tomaarsen HF staff commited on
Commit
22e309f
1 Parent(s): dbe240e

Add new SentenceTransformer model.

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ 1_WordWeights/config.json filter=lfs diff=lfs merge=lfs -text
0_WordEmbeddings/pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:57ae7e7c7ecc9d18987bac8c73da82d327ea4dc8c01aed9be40570c64b632ccc
3
+ size 480002490
0_WordEmbeddings/whitespacetokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff
 
0_WordEmbeddings/wordembedding_config.json ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ {
2
+ "tokenizer_class": "sentence_transformers.models.tokenizer.WhitespaceTokenizer.WhitespaceTokenizer",
3
+ "update_embeddings": false,
4
+ "max_seq_length": 1000000
5
+ }
1_WordWeights/config.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4077541afb13243c2b2629a98ef5ef9b51b096bd7abc2832d4cb2131b18ac3a9
3
+ size 146155899
2_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 300,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
3_Dense/config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"in_features": 300, "out_features": 300, "bias": true, "activation_function": "torch.nn.modules.activation.Tanh"}
3_Dense/pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f16633568b900e65f5b4a0b18dab3e2f6fa75da55fae52574ba0ccf4723fa374
3
+ size 362812
4_Dense/config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"in_features": 300, "out_features": 300, "bias": true, "activation_function": "torch.nn.modules.activation.Tanh"}
4_Dense/pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:52ffa050d53e7ecb4220b21d818441507e7df5c947871df7ffde360e99171365
3
+ size 362812
README.md ADDED
@@ -0,0 +1,517 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ library_name: sentence-transformers
5
+ tags:
6
+ - sentence-transformers
7
+ - sentence-similarity
8
+ - feature-extraction
9
+ - loss:CosineSimilarityLoss
10
+ metrics:
11
+ - pearson_cosine
12
+ - spearman_cosine
13
+ - pearson_manhattan
14
+ - spearman_manhattan
15
+ - pearson_euclidean
16
+ - spearman_euclidean
17
+ - pearson_dot
18
+ - spearman_dot
19
+ - pearson_max
20
+ - spearman_max
21
+ widget:
22
+ - source_sentence: Women are running.
23
+ sentences:
24
+ - Women are running.
25
+ - A brown horse in a green field.
26
+ - A man plays the guitar and sings.
27
+ - source_sentence: A baby is laughing.
28
+ sentences:
29
+ - A baby is crawling happily.
30
+ - ‘Nelson Mandela is recovering’
31
+ - Chinese shares close higher on Tuesday
32
+ - source_sentence: A woman is reading.
33
+ sentences:
34
+ - A woman is writing something.
35
+ - A slow loris hanging on a cord.
36
+ - The lamb is looking at the camera.
37
+ - source_sentence: A man jumping rope
38
+ sentences:
39
+ - A man is climbing a rope.
40
+ - Blast on Indian train kills one
41
+ - Finance minister promises no new taxes
42
+ - source_sentence: A woman is dancing.
43
+ sentences:
44
+ - A man is dancing.
45
+ - A brown horse in a green field.
46
+ - Australia cuts rates to record low
47
+ pipeline_tag: sentence-similarity
48
+ co2_eq_emissions:
49
+ emissions: 0.1439181045681014
50
+ energy_consumed: 0.0003702530590737928
51
+ source: codecarbon
52
+ training_type: fine-tuning
53
+ on_cloud: false
54
+ cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
55
+ ram_total_size: 31.777088165283203
56
+ hours_used: 0.009
57
+ hardware_used: 1 x NVIDIA GeForce RTX 3090
58
+ model-index:
59
+ - name: SentenceTransformer
60
+ results:
61
+ - task:
62
+ type: semantic-similarity
63
+ name: Semantic Similarity
64
+ dataset:
65
+ name: sts dev
66
+ type: sts-dev
67
+ metrics:
68
+ - type: pearson_cosine
69
+ value: 0.757199024718024
70
+ name: Pearson Cosine
71
+ - type: spearman_cosine
72
+ value: 0.7531549457233511
73
+ name: Spearman Cosine
74
+ - type: pearson_manhattan
75
+ value: 0.716988424804303
76
+ name: Pearson Manhattan
77
+ - type: spearman_manhattan
78
+ value: 0.7272795203957675
79
+ name: Spearman Manhattan
80
+ - type: pearson_euclidean
81
+ value: 0.71702575877283
82
+ name: Pearson Euclidean
83
+ - type: spearman_euclidean
84
+ value: 0.7268093526359362
85
+ name: Spearman Euclidean
