|:-----------|
|
713 |
+
| src2trg_accuracy | 0.9434 |
|
714 |
+
| trg2src_accuracy | 0.9465 |
|
715 |
+
| **mean_accuracy** | **0.9449** |
|
716 |
+
|
717 |
+
#### Semantic Similarity
|
718 |
+
* Dataset: `sts17-es-en-test`
|
719 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
720 |
+
|
721 |
+
| Metric | Value |
|
722 |
+
|:-------------------|:-----------|
|
723 |
+
| pearson_cosine | 0.4945 |
|
724 |
+
| spearman_cosine | 0.5021 |
|
725 |
+
| pearson_manhattan | 0.4445 |
|
726 |
+
| spearman_manhattan | 0.4284 |
|
727 |
+
| pearson_euclidean | 0.4357 |
|
728 |
+
| spearman_euclidean | 0.417 |
|
729 |
+
| pearson_dot | 0.3751 |
|
730 |
+
| spearman_dot | 0.3796 |
|
731 |
+
| pearson_max | 0.4945 |
|
732 |
+
| **spearman_max** | **0.5021** |
|
733 |
+
|
734 |
+
#### Knowledge Distillation
|
735 |
+
* Dataset: `en-tr`
|
736 |
+
* Evaluated with [<code>MSEEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.MSEEvaluator)
|
737 |
+
|
738 |
+
| Metric | Value |
|
739 |
+
|:-----------------|:-------------|
|
740 |
+
| **negative_mse** | **-20.7547** |
|
741 |
+
|
742 |
+
#### Translation
|
743 |
+
* Dataset: `en-tr`
|
744 |
+
* Evaluated with [<code>TranslationEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.TranslationEvaluator)
|
745 |
+
|
746 |
+
| Metric | Value |
|
747 |
+
|:------------------|:-----------|
|
748 |
+
| src2trg_accuracy | 0.7432 |
|
749 |
+
| trg2src_accuracy | 0.7432 |
|
750 |
+
| **mean_accuracy** | **0.7432** |
|
751 |
+
|
752 |
+
#### Semantic Similarity
|
753 |
+
* Dataset: `sts17-en-tr-test`
|
754 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
755 |
+
|
756 |
+
| Metric | Value |
|
757 |
+
|:-------------------|:-----------|
|
758 |
+
| pearson_cosine | 0.5545 |
|
759 |
+
| spearman_cosine | 0.5819 |
|
760 |
+
| pearson_manhattan | 0.5104 |
|
761 |
+
| spearman_manhattan | 0.5088 |
|
762 |
+
| pearson_euclidean | 0.5046 |
|
763 |
+
| spearman_euclidean | 0.5053 |
|
764 |
+
| pearson_dot | 0.4726 |
|
765 |
+
| spearman_dot | 0.4298 |
|
766 |
+
| pearson_max | 0.5545 |
|
767 |
+
| **spearman_max** | **0.5819** |
|
768 |
+
|
769 |
+
#### Knowledge Distillation
|
770 |
+
* Dataset: `en-it`
|
771 |
+
* Evaluated with [<code>MSEEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.MSEEvaluator)
|
772 |
+
|
773 |
+
| Metric | Value |
|
774 |
+
|:-----------------|:-------------|
|
775 |
+
| **negative_mse** | **-19.7699** |
|
776 |
+
|
777 |
+
#### Translation
|
778 |
+
* Dataset: `en-it`
|
779 |
+
* Evaluated with [<code>TranslationEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.TranslationEvaluator)
|
780 |
+
|
781 |
+
| Metric | Value |
|
782 |
+
|:------------------|:-----------|
|
783 |
+
| src2trg_accuracy | 0.8781 |
|
784 |
+
| trg2src_accuracy | 0.8832 |
|
785 |
+
| **mean_accuracy** | **0.8807** |
|
786 |
+
|
787 |
+
#### Semantic Similarity
|
788 |
+
* Dataset: `sts17-it-en-test`
|
789 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
790 |
+
|
791 |
+
| Metric | Value |
|
792 |
+
|:-------------------|:----------|
|
793 |
+
| pearson_cosine | 0.5064 |
|
794 |
+
| spearman_cosine | 0.525 |
|
795 |
+
| pearson_manhattan | 0.4517 |
|
796 |
+
| spearman_manhattan | 0.4623 |
|
797 |
+
| pearson_euclidean | 0.4423 |
|
798 |
+
| spearman_euclidean | 0.4507 |
|
799 |
+
| pearson_dot | 0.4202 |
|
800 |
+
| spearman_dot | 0.4225 |
|
801 |
+
| pearson_max | 0.5064 |
|
802 |
+
| **spearman_max** | **0.525** |
|
803 |
+
|
804 |
+
<!--
|
805 |
+
## Bias, Risks and Limitations
|
806 |
+
|
807 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
808 |
+
-->
|
809 |
+
|
810 |
+
<!--
|
811 |
+
### Recommendations
|
812 |
+
|
813 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
814 |
+
-->
|
815 |
+
|
816 |
+
## Training Details
|
817 |
+
|
818 |
+
### Training Datasets
|
819 |
+
|
820 |
+
#### en-ar
|
821 |
+
|
822 |
+
* Dataset: [en-ar](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks) at [d366ddd](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks/tree/d366dddc3d1ef0421a41f9e534bad4efae6d7730)
|
823 |
+
* Size: 5,000 training samples
|
824 |
+
* Columns: <code>non_english</code> and <code>label</code>
|
825 |
+
* Approximate statistics based on the first 1000 samples:
|
826 |
+
| | non_english | label |
|
827 |
+
|:--------|:----------------------------------------------------------------------------------|:-------------------------------------|
|
828 |
+
| type | string | list |
|
829 |
+
| details | <ul><li>min: 4 tokens</li><li>mean: 27.3 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>size: 768 elements</li></ul> |
|
830 |
+
* Samples:
|
831 |
+
| non_english | label |
|
832 |
+
|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------|
|
833 |
+
