Zymrael
commited on
Commit
·
27140ac
1
Parent(s):
aef565b
init
Browse files- cache.py +44 -0
- config.json +4 -4
- configuration_hyena.py +92 -0
- engine.py +389 -0
- layers.py +155 -0
- model.py +472 -0
- modeling_hyena.py +145 -0
- positional_embeddings.py +113 -0
- streamer.py +106 -0
- tokenizer.py +116 -0
- utils.py +96 -0
cache.py
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Together
|
2 |
+
# This software is distributed under the terms of the Apache License, Version 2.0
|
3 |
+
# Author: Michael Poli
|
4 |
+
|
5 |
+
from torch import Tensor
|
6 |
+
from dataclasses import dataclass, field
|
7 |
+
from typing import Optional
|
8 |
+
|
9 |
+
|
10 |
+
# https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/utils/generation.py
|
11 |
+
@dataclass
|
12 |
+
class InferenceParams:
|
13 |
+
"""Inference parameters that are passed to the main model in order
|
14 |
+
to efficienly calculate and store the context during inference."""
|
15 |
+
|
16 |
+
max_seqlen: int
|
17 |
+
max_batch_size: int
|
18 |
+
seqlen_offset: int = 0
|
19 |
+
batch_size_offset: int = 0
|
20 |
+
key_value_memory_dict: dict = field(default_factory=dict)
|
21 |
+
lengths_per_sample: Optional[Tensor] = None
|
22 |
+
|
23 |
+
def reset(self, max_seqlen, max_batch_size):
|
24 |
+
self.max_seqlen = max_seqlen
|
25 |
+
self.max_batch_size = max_batch_size
|
26 |
+
self.seqlen_offset = 0
|
27 |
+
if self.lengths_per_sample is not None:
|
28 |
+
self.lengths_per_sample.zero_()
|
29 |
+
|
30 |
+
|
31 |
+
@dataclass
|
32 |
+
class RecurrentInferenceParams:
|
33 |
+
"""Inference parameters passed to blocks with recurrent mode."""
|
34 |
+
|
35 |
+
fir_filter_length: int = 3
|
36 |
+
state_dim: int = 16
|
37 |
+
seqlen_offset: int = 0
|
38 |
+
fir_state_dict: dict = field(default_factory=dict)
|
39 |
+
state_dict: dict = field(default_factory=dict)
|
40 |
+
|
41 |
+
def reset(self):
|
42 |
+
self.fir_filter_length = 3
|
43 |
+
self.state_dim = 16
|
44 |
+
self.seqlen_offset = 0
|
config.json
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
{
|
2 |
-
"_commit_hash":
|
3 |
-
"_name_or_path": "
|
4 |
"architectures": [
|
5 |
"StripedHyenaModelForCausalLM"
|
6 |
],
|
@@ -10,8 +10,8 @@
|
|
10 |
24
|
11 |
],
|
12 |
"auto_map": {
|
13 |
-
"AutoConfig": "
|
14 |
-
"AutoModelForCausalLM": "
|
15 |
},
|
16 |
"column_split": false,
|
17 |
"column_split_hyena": true,
|
|
|
1 |
{
|
2 |
+
"_commit_hash": null,
|
3 |
+
"_name_or_path": "togethercomputer/evo-1-phase-2",
|
4 |
"architectures": [
|
5 |
"StripedHyenaModelForCausalLM"
|
6 |
],
|
|
|
10 |
24
|
11 |
],
|
12 |
"auto_map": {
|
13 |
+
"AutoConfig": "configuration_hyena.StripedHyenaConfig",
|
14 |
+
"AutoModelForCausalLM": "modeling_hyena.StripedHyenaModelForCausalLM"
|
15 |
},
|
16 |
"column_split": false,
|
17 |
"column_split_hyena": true,