86
+ - type: pearson_dot
87
+ value: 0.5785350115318801
88
+ name: Pearson Dot
89
+ - type: spearman_dot
90
+ value: 0.6221005727058916
91
+ name: Spearman Dot
92
+ - type: pearson_max
93
+ value: 0.757199024718024
94
+ name: Pearson Max
95
+ - type: spearman_max
96
+ value: 0.7531549457233511
97
+ name: Spearman Max
98
+ - task:
99
+ type: semantic-similarity
100
+ name: Semantic Similarity
101
+ dataset:
102
+ name: sts test
103
+ type: sts-test
104
+ metrics:
105
+ - type: pearson_cosine
106
+ value: 0.6689490577594517
107
+ name: Pearson Cosine
108
+ - type: spearman_cosine
109
+ value: 0.6405445334782408
110
+ name: Spearman Cosine
111
+ - type: pearson_manhattan
112
+ value: 0.6176678945140798
113
+ name: Pearson Manhattan
114
+ - type: spearman_manhattan
115
+ value: 0.615214522139229
116
+ name: Spearman Manhattan
117
+ - type: pearson_euclidean
118
+ value: 0.6184837579619497
119
+ name: Pearson Euclidean
120
+ - type: spearman_euclidean
121
+ value: 0.6162673767473799
122
+ name: Spearman Euclidean
123
+ - type: pearson_dot
124
+ value: 0.50934636927282
125
+ name: Pearson Dot
126
+ - type: spearman_dot
127
+ value: 0.5194344025197553
128
+ name: Spearman Dot
129
+ - type: pearson_max
130
+ value: 0.6689490577594517
131
+ name: Pearson Max
132
+ - type: spearman_max
133
+ value: 0.6405445334782408
134
+ name: Spearman Max
135
+ ---
136
+
137
+ # SentenceTransformer
138
+
139
+ This is a [sentence-transformers](https://www.SBERT.net) model trained on the [sentence-transformers/stsb](https://huggingface.co/datasets/sentence-transformers/stsb) dataset. It maps sentences & paragraphs to a 300-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
140
+
141
+ ## Model Details
142
+
143
+ ### Model Description
144
+ - **Model Type:** Sentence Transformer
145
+ <!-- - **Base model:** [Unknown](https://huggingface.co/unknown) -->
146
+ - **Maximum Sequence Length:** 1000000 tokens
147
+ - **Output Dimensionality:** 300 tokens
148
+ - **Similarity Function:** Cosine Similarity
149
+ - **Training Dataset:**
150
+ - [sentence-transformers/stsb](https://huggingface.co/datasets/sentence-transformers/stsb)
151
+ - **Language:** en
152
+ <!-- - **License:** Unknown -->
153
+
154
+ ### Model Sources
155
+
156
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
157
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
158
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
159
+
160
+ ### Full Model Architecture
161
+
162
+ ```
163
+ SentenceTransformer(
164
+ (0): WordEmbeddings(
165
+ (emb_layer): Embedding(400001, 300)
166
+ )
167
+ (1): WordWeights(
168
+ (emb_layer): Embedding(400001, 1)
169
+ )
170
+ (2): Pooling({'word_embedding_dimension': 300, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
171
+ (3): Dense({'in_features': 300, 'out_features': 300, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
172
+ (4): Dense({'in_features': 300, 'out_features': 300, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
173
+ )
174
+ ```
175
+
176
+ ## Usage
177
+
178
+ ### Direct Usage (Sentence Transformers)
179
+
180
+ First install the Sentence Transformers library:
181
+
182
+ ```bash
183
+ pip install -U sentence-transformers
184
+ ```
185
+
186
+ Then you can load this model and run inference.
187
+ ```python
188
+ from sentence_transformers import SentenceTransformer
189
+
190
+ # Download from the 🤗 Hub
191
+ model = SentenceTransformer("tomaarsen/glove-wikipedia-tf-idf")
192
+ # Run inference
193
+ sentences = [
194
+ 'A woman is dancing.',
195
+ 'A man is dancing.',
196
+ 'A brown horse in a green field.',
197
+ ]
198
+ embeddings = model.encode(sentences)
199
+ print(embeddings.shape)
200
+ # [3, 300]
201
+
202
+ # Get the similarity scores for the embeddings
203
+ similarities = model.similarity(embeddings)
204
+ print(similarities.shape)
205
+ # [3, 3]
206
+ ```
207
+
208
+ <!--
209
+ ### Direct Usage (Transformers)
210
+
211
+ <details><summary>Click to see the direct usage in Transformers</summary>
212
+
213
+ </details>
214
+ -->
215
+
216
+ <!--
217
+ ### Downstream Usage (Sentence Transformers)
218
+
219
+ You can finetune this model on your own dataset.