| <code>حسناً ان ما نقوم به اليوم .. هو ان نجبر الطلاب لتعلم الرياضيات</code> | <code>[0.3943225145339966, 0.18910610675811768, -0.3788299858570099, 0.4386662542819977, 0.2727023661136627, ...]</code> |
|
834 |
+
| <code>انها المادة الاهم ..</code> | <code>[0.6257511377334595, -0.1750679910182953, -0.5734405517578125, 0.11480475962162018, 1.1682192087173462, ...]</code> |
|
835 |
+
| <code>انا لا انفي لدقيقة واحدة ان الذين يهتمون بالحسابات اليدوية والذين هوايتهم القيام بذلك .. او القيام بالطرق التقليدية في اي مجال ان يقوموا بذلك كما يريدون .</code> | <code>[-0.04564047232270241, 0.4971524775028229, 0.28066301345825195, -0.726702094078064, -0.17846377193927765, ...]</code> |
|
836 |
+
* Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/losses.html#mseloss)
|
837 |
+
|
838 |
+
#### en-fr
|
839 |
+
|
840 |
+
* Dataset: [en-fr](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks) at [d366ddd](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks/tree/d366dddc3d1ef0421a41f9e534bad4efae6d7730)
|
841 |
+
* Size: 5,000 training samples
|
842 |
+
* Columns: <code>non_english</code> and <code>label</code>
|
843 |
+
* Approximate statistics based on the first 1000 samples:
|
844 |
+
| | non_english | label |
|
845 |
+
|:--------|:-----------------------------------------------------------------------------------|:-------------------------------------|
|
846 |
+
| type | string | list |
|
847 |
+
| details | <ul><li>min: 3 tokens</li><li>mean: 30.18 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>size: 768 elements</li></ul> |
|
848 |
+
* Samples:
|
849 |
+
| non_english | label |
|
850 |
+
|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------|
|
851 |
+
| <code>Je ne crois pas que ce soit justifié.</code> | <code>[-0.361753910779953, 0.7323777079582214, 0.6518164277076721, -0.8461216688156128, -0.007496988866478205, ...]</code> |
|
852 |
+
| <code>Je fais cette distinction entre ce qu'on force les gens à faire et les matières générales, et la matière que quelqu'un va apprendre parce que ça lui plait et peut-être même exceller dans ce domaine.</code> | <code>[0.3047865629196167, 0.5270194411277771, 0.26616284251213074, 0.2612147927284241, 0.1950961947441101, ...]</code> |
|
853 |
+
| <code>Quels sont les problèmes en relation avec ça?</code> | <code>[0.2123892903327942, -0.09616081416606903, -0.41965243220329285, -0.5469444394111633, -0.6056491136550903, ...]</code> |
|
854 |
+
* Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/losses.html#mseloss)
|
855 |
+
|
856 |
+
#### en-de
|
857 |
+
|
858 |
+
* Dataset: [en-de](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks) at [d366ddd](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks/tree/d366dddc3d1ef0421a41f9e534bad4efae6d7730)
|
859 |
+
* Size: 5,000 training samples
|
860 |
+
* Columns: <code>non_english</code> and <code>label</code>
|
861 |
+
* Approximate statistics based on the first 1000 samples:
|
862 |
+
| | non_english | label |
|
863 |
+
|:--------|:-----------------------------------------------------------------------------------|:-------------------------------------|
|
864 |
+
| type | string | list |
|
865 |
+
| details | <ul><li>min: 4 tokens</li><li>mean: 27.04 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>size: 768 elements</li></ul> |
|
866 |
+
* Samples:
|
867 |
+
| non_english | label |
|
868 |
+
|:----------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------|
|
869 |
+
| <code>Ich denke, dass es sich aus diesem Grund lohnt, den Leuten das Rechnen von Hand beizubringen.</code> | <code>[0.0960279330611229, 0.7833179831504822, -0.09527698159217834, 0.8104371428489685, 0.7545774579048157, ...]</code> |
|
870 |
+
| <code>Außerdem gibt es ein paar bestimmte konzeptionelle Dinge, die das Rechnen per Hand rechtfertigen, aber ich glaube es sind sehr wenige.</code> | <code>[-0.5939837098121643, 0.9714100956916809, 0.6800686717033386, -0.21585524082183838, -0.7509503364562988, ...]</code> |
|
871 |
+
| <code>Eine Sache, die ich mich oft frage, ist Altgriechisch, und wie das zusammengehört.</code> | <code>[-0.09777048230171204, 0.07093209028244019, -0.42989012598991394, -0.1457514613866806, 1.4382753372192383, ...]</code> |
|
872 |
+
* Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/losses.html#mseloss)
|
873 |
+
|
874 |
+
#### en-es
|
875 |
+
|
876 |
+
* Dataset: [en-es](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks) at [d366ddd](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks/tree/d366dddc3d1ef0421a41f9e534bad4efae6d7730)
|
877 |
+
* Size: 5,000 training samples
|
878 |
+
* Columns: <code>non_english</code> and <code>label</code>
|
879 |
+
* Approximate statistics based on the first 1000 samples:
|
880 |
+
| | non_english | label |
|
881 |
+
|:--------|:-----------------------------------------------------------------------------------|:-------------------------------------|
