tomaarsen HF staff commited on
Commit
6f5e3ad
1 Parent(s): 22e0578

Create train_script.py

Browse files
Files changed (1) hide show
  1. train_script.py +97 -0
train_script.py ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import logging
2
+ from datasets import load_dataset, Dataset
3
+ from sentence_transformers import (
4
+ SentenceTransformer,
5
+ SentenceTransformerTrainer,
6
+ SentenceTransformerTrainingArguments,
7
+ SentenceTransformerModelCardData,
8
+ )
9
+ from sentence_transformers.losses import MultipleNegativesRankingLoss
10
+ from sentence_transformers.training_args import BatchSamplers
11
+ from sentence_transformers.evaluation import InformationRetrievalEvaluator
12
+
13
+
14
+ logging.basicConfig(
15
+ format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO
16
+ )
17
+
18
+ # 1. Load a model to finetune with 2. (Optional) model card data
19
+ model = SentenceTransformer(
20
+ "jinaai/jina-embeddings-v2-base-en",
21
+ trust_remote_code=True,
22
+ model_card_data=SentenceTransformerModelCardData(
23
+ language="en",
24
+ license="apache-2.0",
25
+ model_name="jina-embeddings-v2-base-en trained on Natural Questions pairs",
26
+ ),
27
+ )
28
+ model_name = "jina-v2-base-natural-questions"
29
+
30
+ # 3. Load a dataset to finetune on
31
+ dataset = load_dataset("sentence-transformers/natural-questions", split="train")
32
+ dataset = dataset.add_column("id", range(len(dataset)))
33
+ train_dataset: Dataset = dataset.select(range(90_000))
34
+ eval_dataset: Dataset = dataset.select(range(90_000, len(dataset)))
35
+
36
+ # 4. Define a loss function
37
+ loss = MultipleNegativesRankingLoss(model)
38
+
39
+
40
+ # 5. (Optional) Specify training arguments
41
+ args = SentenceTransformerTrainingArguments(
42
+ # Required parameter:
43
+ output_dir=f"models/{model_name}",
44
+ # Optional training parameters:
45
+ num_train_epochs=1,
46
+ per_device_train_batch_size=16,
47
+ per_device_eval_batch_size=16,
48
+ learning_rate=2e-5,
49
+ warmup_ratio=0.1,
50
+ fp16=False, # Set to False if you get an error that your GPU can't run on FP16
51
+ bf16=True, # Set to True if you have a GPU that supports BF16
52
+ batch_sampler=BatchSamplers.NO_DUPLICATES, # MultipleNegativesRankingLoss benefits from no duplicate samples in a batch
53
+ # Optional tracking/debugging parameters:
54
+ eval_strategy="steps",
55
+ eval_steps=200,
56
+ save_strategy="steps",
57
+ save_steps=200,
58
+ save_total_limit=2,
59
+ logging_steps=200,
60
+ logging_first_step=True,
61
+ run_name=model_name, # Will be used in W&B if `wandb` is installed
62
+ )
63
+
64
+ # 6. (Optional) Create an evaluator & evaluate the base model
65
+ # The full corpus, but only the evaluation queries
66
+ queries = dict(zip(eval_dataset["id"], eval_dataset["query"]))
67
+ corpus = {cid: dataset[cid]["answer"] for cid in range(10_000)} | {cid: dataset[cid]["answer"] for cid in eval_dataset["id"]}
68
+ relevant_docs = {qid: {qid} for qid in eval_dataset["id"]}
69
+ dev_evaluator = InformationRetrievalEvaluator(
70
+ corpus=corpus,
71
+ queries=queries,
72
+ relevant_docs=relevant_docs,
73
+ show_progress_bar=True,
74
+ name="natural-questions-dev",
75
+ batch_size=8,
76
+ )
77
+ dev_evaluator(model)
78
+
79
+ # 7. Create a trainer & train
80
+ trainer = SentenceTransformerTrainer(
81
+ model=model,
82
+ args=args,
83
+ train_dataset=train_dataset.remove_columns("id"),
84
+ eval_dataset=eval_dataset.remove_columns("id"),
85
+ loss=loss,
86
+ evaluator=dev_evaluator,
87
+ )
88
+ trainer.train()
89
+
90
+ # (Optional) Evaluate the trained model on the evaluator after training
91
+ dev_evaluator(model)
92
+
93
+ # 8. Save the trained model
94
+ model.save_pretrained(f"models/{model_name}/final")
95
+
96
+ # 9. (Optional) Push it to the Hugging Face Hub
97
+ model.push_to_hub(f"{model_name}")