220
+
221
+ <details><summary>Click to expand</summary>
222
+
223
+ </details>
224
+ -->
225
+
226
+ <!--
227
+ ### Out-of-Scope Use
228
+
229
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
230
+ -->
231
+
232
+ ## Evaluation
233
+
234
+ ### Metrics
235
+
236
+ #### Semantic Similarity
237
+ * Dataset: `sts-dev`
238
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
239
+
240
+ | Metric | Value |
241
+ |:--------------------|:-----------|
242
+ | pearson_cosine | 0.7572 |
243
+ | **spearman_cosine** | **0.7532** |
244
+ | pearson_manhattan | 0.717 |
245
+ | spearman_manhattan | 0.7273 |
246
+ | pearson_euclidean | 0.717 |
247
+ | spearman_euclidean | 0.7268 |
248
+ | pearson_dot | 0.5785 |
249
+ | spearman_dot | 0.6221 |
250
+ | pearson_max | 0.7572 |
251
+ | spearman_max | 0.7532 |
252
+
253
+ #### Semantic Similarity
254
+ * Dataset: `sts-test`
255
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
256
+
257
+ | Metric | Value |
258
+ |:--------------------|:-----------|
259
+ | pearson_cosine | 0.6689 |
260
+ | **spearman_cosine** | **0.6405** |
261
+ | pearson_manhattan | 0.6177 |
262
+ | spearman_manhattan | 0.6152 |
263
+ | pearson_euclidean | 0.6185 |
264
+ | spearman_euclidean | 0.6163 |
265
+ | pearson_dot | 0.5093 |
266
+ | spearman_dot | 0.5194 |
267
+ | pearson_max | 0.6689 |
268
+ | spearman_max | 0.6405 |
269
+
270
+ <!--
271
+ ## Bias, Risks and Limitations
272
+
273
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
274
+ -->
275
+
276
+ <!--
277
+ ### Recommendations
278
+
279
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
280
+ -->
281
+
282
+ ## Training Details
283
+
284
+ ### Training Dataset
285
+
286
+ #### sentence-transformers/stsb
287
+
288
+ * Dataset: [sentence-transformers/stsb](https://huggingface.co/datasets/sentence-transformers/stsb) at [d999f12](https://huggingface.co/datasets/sentence-transformers/stsb/tree/d999f12281623b0925506817d9bd85e88289218a)
289
+ * Size: 5,749 training samples
290
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
291
+ * Approximate statistics based on the first 1000 samples:
292
+ | | sentence1 | sentence2 | score |
293
+ |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------|
294
+ | type | string | string | float |
295
+ | details | <ul><li>min: 1 tokens</li><li>mean: 3.38 tokens</li><li>max: 11 tokens</li></ul> | <ul><li>min: 1 tokens</li><li>mean: 3.39 tokens</li><li>max: 10 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.54</li><li>max: 1.0</li></ul> |
296
+ * Samples:
297
+ | sentence1 | sentence2 | score |
298
+ |:-----------------------------------------------------------|:----------------------------------------------------------------------|:------------------|
299
+ | <code>A plane is taking off.</code> | <code>An air plane is taking off.</code> | <code>1.0</code> |
300
+ | <code>A man is playing a large flute.</code> | <code>A man is playing a flute.</code> | <code>0.76</code> |
301
+ | <code>A man is spreading shreded cheese on a pizza.</code> | <code>A man is spreading shredded cheese on an uncooked pizza.</code> | <code>0.76</code> |
302
+ * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/losses.html#cosinesimilarityloss) with these parameters:
303
+ ```json
304
+ {
305
+ "loss_fct": "torch.nn.modules.loss.MSELoss"
306
+ }
307
+ ```
308
+
309
+ ### Evaluation Dataset
310
+
311
+ #### sentence-transformers/stsb
312
+
313
+ * Dataset: [sentence-transformers/stsb](https://huggingface.co/datasets/sentence-transformers/stsb) at [d999f12](https://huggingface.co/datasets/sentence-transformers/stsb/tree/d999f12281623b0925506817d9bd85e88289218a)
314
+ * Size: 1,500 evaluation samples
315
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
316
+ * Approximate statistics based on the first 1000 samples:
317
+ | | sentence1 | sentence2 | score |
318
+ |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------|