|
882 |
+
| type | string | list |
|
883 |
+
| details | <ul><li>min: 4 tokens</li><li>mean: 25.42 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>size: 768 elements</li></ul> |
|
884 |
+
* Samples:
|
885 |
+
| non_english | label |
|
886 |
+
|:-----------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------|
|
887 |
+
| <code>Y luego hay ciertas aspectos conceptuales que pueden beneficiarse del cálculo a mano pero creo que son relativamente pocos.</code> | <code>[-0.5939835906028748, 0.9714106917381287, 0.6800685524940491, -0.2158554196357727, -0.7509507536888123, ...]</code> |
|
888 |
+
| <code>Algo que pregunto a menudo es sobre el griego antiguo y cómo se relaciona.</code> | <code>[-0.09777048230171204, 0.07093209028244019, -0.42989012598991394, -0.1457514613866806, 1.4382753372192383, ...]</code> |
|
889 |
+
| <code>Vean, lo que estamos haciendo ahora es forzar a la gente a aprender matemáticas.</code> | <code>[0.3943225145339966, 0.18910610675811768, -0.3788299858570099, 0.4386662542819977, 0.2727023661136627, ...]</code> |
|
890 |
+
* Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/losses.html#mseloss)
|
891 |
+
|
892 |
+
#### en-tr
|
893 |
+
|
894 |
+
* Dataset: [en-tr](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks) at [d366ddd](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks/tree/d366dddc3d1ef0421a41f9e534bad4efae6d7730)
|
895 |
+
* Size: 5,000 training samples
|
896 |
+
* Columns: <code>non_english</code> and <code>label</code>
|
897 |
+
* Approximate statistics based on the first 1000 samples:
|
898 |
+
| | non_english | label |
|
899 |
+
|:--------|:-----------------------------------------------------------------------------------|:-------------------------------------|
|
900 |
+
| type | string | list |
|
901 |
+
| details | <ul><li>min: 4 tokens</li><li>mean: 24.72 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>size: 768 elements</li></ul> |
|
902 |
+
* Samples:
|
903 |
+
| non_english | label |
|
904 |
+
|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------|
|
905 |
+
| <code>Eğer insanlar elle hesaba ilgililerse ya da öğrenmek için özel amaçları varsa konu ne kadar acayip olursa olsun bunu öğrenmeliler, engellemeyi bir an için bile önermiyorum.</code> | <code>[-0.04564047232270241, 0.4971524775028229, 0.28066301345825195, -0.726702094078064, -0.17846377193927765, ...]</code> |
|
906 |
+
| <code>İnsanların kendi ilgi alanlarını takip etmeleri, kesinlikle doğru bir şeydir.</code> | <code>[0.2061387449502945, 0.5284574031829834, 0.3577779233455658, 0.28818392753601074, 0.17228049039840698, ...]</code> |
|
907 |
+
| <code>Ben bir biçimde Antik Yunan hakkında ilgiliyimdir. ancak tüm nüfusu Antik Yunan gibi bir konu hakkında bilgi edinmeye zorlamamalıyız.</code> | <code>[0.12050342559814453, 0.15652479231357574, 0.48636534810066223, -0.13693244755268097, 0.42764803767204285, ...]</code> |
|
908 |
+
* Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/losses.html#mseloss)
|
909 |
+
|
910 |
+
#### en-it
|
911 |
+
|
912 |
+
* Dataset: [en-it](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks) at [d366ddd](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks/tree/d366dddc3d1ef0421a41f9e534bad4efae6d7730)
|
913 |
+
* Size: 5,000 training samples
|
914 |
+
* Columns: <code>non_english</code> and <code>label</code>
|
915 |
+
* Approximate statistics based on the first 1000 samples:
|
916 |
+
| | non_english | label |
|
917 |
+
|:--------|:-----------------------------------------------------------------------------------|:-------------------------------------|
|
918 |
+
| type | string | list |
|
919 |
+
| details | <ul><li>min: 3 tokens</li><li>mean: 26.41 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>size: 768 elements</li></ul> |
|
920 |
+
* Samples:
|
921 |
+
| non_english | label |
|
922 |
+
|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------|
|
923 |
+
| <code>Non credo che sia giustificato.</code> | <code>[-0.36175352334976196, 0.7323781251907349, 0.651816189289093, -0.8461223840713501, -0.007496151141822338, ...]</code> |
|
924 |
+
| <code>Perciò faccio distinzione tra quello che stiamo facendo fare alle persone, le materie che si ritengono principali, e le materie che le persone potrebbero seguire per loro interesse o forse a volte anche incitate a farlo.</code> | <code>[0.3047865927219391, 0.5270194411277771, 0.26616284251213074, 0.2612147927284241, 0.1950961947441101, ...]</code> |
|
925 |
+
| <code>Ma che argomenti porta la gente su questi temi?</code> | <code>[0.2123885154724121, -0.09616123884916306, -0.4196523427963257, -0.5469440817832947, -0.6056501865386963, ...]</code> |
|
926 |
+
* Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/losses.html#mseloss)
|
927 |
+
|
