danfu09 commited on
Commit
2f57ef2
·
1 Parent(s): 307023a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +27 -3
README.md CHANGED
@@ -2,14 +2,38 @@
2
  license: apache-2.0
3
  language:
4
  - en
5
- pipeline_tag: text-classification
 
6
  ---
7
 
8
  # Monarch Mixer-BERT
9
 
10
  The 80M checkpoint for M2-BERT-base from the paper [Monarch Mixer: A Simple Sub-Quadratic GEMM-Based Architecture](https://arxiv.org/abs/2310.12109).
11
- This model has been pretrained with sequence length 2048, and it has been fine-tuned for retrieval.
12
 
13
- This model was trained by Dan Fu, Jon Saad-Falcon, and Simran Arora.
14
 
15
  Check out our [GitHub](https://github.com/HazyResearch/m2/tree/main) for instructions on how to download and fine-tune it!
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  license: apache-2.0
3
  language:
4
  - en
5
+ pipeline_tag: sentence-similarity
6
+ inference: false
7
  ---
8
 
9
  # Monarch Mixer-BERT
10
 
11
  The 80M checkpoint for M2-BERT-base from the paper [Monarch Mixer: A Simple Sub-Quadratic GEMM-Based Architecture](https://arxiv.org/abs/2310.12109).
12
+ This model has been pretrained with sequence length 2048, and it has been fine-tuned for long-context retrieval.
13
 
14
+ This model was trained by Jon Saad-Falcon, Dan Fu, and Simran Arora.
15
 
16
  Check out our [GitHub](https://github.com/HazyResearch/m2/tree/main) for instructions on how to download and fine-tune it!
17
+
18
+ ## How to use
19
+
20
+ You can load this model using Hugging Face `AutoModel`:
21
+ ```python
22
+ from transformers import AutoModelForMaskedLM
23
+ model = AutoModelForMaskedLM.from_pretrained("togethercomputer/m2-bert-80M-2k-retrieval", trust_remote_code=True)
24
+ ```
25
+
26
+ This model generates embeddings for retrieval. The embeddings have a dimensionality of 768:
27
+ ```
28
+ from transformers import AutoTokenizer, AutoModelForMaskedLM
29
+
30
+ max_seq_length = 2048
31
+ testing_string = "Every morning, I make a cup of coffee to start my day."
32
+ model = AutoModelForMaskedLM.from_pretrained("togethercomputer/m2-bert-80M-2k-retrieval", trust_remote_code=True)
33
+
34
+ tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased", model_max_length=max_seq_length)
35
+ input_ids = tokenizer([testing_string], return_tensors="pt", padding="max_length", return_token_type_ids=False, truncation=True, max_length=max_seq_length)
36
+
37
+ outputs = model(**input_ids)
38
+ embeddings = outputs['sentence_embedding']
39
+ ```