319
+ | type | string | string | float |
320
+ | details | <ul><li>min: 1 tokens</li><li>mean: 5.17 tokens</li><li>max: 12 tokens</li></ul> | <ul><li>min: 1 tokens</li><li>mean: 5.08 tokens</li><li>max: 15 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.47</li><li>max: 1.0</li></ul> |
321
+ * Samples:
322
+ | sentence1 | sentence2 | score |
323
+ |:--------------------------------------------------|:------------------------------------------------------|:------------------|
324
+ | <code>A man with a hard hat is dancing.</code> | <code>A man wearing a hard hat is dancing.</code> | <code>1.0</code> |
325
+ | <code>A young child is riding a horse.</code> | <code>A child is riding a horse.</code> | <code>0.95</code> |
326
+ | <code>A man is feeding a mouse to a snake.</code> | <code>The man is feeding a mouse to the snake.</code> | <code>1.0</code> |
327
+ * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/losses.html#cosinesimilarityloss) with these parameters:
328
+ ```json
329
+ {
330
+ "loss_fct": "torch.nn.modules.loss.MSELoss"
331
+ }
332
+ ```
333
+
334
+ ### Training Hyperparameters
335
+ #### Non-Default Hyperparameters
336
+
337
+ - `eval_strategy`: steps
338
+ - `per_device_train_batch_size`: 32
339
+ - `per_device_eval_batch_size`: 32
340
+ - `num_train_epochs`: 1
341
+ - `warmup_ratio`: 0.1
342
+ - `fp16`: True
343
+
344
+ #### All Hyperparameters
345
+ <details><summary>Click to expand</summary>
346
+
347
+ - `overwrite_output_dir`: False
348
+ - `do_predict`: False
349
+ - `eval_strategy`: steps
350
+ - `prediction_loss_only`: False
351
+ - `per_device_train_batch_size`: 32
352
+ - `per_device_eval_batch_size`: 32
353
+ - `per_gpu_train_batch_size`: None
354
+ - `per_gpu_eval_batch_size`: None
355
+ - `gradient_accumulation_steps`: 1
356
+ - `eval_accumulation_steps`: None
357
+ - `learning_rate`: 5e-05
358
+ - `weight_decay`: 0.0
359
+ - `adam_beta1`: 0.9
360
+ - `adam_beta2`: 0.999
361
+ - `adam_epsilon`: 1e-08
362
+ - `max_grad_norm`: 1.0
363
+ - `num_train_epochs`: 1
364
+ - `max_steps`: -1
365
+ - `lr_scheduler_type`: linear
366
+ - `lr_scheduler_kwargs`: {}
367
+ - `warmup_ratio`: 0.1
368
+ - `warmup_steps`: 0
369
+ - `log_level`: passive
370
+ - `log_level_replica`: warning
371
+ - `log_on_each_node`: True
372
+ - `logging_nan_inf_filter`: True
373
+ - `save_safetensors`: True
374
+ - `save_on_each_node`: False
375
+ - `save_only_model`: False
376
+ - `no_cuda`: False
377
+ - `use_cpu`: False
378
+ - `use_mps_device`: False
379
+ - `seed`: 42
380
+ - `data_seed`: None
381
+ - `jit_mode_eval`: False
382
+ - `use_ipex`: False
383
+ - `bf16`: False
384
+ - `fp16`: True
385
+ - `fp16_opt_level`: O1
386
+ - `half_precision_backend`: auto
387
+ - `bf16_full_eval`: False
388
+ - `fp16_full_eval`: False
389
+ - `tf32`: None
390
+ - `local_rank`: 0
391
+ - `ddp_backend`: None
392
+ - `tpu_num_cores`: None
393
+ - `tpu_metrics_debug`: False
394
+ - `debug`: []
395
+ - `dataloader_drop_last`: False
396
+ - `dataloader_num_workers`: 0
397
+ - `dataloader_prefetch_factor`: None
398
+ - `past_index`: -1
399
+ - `disable_tqdm`: False
400
+ - `remove_unused_columns`: True
401
+ - `label_names`: None
402
+ - `load_best_model_at_end`: False
403
+ - `ignore_data_skip`: False
404
+ - `fsdp`: []
405
+ - `fsdp_min_num_params`: 0
406
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
407
+ - `fsdp_transformer_layer_cls_to_wrap`: None
408
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
409
+ - `deepspeed`: None
410
+ - `label_smoothing_factor`: 0.0
411
+ - `optim`: adamw_torch
412
+ - `optim_args`: None
413
+ - `adafactor`: False
414
+ - `group_by_length`: False
415
+ - `length_column_name`: length
416
+ - `ddp_find_unused_parameters`: None
417
+ - `ddp_bucket_cap_mb`: None
418
+ - `ddp_broadcast_buffers`: None
419
+ - `dataloader_pin_memory`: True
420