928 |
+
### Evaluation Datasets
|
929 |
+
|
930 |
+
#### en-ar
|
931 |
+
|
932 |
+
* Dataset: [en-ar](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks) at [d366ddd](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks/tree/d366dddc3d1ef0421a41f9e534bad4efae6d7730)
|
933 |
+
* Size: 993 evaluation samples
|
934 |
+
* Columns: <code>non_english</code> and <code>label</code>
|
935 |
+
* Approximate statistics based on the first 1000 samples:
|
936 |
+
| | non_english | label |
|
937 |
+
|:--------|:-----------------------------------------------------------------------------------|:-------------------------------------|
|
938 |
+
| type | string | list |
|
939 |
+
| details | <ul><li>min: 3 tokens</li><li>mean: 28.03 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>size: 768 elements</li></ul> |
|
940 |
+
* Samples:
|
941 |
+
| non_english | label |
|
942 |
+
|:------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------|
|
943 |
+
| <code>شكرا جزيلا كريس.</code> | <code>[-0.4331263303756714, 1.0602688789367676, -0.07791043072938919, -0.4170420169830322, 1.6768444776535034, ...]</code> |
|
944 |
+
| <code>انه فعلا شرف عظيم لي ان أصعد المنصة للمرة الثانية. أنا في غاية الامتنان.</code> | <code>[0.27005696296691895, 0.5391750335693359, -0.2580486238002777, -0.6613674759864807, 0.6738830804824829, ...]</code> |
|
945 |
+
| <code>لقد بهرت فعلا بهذا المؤتمر, وأريد أن أشكركم جميعا على تعليقاتكم الطيبة على ما قلته تلك الليلة.</code> | <code>[-0.25320106744766235, 0.04791366308927536, -0.13174884021282196, -0.7357578277587891, 0.2366354614496231, ...]</code> |
|
946 |
+
* Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/losses.html#mseloss)
|
947 |
+
|
948 |
+
#### en-fr
|
949 |
+
|
950 |
+
* Dataset: [en-fr](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks) at [d366ddd](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks/tree/d366dddc3d1ef0421a41f9e534bad4efae6d7730)
|
951 |
+
* Size: 992 evaluation samples
|
952 |
+
* Columns: <code>non_english</code> and <code>label</code>
|
953 |
+
* Approximate statistics based on the first 1000 samples:
|
954 |
+
| | non_english | label |
|
955 |
+
|:--------|:-----------------------------------------------------------------------------------|:-------------------------------------|
|
956 |
+
| type | string | list |
|
957 |
+
| details | <ul><li>min: 4 tokens</li><li>mean: 30.72 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>size: 768 elements</li></ul> |
|
958 |
+
* Samples:
|
959 |
+
| non_english | label |
|
960 |
+
|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------|
|
961 |
+
| <code>Merci beaucoup, Chris.</code> | <code>[-0.4331263303756714, 1.0602688789367676, -0.07791043072938919, -0.4170420169830322, 1.6768444776535034, ...]</code> |
|
962 |
+
| <code>C'est vraiment un honneur de pouvoir venir sur cette scène une deuxième fois. Je suis très reconnaissant.</code> | <code>[0.27005696296691895, 0.5391750335693359, -0.2580486238002777, -0.6613674759864807, 0.6738830804824829, ...]</code> |
|
963 |
+
| <code>J'ai été très impressionné par cette conférence, et je tiens à vous remercier tous pour vos nombreux et sympathiques commentaires sur ce que j'ai dit l'autre soir.</code> | <code>[-0.25320106744766235, 0.04791366308927536, -0.13174884021282196, -0.7357578277587891, 0.2366354614496231, ...]</code> |
|
964 |
+
* Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/losses.html#mseloss)
|
965 |
+
|
966 |
+
#### en-de
|
967 |
+
|
968 |
+
* Dataset: [en-de](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks) at [d366ddd](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks/tree/d366dddc3d1ef0421a41f9e534bad4efae6d7730)
|
969 |
+
* Size: 991 evaluation samples
|
970 |
+
* Columns: <code>non_english</code> and <code>label</code>
|
971 |
+
* Approximate statistics based on the first 1000 samples:
|
972 |
+
| | non_english | label |
|
973 |
+
|:--------|:-----------------------------------------------------------------------------------|:-------------------------------------|
|
974 |
+
| type | string | list |
|
975 |
+
| details | <ul><li>min: 4 tokens</li><li>mean: 27.71 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>size: 768 elements</li></ul> |
|
976 |
+
* Samples:
|
977 |
+
| non_english | label |
|
978 |
+
|:-----------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------|
|
979 |
+
| <code>Vielen Dank, Chris.</code> | <code>[-0.4331263303756714, 1.0602688789367676, -0.07791043072938919, -0.4170420169830322, 1.6768444776535034, ...]</code> |
|
980 |
+
| <code>Es ist mir wirklich eine Ehre, zweimal auf dieser Bühne stehen zu dürfen. Tausend Dank dafür.</code> | <code>[0.27005696296691895, 0.5391750335693359, -0.2580486238002777, -0.6613674759864807, 0.6738830804824829, ...]</code> |
|
981 |
+