|
configuration_hyena.py
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import PretrainedConfig
|
2 |
+
import json
|
3 |
+
|
4 |
+
|
5 |
+
class StripedHyenaConfig(PretrainedConfig):
|
6 |
+
model_type = "stripedhyena"
|
7 |
+
|
8 |
+
def __init__(
|
9 |
+
self,
|
10 |
+
vocab_size=32000,
|
11 |
+
hidden_size=4096,
|
12 |
+
num_filters=4096,
|
13 |
+
inner_mlp_size=14336,
|
14 |
+
attn_layer_idxs=[],
|
15 |
+
hyena_layer_idxs=[],
|
16 |
+
num_layers=32,
|
17 |
+
tie_embeddings=False,
|
18 |
+
short_filter_length=3,
|
19 |
+
num_attention_heads=32,
|
20 |
+
proj_groups=4,
|
21 |
+
hyena_filter_groups=1,
|
22 |
+
split_k0=True,
|
23 |
+
column_split_hyena=True,
|
24 |
+
column_split=False,
|
25 |
+
model_parallel_size=1,
|
26 |
+
pipe_parallel_size=1,
|
27 |
+
short_filter_bias=True,
|
28 |
+
mha_out_proj_bias=False,
|
29 |
+
qkv_proj_bias=False,
|
30 |
+
final_norm=True,
|
31 |
+
use_cache=True,
|
32 |
+
use_flash_attention_2=True,
|
33 |
+
use_flash_rmsnorm=True,
|
34 |
+
use_flash_depthwise=False,
|
35 |
+
use_flashfft=False,
|
36 |
+
inference_mode=False,
|
37 |
+
prefill_style="fft",
|
38 |
+
max_seqlen=32768,
|
39 |
+
eps=1e-5,
|
40 |
+
state_size=2,
|
41 |
+
rotary_emb_base=500000,
|
42 |
+
smeared_gqa=False,
|
43 |
+
make_vocab_size_divisible_by=8,
|
44 |
+
log_intermediate_values=False,
|
45 |
+
**kwargs,
|
46 |
+
):
|
47 |
+
self.vocab_size = vocab_size
|
48 |
+
self.hidden_size = hidden_size
|
49 |
+
self.num_filters = num_filters
|
50 |
+
self.inner_mlp_size = inner_mlp_size
|
51 |
+
self.attn_layer_idxs = attn_layer_idxs
|
52 |
+
self.hyena_layer_idxs = hyena_layer_idxs
|
53 |
+
self.num_layers = num_layers
|
54 |
+
self.tie_embeddings = tie_embeddings
|
55 |
+
self.short_filter_length = short_filter_length
|
56 |
+
self.num_attention_heads = num_attention_heads
|
57 |
+
self.proj_groups = proj_groups
|
58 |
+
self.hyena_filter_groups = hyena_filter_groups
|
59 |
+
self.split_k0 = split_k0
|
60 |
+
self.column_split_hyena = column_split_hyena
|
61 |
+
self.column_split = column_split
|
62 |
+
self.model_parallel_size = model_parallel_size
|
63 |
+
self.pipe_parallel_size = pipe_parallel_size
|
64 |
+
self.short_filter_bias = short_filter_bias
|
65 |
+
self.mha_out_proj_bias = mha_out_proj_bias
|
66 |
+
self.qkv_proj_bias = qkv_proj_bias
|
67 |
+
self.final_norm = final_norm
|
68 |
+
self.use_cache = use_cache
|
69 |
+
self.use_flash_attention_2 = use_flash_attention_2
|
70 |
+
self.use_flash_rmsnorm = use_flash_rmsnorm
|
71 |
+
self.use_flash_depthwise = use_flash_depthwise
|
72 |
+
self.use_flashfft = use_flashfft
|
73 |
+
self.inference_mode = inference_mode
|
74 |
+
self.prefill_style = prefill_style
|
75 |
+
self.max_seqlen = max_seqlen
|
76 |
+
self.eps = eps
|
77 |
+
self.state_size = state_size
|
78 |
+
self.rotary_emb_base = rotary_emb_base