+ - `dataloader_persistent_workers`: False
421
+ - `skip_memory_metrics`: True
422
+ - `use_legacy_prediction_loop`: False
423
+ - `push_to_hub`: False
424
+ - `resume_from_checkpoint`: None
425
+ - `hub_model_id`: None
426
+ - `hub_strategy`: every_save
427
+ - `hub_private_repo`: False
428
+ - `hub_always_push`: False
429
+ - `gradient_checkpointing`: False
430
+ - `gradient_checkpointing_kwargs`: None
431
+ - `include_inputs_for_metrics`: False
432
+ - `eval_do_concat_batches`: True
433
+ - `fp16_backend`: auto
434
+ - `push_to_hub_model_id`: None
435
+ - `push_to_hub_organization`: None
436
+ - `mp_parameters`:
437
+ - `auto_find_batch_size`: False
438
+ - `full_determinism`: False
439
+ - `torchdynamo`: None
440
+ - `ray_scope`: last
441
+ - `ddp_timeout`: 1800
442
+ - `torch_compile`: False
443
+ - `torch_compile_backend`: None
444
+ - `torch_compile_mode`: None
445
+ - `dispatch_batches`: None
446
+ - `split_batches`: None
447
+ - `include_tokens_per_second`: False
448
+ - `include_num_input_tokens_seen`: False
449
+ - `neftune_noise_alpha`: None
450
+ - `optim_target_modules`: None
451
+ - `batch_sampler`: batch_sampler
452
+ - `multi_dataset_batch_sampler`: proportional
453
+
454
+ </details>
455
+
456
+ ### Training Logs
457
+ | Epoch | Step | Training Loss | loss | sts-dev_spearman_cosine | sts-test_spearman_cosine |
458
+ |:------:|:----:|:-------------:|:------:|:-----------------------:|:------------------------:|
459
+ | 0.5556 | 100 | 0.0819 | 0.0584 | 0.7532 | - |
460
+ | 1.0 | 180 | - | - | - | 0.6405 |
461
+
462
+
463
+ ### Environmental Impact
464
+ Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
465
+ - **Energy Consumed**: 0.000 kWh
466
+ - **Carbon Emitted**: 0.000 kg of CO2
467
+ - **Hours Used**: 0.009 hours
468
+
469
+ ### Training Hardware
470
+ - **On Cloud**: No
471
+ - **GPU Model**: 1 x NVIDIA GeForce RTX 3090
472
+ - **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K
473
+ - **RAM Size**: 31.78 GB
474
+
475
+ ### Framework Versions
476
+ - Python: 3.11.6
477
+ - Sentence Transformers: 3.0.0.dev0
478
+ - Transformers: 4.41.0.dev0
479
+ - PyTorch: 2.3.0+cu121
480
+ - Accelerate: 0.26.1
481
+ - Datasets: 2.18.0
482
+ - Tokenizers: 0.19.1
483
+
484
+ ## Citation
485
+
486
+ ### BibTeX
487
+
488
+ #### Sentence Transformers
489
+ ```bibtex
490
+ @inproceedings{reimers-2019-sentence-bert,
491
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
492
+ author = "Reimers, Nils and Gurevych, Iryna",
493
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
494
+ month = "11",
495
+ year = "2019",
496
+ publisher = "Association for Computational Linguistics",
497
+ url = "https://arxiv.org/abs/1908.10084",
498
+ }
499
+ ```
500
+
501
+ <!--
502
+ ## Glossary
503
+
504
+ *Clearly define terms in order to be accessible across audiences.*
505
+ -->
506
+
507
+ <!--
508
+ ## Model Card Authors
509
+
510
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
511
+ -->
512
+
513
+ <!--
514
+ ## Model Card Contact
515
+
516
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
517
+ -->
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.0.dev0",
4
+ "transformers": "4.41.0.dev0",
5
+ "pytorch": "2.3.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
modules.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "0_WordEmbeddings",
6
+ "type": "sentence_transformers.models.WordEmbeddings"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_WordWeights",
12
+ "type": "sentence_transformers.models.WordWeights"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Pooling",
18
+ "type": "sentence_transformers.models.Pooling"
19
+ },
20
+ {
21
+ "idx": 3,
22
+ "name": "3",
23
+ "path": "3_Dense",
24
+ "type": "sentence_transformers.models.Dense"
25
+ },
26
+ {
27
+ "idx": 4,
28
+ "name": "4",
29
+ "path": "4_Dense",
30
+ "type": "sentence_transformers.models.Dense"
31
+ }
32
+ ]