| <code>Ich bin wirklich begeistert von dieser Konferenz, und ich danke Ihnen allen für die vielen netten Kommentare zu meiner Rede vorgestern Abend.</code> | <code>[-0.25320106744766235, 0.04791366308927536, -0.13174884021282196, -0.7357578277587891, 0.2366354614496231, ...]</code> |
|
982 |
+
* Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/losses.html#mseloss)
|
983 |
+
|
984 |
+
#### en-es
|
985 |
+
|
986 |
+
* Dataset: [en-es](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks) at [d366ddd](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks/tree/d366dddc3d1ef0421a41f9e534bad4efae6d7730)
|
987 |
+
* Size: 990 evaluation samples
|
988 |
+
* Columns: <code>non_english</code> and <code>label</code>
|
989 |
+
* Approximate statistics based on the first 1000 samples:
|
990 |
+
| | non_english | label |
|
991 |
+
|:--------|:-----------------------------------------------------------------------------------|:-------------------------------------|
|
992 |
+
| type | string | list |
|
993 |
+
| details | <ul><li>min: 4 tokens</li><li>mean: 26.47 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>size: 768 elements</li></ul> |
|
994 |
+
* Samples:
|
995 |
+
| non_english | label |
|
996 |
+
|:------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------|
|
997 |
+
| <code>Muchas gracias Chris.</code> | <code>[-0.4331263303756714, 1.0602688789367676, -0.07791043072938919, -0.4170420169830322, 1.6768444776535034, ...]</code> |
|
998 |
+
| <code>Y es en verdad un gran honor tener la oportunidad de venir a este escenario por segunda vez. Estoy extremadamente agradecido.</code> | <code>[0.27005696296691895, 0.5391750335693359, -0.2580486238002777, -0.6613674759864807, 0.6738830804824829, ...]</code> |
|
999 |
+
| <code>He quedado conmovido por esta conferencia, y deseo agradecer a todos ustedes sus amables comentarios acerca de lo que tenía que decir la otra noche.</code> | <code>[-0.25320106744766235, 0.04791366308927536, -0.13174884021282196, -0.7357578277587891, 0.2366354614496231, ...]</code> |
|
1000 |
+
* Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/losses.html#mseloss)
|
1001 |
+
|
1002 |
+
#### en-tr
|
1003 |
+
|
1004 |
+
* Dataset: [en-tr](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks) at [d366ddd](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks/tree/d366dddc3d1ef0421a41f9e534bad4efae6d7730)
|
1005 |
+
* Size: 993 evaluation samples
|
1006 |
+
* Columns: <code>non_english</code> and <code>label</code>
|
1007 |
+
* Approximate statistics based on the first 1000 samples:
|
1008 |
+
| | non_english | label |
|
1009 |
+
|:--------|:----------------------------------------------------------------------------------|:-------------------------------------|
|
1010 |
+
| type | string | list |
|
1011 |
+
| details | <ul><li>min: 4 tokens</li><li>mean: 25.4 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>size: 768 elements</li></ul> |
|
1012 |
+
* Samples:
|
1013 |
+
| non_english | label |
|
1014 |
+
|:----------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------|
|
1015 |
+
| <code>Çok teşekkür ederim Chris.</code> | <code>[-0.4331263303756714, 1.0602688789367676, -0.07791043072938919, -0.4170420169830322, 1.6768444776535034, ...]</code> |
|
1016 |
+
| <code>Bu sahnede ikinci kez yer alma fırsatına sahip olmak gerçekten büyük bir onur. Çok minnettarım.</code> | <code>[0.27005696296691895, 0.5391750335693359, -0.2580486238002777, -0.6613674759864807, 0.6738830804824829, ...]</code> |
|
1017 |
+
| <code>Bu konferansta çok mutlu oldum, ve anlattıklarımla ilgili güzel yorumlarınız için sizlere çok teşekkür ederim.</code> | <code>[-0.25320106744766235, 0.04791366308927536, -0.13174884021282196, -0.7357578277587891, 0.2366354614496231, ...]</code> |
|
1018 |
+
* Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/losses.html#mseloss)
|
1019 |
+
|
1020 |
+
#### en-it
|
1021 |
+
|
1022 |
+
* Dataset: [en-it](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks) at [d366ddd](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks/tree/d366dddc3d1ef0421a41f9e534bad4efae6d7730)
|
1023 |
+
* Size: 993 evaluation samples
|
1024 |
+
* Columns: <code>non_english</code> and <code>label</code>
|
1025 |
+
* Approximate statistics based on the first 1000 samples:
|
1026 |
+
| | non_english | label |
|
1027 |
+
|:--------|:-----------------------------------------------------------------------------------|:-------------------------------------|
|
1028 |
+
| type | string | list |
|
1029 |
+
| details | <ul><li>min: 4 tokens</li><li>mean: 27.94 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>size: 768 elements</li></ul> |
|
1030 |
+
* Samples:
|
1031 |
+
| non_english | label |
|
1032 |
+
|:--------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------|