|
79 |
+
self.smeared_gqa = smeared_gqa
|
80 |
+
self.make_vocab_size_divisible_by = make_vocab_size_divisible_by
|
81 |
+
self.log_intermediate_values = log_intermediate_values
|
82 |
+
super().__init__(**kwargs)
|
83 |
+
|
84 |
+
def to_dict(self):
|
85 |
+
return {attr: getattr(self, attr) for attr in self.__dict__}
|
86 |
+
|
87 |
+
@classmethod
|
88 |
+
def from_original_config(cls, config_path, **kwargs):
|
89 |
+
with open(config_path, "r") as f:
|
90 |
+
config = json.load(f)
|
91 |
+
|
92 |
+
return cls(**config, **kwargs)
|
engine.py
ADDED
@@ -0,0 +1,389 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Together
|
2 |
+
# This software is distributed under the terms of the Apache License, Version 2.0
|
3 |
+
# Author: Michael Poli
|
4 |
+
|
5 |
+
import gc
|
6 |
+
|
7 |
+
import torch
|
8 |
+
import torch.nn as nn
|
9 |
+
import torch.nn.functional as F
|
10 |
+
|
11 |
+
try:
|
12 |
+
import conv1d_cpp
|
13 |
+
except:
|
14 |
+
pass
|
15 |
+
from .utils import column_split
|
16 |
+
|
17 |
+
IIR_PREFILL_MODES = [
|
18 |
+
"recurrence",
|
19 |
+
"modal-fft",
|
20 |
+
"hybrid-modal-recurrence",
|
21 |
+
"modal-scan",
|
22 |
+
"canonical-fft",
|
23 |
+
"iir-fir-caching",
|
24 |
+
]
|
25 |
+
|
26 |
+
|
27 |
+
def canonicalize_modal_system(poles, residues):
|
28 |
+
"""Canonicalize a modal system.
|
29 |
+
|
30 |
+
Args:
|
31 |
+
poles (Tensor): The poles of the system.
|
32 |
+
residues (Tensor): The residues of the system.
|
33 |
+
|
34 |
+
Returns:
|
35 |
+
Tuple[Tensor, Tensor]: The canonicalized poles and residues.
|
36 |
+
"""
|
37 |
+
raise NotImplementedError
|
38 |
+
|
39 |
+
|
40 |
+
def list_tensors(idx):
|
41 |
+
for obj in gc.get_objects():
|
42 |
+
try:
|
43 |
+
if torch.is_tensor(obj) and isinstance(obj, torch.Tensor):
|
44 |
+
# dump to log
|
45 |
+
print(type(obj), obj.size())
|
46 |
+
el = obj[0]
|
47 |
+
with open(f"tensors_{idx}.txt", "a") as f:
|
48 |
+
f.write(f"{type(obj)} {obj.size()} {el}\n")
|
49 |
+
except Exception as e:
|
50 |
+
pass
|
51 |
+
|
52 |
+
|
53 |
+
class HyenaInferenceEngine:
|
54 |
+
def __init__(
|
55 |
+
self,
|
56 |
+
fir_fn=None,
|
57 |
+
iir_prefill_style="modal-fft",
|
58 |
+
layer_idx=None,
|
59 |
+
) -> None:
|
60 |
+
self.fir_fn = fir_fn
|
61 |
+
assert iir_prefill_style in IIR_PREFILL_MODES, f"iir_prefill_style must be one of {IIR_PREFILL_MODES}"
|
62 |
+
self.iir_prefill_style = iir_prefill_style
|
63 |
+
self.layer_idx = layer_idx
|
64 |
+
self.low_mem_mode = False
|
65 |
+
|
66 |
+
def parallel_fir(
|
67 |
+
self,
|
68 |
+
fir_fn,
|
69 |
+
u,
|
70 |
+
weight,
|
71 |
+
bias,
|
72 |
+
L,
|
73 |
+
fir_length=3,
|
74 |
+
inference_params=None,
|
75 |
+
prefill_mode=None,
|
76 |
+
padding_mask=None,
|
77 |
+
):
|
78 |
+
"""Compute the output state of the long convolutional filter."""
