Dan Fu
commited on
Commit
·
785c4ec
1
Parent(s):
6471836
Update
Browse files
README.md
CHANGED
@@ -2,14 +2,15 @@
|
|
2 |
license: apache-2.0
|
3 |
language:
|
4 |
- en
|
5 |
-
pipeline_tag:
|
6 |
inference: false
|
7 |
---
|
8 |
|
9 |
# Monarch Mixer-BERT
|
10 |
|
11 |
-
|
12 |
-
|
|
|
13 |
|
14 |
This model was trained by Jon Saad-Falcon, Dan Fu, and Simran Arora.
|
15 |
|
@@ -19,21 +20,88 @@ Check out our [GitHub](https://github.com/HazyResearch/m2/tree/main) for instruc
|
|
19 |
|
20 |
You can load this model using Hugging Face `AutoModel`:
|
21 |
```python
|
22 |
-
from transformers import
|
23 |
-
model =
|
|
|
|
|
|
|
24 |
```
|
25 |
|
|
|
|
|
|
|
26 |
This model generates embeddings for retrieval. The embeddings have a dimensionality of 768:
|
27 |
-
```
|
28 |
-
from transformers import AutoTokenizer,
|
29 |
|
30 |
max_seq_length = 2048
|
31 |
testing_string = "Every morning, I make a cup of coffee to start my day."
|
32 |
-
model =
|
|
|
|
|
|
|
33 |
|
34 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
outputs = model(**input_ids)
|
38 |
embeddings = outputs['sentence_embedding']
|
39 |
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
license: apache-2.0
|
3 |
language:
|
4 |
- en
|
5 |
+
pipeline_tag: text-classification
|
6 |
inference: false
|
7 |
---
|
8 |
|
9 |
# Monarch Mixer-BERT
|
10 |
|
11 |
+
An 80M checkpoint of M2-BERT, pretrained with sequence length 2048, and it has been fine-tuned for long-context retrieval.
|
12 |
+
|
13 |
+
Check out the paper [Monarch Mixer: A Simple Sub-Quadratic GEMM-Based Architecture](https://arxiv.org/abs/2310.12109) and our [blog post]() on retrieval for more on how we trained this model for long sequence.
|
14 |
|
15 |
This model was trained by Jon Saad-Falcon, Dan Fu, and Simran Arora.
|
16 |
|
|
|
20 |
|
21 |
You can load this model using Hugging Face `AutoModel`:
|
22 |
```python
|
23 |
+
from transformers import AutoModelForSequenceClassification
|
24 |
+
model = AutoModelForSequenceClassification.from_pretrained(
|
25 |
+
"togethercomputer/m2-bert-80M-2k-retrieval",
|
26 |
+
trust_remote_code=True
|
27 |
+
)
|
28 |
```
|
29 |
|
30 |
+
You should expect to see a large error message about unused parameters for FlashFFTConv.
|
31 |
+
If you'd like to load the model with FlashFFTConv, you can check out our [GitHub](https://github.com/HazyResearch/m2/tree/main).
|
32 |
+
|
33 |
This model generates embeddings for retrieval. The embeddings have a dimensionality of 768:
|
34 |
+
```python
|
35 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
36 |
|
37 |
max_seq_length = 2048
|
38 |
testing_string = "Every morning, I make a cup of coffee to start my day."
|
39 |
+
model = AutoModelForSequenceClassification.from_pretrained(
|
40 |
+
"togethercomputer/m2-bert-80M-2k-retrieval",
|
41 |
+
trust_remote_code=True
|
42 |
+
)
|
43 |
|
44 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
45 |
+
"bert-base-uncased",
|
46 |
+
model_max_length=max_seq_length
|
47 |
+
)
|
48 |
+
input_ids = tokenizer(
|
49 |
+
[testing_string],
|
50 |
+
return_tensors="pt",
|
51 |
+
padding="max_length",
|
52 |
+
return_token_type_ids=False,
|
53 |
+
truncation=True,
|
54 |
+
max_length=max_seq_length
|
55 |
+
)
|
56 |
|
57 |
outputs = model(**input_ids)
|
58 |
embeddings = outputs['sentence_embedding']
|
59 |
```
|
60 |
+
|
61 |
+
You can also get embeddings from this model using the Together API as follows (you can find your API key [here](https://api.together.xyz/settings/api-keys)):
|
62 |
+
```python
|
63 |
+
import os
|
64 |
+
import requests
|
65 |
+
|
66 |
+
def generate_together_embeddings(text: str, model_api_string: str, api_key: str):
|
67 |
+
url = "https://api.together.xyz/api/v1/embeddings"
|
68 |
+
headers = {
|
69 |
+
"accept": "application/json",
|
70 |
+
"content-type": "application/json",
|
71 |
+
"Authorization": f"Bearer {api_key}"
|
72 |
+
}
|
73 |
+
session = requests.Session()
|
74 |
+
response = session.post(
|
75 |
+
url,
|
76 |
+
headers=headers,
|
77 |
+
json={
|
78 |
+
"input": text,
|
79 |
+
"model": model_api_string
|
80 |
+
}
|
81 |
+
)
|
82 |
+
if response.status_code != 200:
|
83 |
+
raise ValueError(f"Request failed with status code {response.status_code}: {response.text}")
|
84 |
+
return response.json()['data'][0]['embedding']
|
85 |
+
|
86 |
+
print(generate_together_embeddings(
|
87 |
+
'Hello world',
|
88 |
+
'togethercomputer/m2-bert-80M-2k-retrieval',
|
89 |
+
os.environ['TOGETHER_API_KEY'])[:10]
|
90 |
+
)
|
91 |
+
```
|
92 |
+
|
93 |
+
## Acknowledgments
|
94 |
+
|
95 |
+
Alycia Lee helped with AutoModel support.
|
96 |
+
|
97 |
+
## Citation
|
98 |
+
|
99 |
+
If you use this model, or otherwise found our work valuable, you can cite us as follows:
|
100 |
+
```
|
101 |
+
@inproceedings{fu2023monarch,
|
102 |
+
title={Monarch Mixer: A Simple Sub-Quadratic GEMM-Based Architecture},
|
103 |
+
author={Fu, Daniel Y and Arora, Simran and Grogan, Jessica and Johnson, Isys and Eyuboglu, Sabri and Thomas, Armin W and Spector, Benjamin and Poli, Michael and Rudra, Atri and R{\'e}, Christopher},
|
104 |
+
booktitle={Advances in Neural Information Processing Systems},
|
105 |
+
year={2023}
|
106 |
+
}
|
107 |
+
```
|