|
1033 |
+
| <code>Grazie mille, Chris.</code> | <code>[-0.4331263303756714, 1.0602688789367676, -0.07791043072938919, -0.4170420169830322, 1.6768444776535034, ...]</code> |
|
1034 |
+
| <code>E’ veramente un grande onore venire su questo palco due volte. Vi sono estremamente grato.</code> | <code>[0.27005696296691895, 0.5391750335693359, -0.2580486238002777, -0.6613674759864807, 0.6738830804824829, ...]</code> |
|
1035 |
+
| <code>Sono impressionato da questa conferenza, e voglio ringraziare tutti voi per i tanti, lusinghieri commenti, anche perché... Ne ho bisogno!!</code> | <code>[-0.25320106744766235, 0.04791366308927536, -0.13174884021282196, -0.7357578277587891, 0.2366354614496231, ...]</code> |
|
1036 |
+
* Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/losses.html#mseloss)
|
1037 |
+
|
1038 |
+
### Training Hyperparameters
|
1039 |
+
#### Non-Default Hyperparameters
|
1040 |
+
|
1041 |
+
- `eval_strategy`: steps
|
1042 |
+
- `per_device_train_batch_size`: 64
|
1043 |
+
- `per_device_eval_batch_size`: 64
|
1044 |
+
- `learning_rate`: 2e-05
|
1045 |
+
- `num_train_epochs`: 5
|
1046 |
+
- `warmup_ratio`: 0.1
|
1047 |
+
- `fp16`: True
|
1048 |
+
|
1049 |
+
#### All Hyperparameters
|
1050 |
+
<details><summary>Click to expand</summary>
|
1051 |
+
|
1052 |
+
- `overwrite_output_dir`: False
|
1053 |
+
- `do_predict`: False
|
1054 |
+
- `eval_strategy`: steps
|
1055 |
+
- `prediction_loss_only`: False
|
1056 |
+
- `per_device_train_batch_size`: 64
|
1057 |
+
- `per_device_eval_batch_size`: 64
|
1058 |
+
- `per_gpu_train_batch_size`: None
|
1059 |
+
- `per_gpu_eval_batch_size`: None
|
1060 |
+
- `gradient_accumulation_steps`: 1
|
1061 |
+
- `eval_accumulation_steps`: None
|
1062 |
+
- `learning_rate`: 2e-05
|
1063 |
+
- `weight_decay`: 0.0
|
1064 |
+
- `adam_beta1`: 0.9
|
1065 |
+
- `adam_beta2`: 0.999
|
1066 |
+
- `adam_epsilon`: 1e-08
|
1067 |
+
- `max_grad_norm`: 1.0
|
1068 |
+
- `num_train_epochs`: 5
|
1069 |
+
- `max_steps`: -1
|
1070 |
+
- `lr_scheduler_type`: linear
|
1071 |
+
- `lr_scheduler_kwargs`: {}
|
1072 |
+
- `warmup_ratio`: 0.1
|
1073 |
+
- `warmup_steps`: 0
|
1074 |
+
- `log_level`: passive
|
1075 |
+
- `log_level_replica`: warning
|
1076 |
+
- `log_on_each_node`: True
|
1077 |
+
- `logging_nan_inf_filter`: True
|
1078 |
+
- `save_safetensors`: True
|
1079 |
+
- `save_on_each_node`: False
|
1080 |
+
- `save_only_model`: False
|
1081 |
+
- `no_cuda`: False
|
1082 |
+
- `use_cpu`: False
|
1083 |
+
- `use_mps_device`: False
|
1084 |
+
- `seed`: 42
|
1085 |
+
- `data_seed`: None
|
1086 |
+
- `jit_mode_eval`: False
|
1087 |
+
- `use_ipex`: False
|
1088 |
+
- `bf16`: False
|
1089 |
+
- `fp16`: True
|
1090 |
+
- `fp16_opt_level`: O1
|
1091 |
+
- `half_precision_backend`: auto
|
1092 |
+
- `bf16_full_eval`: False
|
1093 |
+
- `fp16_full_eval`: False
|
1094 |
+
- `tf32`: None
|
1095 |
+
- `local_rank`: 0
|
1096 |
+
- `ddp_backend`: None
|
1097 |
+
- `tpu_num_cores`: None
|
1098 |
+
- `tpu_metrics_debug`: False
|
1099 |
+
- `debug`: []
|
1100 |
+
- `dataloader_drop_last`: False
|
1101 |
+
- `dataloader_num_workers`: 0
|
1102 |
+
- `dataloader_prefetch_factor`: None
|
1103 |
+
- `past_index`: -1
|
1104 |
+
- `disable_tqdm`: False
|
1105 |
+
- `remove_unused_columns`: True
|
1106 |
+
- `label_names`: None
|
1107 |
+
- `load_best_model_at_end`: False
|
1108 |
+
- `ignore_data_skip`: False
|
1109 |
+
- `fsdp`: []
|
1110 |
+
- `fsdp_min_num_params`: 0
|
1111 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
1112 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
1113 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
1114 |
+
- `deepspeed`: None
|
1115 |
+
- `label_smoothing_factor`: 0.0
|
1116 |
+
- `optim`: adamw_torch
|
1117 |
+
- `optim_args`: None
|
1118 |
+
- `adafactor`: False
|
1119 |
+
- `group_by_length`: False
|
1120 |
+
- `length_column_name`: length
|
1121 |
+
- `ddp_find_unused_parameters`: None
|
1122 |
+
- `ddp_bucket_cap_mb`: None
|
1123 |
+
- `ddp_broadcast_buffers`: None
|
1124 |
+
- `dataloader_pin_memory`: True
|
1125 |
+
- `dataloader_persistent_workers`: False
|
1126 |
+
- `skip_memory_metrics`: True
|
1127 |
+
- `use_legacy_prediction_loop`: False
|
1128 |
+
- `push_to_hub`: False
|
1129 |
+
- `resume_from_checkpoint`: None
|
1130 |
+
- `hub_model_id`: None
|
1131 |
+
- `hub_strategy`: every_save
|
1132 |
+
- `hub_private_repo`: False
|
1133 |
+
- `hub_always_push`: False
|
1134 |
+
- `gradient_checkpointing`: False
|
1135 |
+
- `gradient_checkpointing_kwargs`: None
|
1136 |
+
- `include_inputs_for_metrics`: False
|
1137 |
+
- `eval_do_concat_batches`: True
|
1138 |
+
- `fp16_backend`: auto
|
1139 |
+
- `push_to_hub_model_id`: None
|
1140 |
+
- `push_to_hub_organization`: None
|
1141 |
+
- `mp_parameters`:
|
1142 |
+
- `auto_find_batch_size`: False
|
1143 |
+
- `full_determinism`: False
|
1144 |
+
- `torchdynamo`: None
|
1145 |
+
- `ray_scope`: last
|
1146 |
+
- `ddp_timeout`: 1800
|
1147 |
+
- `torch_compile`: False
|
1148 |
+
- `torch_compile_backend`: None
|
1149 |
+
- `torch_compile_mode`: None
|
1150 |
+
- `dispatch_batches`: None
|
1151 |
+
- `split_batches`: None
|
1152 |
+
- `include_tokens_per_second`: False
|
1153 |
+
- `include_num_input_tokens_seen`: False
|
1154 |
+
- `neftune_noise_alpha`: None
|
1155 |
+
- `optim_target_modules`: None
|
1156 |
+
- `batch_sampler`: batch_sampler
|
1157 |
+
- `multi_dataset_batch_sampler`: proportional
|
1158 |
+
|
1159 |
+
</details>
|
1160 |
+
|
1161 |
+
### Training Logs
|
1162 |
+
| Epoch | Step | Training Loss | en-ar loss | en-it loss | en-de loss | en-fr loss | en-es loss | en-tr loss | en-ar_mean_accuracy | en-ar_negative_mse | en-de_mean_accuracy | en-de_negative_mse | en-es_mean_accuracy | en-es_negative_mse | en-fr_mean_accuracy | en-fr_negative_mse | en-it_mean_accuracy | en-it_negative_mse | en-tr_mean_accuracy | en-tr_negative_mse | sts17-en-ar-test_spearman_max | sts17-en-de-test_spearman_max | sts17-en-tr-test_spearman_max | sts17-es-en-test_spearman_max | sts17-fr-en-test_spearman_max | sts17-it-en-test_spearman_max |
|
1163 |
+
|:------:|:----:|:-------------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:-------------------:|:------------------:|:-------------------:|:------------------:|:-------------------:|:------------------:|:-------------------:|:------------------:|:-------------------:|:------------------:|:-------------------:|:------------------:|:-----------------------------:|:-----------------------------:|:-----------------------------:|:-----------------------------:|:-----------------------------:|:-----------------------------:|
|
1164 |
+
| 0.2110 | 100 | 0.5581 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
1165 |
+
| 0.4219 | 200 | 0.3071 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
1166 |
+
| 0.6329 | 300 | 0.2675 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
1167 |
+
| 0.8439 | 400 | 0.2606 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
1168 |
+
| 1.0549 | 500 | 0.2589 | 0.2519 | 0.2498 | 0.2511 | 0.2488 | 0.2503 | 0.2512 | 0.1254 | -25.1903 | 0.2523 | -25.1089 | 0.2591 | -25.0276 | 0.2409 | -24.8803 | 0.2180 | -24.9768 | 0.1158 | -25.1219 | 0.0308 | 0.1281 | 0.1610 | 0.1465 | 0.0552 | 0.0518 |
|
1169 |
+
| 1.2658 | 600 | 0.2504 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
1170 |
+
| 1.4768 | 700 | 0.2427 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
1171 |
+
| 1.6878 | 800 | 0.2337 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
1172 |
+
| 1.8987 | 900 | 0.2246 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
1173 |
+
| 2.1097 | 1000 | 0.2197 | 0.2202 | 0.2157 | 0.2151 | 0.2147 | 0.2139 | 0.2218 | 0.5841 | -22.0204 | 0.8012 | -21.5087 | 0.8495 | -21.3935 | 0.7959 | -21.4660 | 0.7815 | -21.5699 | 0.6007 | -22.1778 | 0.3346 | 0.4013 | 0.4727 | 0.3353 | 0.3827 | 0.3292 |
|
1174 |
+
| 2.3207 | 1100 | 0.2163 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
1175 |
+
| 2.5316 | 1200 | 0.2123 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
1176 |
+
| 2.7426 | 1300 | 0.2069 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
1177 |
+
| 2.9536 | 1400 | 0.2048 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
1178 |
+
| 3.1646 | 1500 | 0.2009 | 0.2086 | 0.2029 | 0.2022 | 0.2012 | 0.2002 | 0.2111 | 0.7367 | -20.8567 | 0.8739 | -20.2247 | 0.9303 | -20.0215 | 0.8755 | -20.1213 | 0.8600 | -20.2900 | 0.7165 | -21.1119 | 0.4087 | 0.5473 | 0.5551 | 0.4724 | 0.4882 | 0.4690 |
|
1179 |
+
| 3.3755 | 1600 | 0.2019 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
1180 |
+
| 3.5865 | 1700 | 0.1989 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
1181 |
+
| 3.7975 | 1800 | 0.196 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
1182 |
+
| 4.0084 | 1900 | 0.1943 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
1183 |
+
| 4.2194 | 2000 | 0.194 | 0.2040 | 0.1977 | 0.1973 | 0.1962 | 0.1947 | 0.2075 | 0.7714 | -20.3955 | 0.8915 | -19.7279 | 0.9449 | -19.4724 | 0.8942 | -19.6232 | 0.8807 | -19.7699 | 0.7432 | -20.7547 | 0.4425 | 0.5618 | 0.5819 | 0.5021 | 0.5334 | 0.5250 |
|
1184 |
+
| 4.4304 | 2100 | 0.1951 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
1185 |
+
| 4.6414 | 2200 | 0.1928 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
1186 |
+
| 4.8523 | 2300 | 0.1909 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
1187 |
+
|
1188 |
+
|
1189 |
+
### Environmental Impact
|
1190 |
+
Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
|
1191 |
+
- **Energy Consumed**: 0.060 kWh
|
1192 |
+
- **Carbon Emitted**: 0.023 kg of CO2
|
1193 |
+
- **Hours Used**: 0.179 hours
|
1194 |
+
|
1195 |
+
### Training Hardware
|
1196 |
+
- **On Cloud**: No
|
1197 |
+
- **GPU Model**: 1 x NVIDIA GeForce RTX 3090
|
1198 |
+
- **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K
|
1199 |
+
- **RAM Size**: 31.78 GB
|
1200 |
+
|
1201 |
+
### Framework Versions
|
1202 |
+
- Python: 3.11.6
|
1203 |
+
- Sentence Transformers: 3.0.0.dev0
|
1204 |
+
- Transformers: 4.41.0.dev0
|
1205 |
+
- PyTorch: 2.3.0+cu121
|
1206 |
+
- Accelerate: 0.26.1
|
1207 |
+
- Datasets: 2.18.0
|
1208 |
+
- Tokenizers: 0.19.1
|
1209 |
+
|
1210 |
+
## Citation
|
1211 |
+
|
1212 |
+
### BibTeX
|
1213 |
+
|
1214 |
+
#### Sentence Transformers
|
1215 |
+
```bibtex
|
1216 |
+
@inproceedings{reimers-2019-sentence-bert,
|
1217 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
1218 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
1219 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
1220 |
+
month = "11",
|
1221 |
+
year = "2019",
|
1222 |
+
publisher = "Association for Computational Linguistics",
|
1223 |
+
url = "https://arxiv.org/abs/1908.10084",
|
1224 |
+
}
|
1225 |
+
```
|
1226 |
+
|
1227 |
+
#### MSELoss
|
1228 |
+
```bibtex
|
1229 |
+
@inproceedings{reimers-2020-multilingual-sentence-bert,
|
1230 |
+
title = "Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation",
|
1231 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
1232 |
+
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing",
|
1233 |
+
month = "11",
|
1234 |
+
year = "2020",
|
1235 |
+
publisher = "Association for Computational Linguistics",
|
1236 |
+
url = "https://arxiv.org/abs/2004.09813",
|
1237 |
+
}
|
1238 |
+
```
|
1239 |
+
|
1240 |
+
<!--
|
1241 |
+
## Glossary
|
1242 |
+
|
1243 |
+
*Clearly define terms in order to be accessible across audiences.*
|
1244 |
+
-->
|
1245 |
+
|
1246 |
+
<!--
|
1247 |
+
## Model Card Authors
|
1248 |
+
|
1249 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
1250 |
+
-->
|
1251 |
+
|
1252 |
+
<!--
|
1253 |
+
## Model Card Contact
|
1254 |
+
|
1255 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
1256 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "xlm-roberta-base",
|
3 |
+
"architectures": [
|
4 |
+
"XLMRobertaModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"classifier_dropout": null,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"hidden_act": "gelu",
|
11 |
+
"hidden_dropout_prob": 0.1,
|
12 |
+
"hidden_size": 768,
|
13 |
+
"initializer_range": 0.02,
|
14 |
+
"intermediate_size": 3072,
|
15 |
+
"layer_norm_eps": 1e-05,
|
16 |
+
"max_position_embeddings": 514,
|
17 |
+
"model_type": "xlm-roberta",
|
18 |
+
"num_attention_heads": 12,
|
19 |
+
"num_hidden_layers": 12,
|
20 |
+
"output_past": true,
|
21 |
+
"pad_token_id": 1,
|
22 |
+
"position_embedding_type": "absolute",
|
23 |
+
"torch_dtype": "float32",
|
24 |
+
"transformers_version": "4.41.0.dev0",
|
25 |
+
"type_vocab_size": 1,
|
26 |
+
"use_cache": true,
|
27 |
+
"vocab_size": 250002
|
28 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.0.0.dev0",
|
4 |
+
"transformers": "4.41.0.dev0",
|
5 |
+
"pytorch": "2.3.0+cu121"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": null
|
10 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:149e16f1341357d04aa0ffc019a3dd067c6a43fd0e9c878c9b981c08c577cabd
|
3 |
+
size 1112197096
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 128,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
sentencepiece.bpe.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
|
3 |
+
size 5069051
|
special_tokens_map.json
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "<s>",
|
3 |
+
"cls_token": "<s>",
|
4 |
+
"eos_token": "</s>",
|
5 |
+
"mask_token": {
|
6 |
+
"content": "<mask>",
|
7 |
+
"lstrip": true,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false
|
11 |
+
},
|
12 |
+
"pad_token": "<pad>",
|
13 |
+
"sep_token": "</s>",
|
14 |
+
"unk_token": "<unk>"
|
15 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cad551d5600a84242d0973327029452a1e3672ba6313c2a3c3d69c4310e12719
|
3 |
+
size 17082987
|
tokenizer_config.json
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "<s>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "<pad>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "</s>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "<unk>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"250001": {
|
36 |
+
"content": "<mask>",
|
37 |
+
"lstrip": true,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"bos_token": "<s>",
|
45 |
+
"clean_up_tokenization_spaces": true,
|
46 |
+
"cls_token": "<s>",
|
47 |
+
"eos_token": "</s>",
|
48 |
+
"mask_token": "<mask>",
|
49 |
+
"model_max_length": 512,
|
50 |
+
"pad_token": "<pad>",
|
51 |
+
"sep_token": "</s>",
|
52 |
+
"tokenizer_class": "XLMRobertaTokenizer",
|
53 |
+
"unk_token": "<unk>"
|
54 |
+
}
|