|
79 |
+
# prepare input layout, dimensions and dispatch to fir kernel
|
80 |
+
if fir_fn != torch.nn.functional.conv1d:
|
81 |
+
z_pre = fir_fn(u)[:, :L] # B, L, D
|
82 |
+
z_pre = z_pre.permute(0, 2, 1)
|
83 |
+
else:
|
84 |
+
u = u.permute(0, 2, 1) # B, D, L
|
85 |
+
z_pre = fir_fn(
|
86 |
+
u,
|
87 |
+
weight,
|
88 |
+
bias=None, # don't pass it here, add manually instead! source of small error
|
89 |
+
stride=1,
|
90 |
+
padding=fir_length - 1,
|
91 |
+
groups=u.shape[1],
|
92 |
+
)[..., :L]
|
93 |
+
|
94 |
+
# add manually instead! source of small error
|
95 |
+
z_pre = z_pre + bias[None, :, None]
|
96 |
+
|
97 |
+
# handle padding post fir, the only place with biases
|
98 |
+
if type(padding_mask) == torch.Tensor:
|
99 |
+
z_pre = z_pre * padding_mask[:, None]
|
100 |
+
|
101 |
+
if inference_params is not None:
|
102 |
+
# handle seqlen last and dim last cases for `u`
|
103 |
+
if fir_fn != torch.nn.functional.conv1d:
|
104 |
+
fir_state = u[:, -fir_length + 1 :].permute(0, 2, 1)
|
105 |
+
else:
|
106 |
+
fir_state = u[..., -fir_length + 1 :]
|
107 |
+
else:
|
108 |
+
fir_state = None
|
109 |
+
|
110 |
+
return z_pre, fir_state
|
111 |
+
|
112 |
+
def parallel_iir(
|
113 |
+
self,
|
114 |
+
z_pre,
|
115 |
+
h,
|
116 |
+
D,
|
117 |
+
L,
|
118 |
+
poles,
|
119 |
+
residues,
|
120 |
+
t,
|
121 |
+
dims,
|
122 |
+
layer_idx,
|
123 |
+
inference_params=None,
|
124 |
+
prefill_style="fft",
|
125 |
+
fftconv_fn=None,
|
126 |
+
padding_mask=None,
|
127 |
+
use_flashfft=False,
|
128 |
+
column_split_hyena=False,
|
129 |
+
long_fir_threshold=None,
|
130 |
+
):
|
131 |
+
"""Compute the output state of the short convolutional filter."""
|
132 |
+
fft_size = 2 * L
|
133 |
+
hidden_size, num_attention_heads, hidden_size_per_attention_head, _, _ = dims
|
134 |
+
# Compatibility with training infra that column splits the projections
|
135 |
+
if column_split_hyena:
|
136 |
+
z = z_pre.reshape(
|
137 |
+
z_pre.shape[0],
|
138 |
+
num_attention_heads,
|
139 |
+
3 * hidden_size_per_attention_head,
|
140 |
+
z_pre.shape[2],
|
141 |
+
)
|
142 |
+
x2, x1, v = (
|
143 |
+
z[:, :, :hidden_size_per_attention_head],
|
144 |
+
z[
|
145 |
+
:,
|
146 |
+
:,
|
147 |
+
hidden_size_per_attention_head : 2 * hidden_size_per_attention_head,
|
148 |
+
],
|
149 |
+
z[:, :, 2 * hidden_size_per_attention_head :],
|
150 |
+
)
|
151 |
+
x2, x1, v = (
|
152 |
+
x2.reshape(x2.shape[0], -1, x2.shape[-1]),
|
153 |
+
x1.reshape(x1.shape[0], -1, x1.shape[-1]),
|
154 |
+
v.reshape(v.shape[0], -1, v.shape[-1]),
|
155 |
+
)
|
156 |
+
else:
|
157 |
+
x2, x1, v = z_pre.split([hidden_size, hidden_size, hidden_size], dim=1)
|
158 |
+
|
159 |
+
x1v = x1 * v
|
160 |
+
|
161 |
+
if inference_params is not None and prefill_style == "recurrence":
|
162 |
+
y = self.prefill_via_direct_recurrence(
|
163 |
+
inference_params=inference_params,
|
164 |
+
x1v=x1v,
|
165 |
+
L=L,
|
166 |
+
poles=poles,
|
167 |
+
residues=residues,
|
168 |
+
)
|
169 |
+
|
170 |
+
else:
|
171 |
+
if use_flashfft and (L % 2) == 0: # only works with even L
|
172 |
+
y = fftconv_fn(
|
173 |
+
x1v.to(dtype=torch.bfloat16).contiguous(),
|
174 |
+
h.to(dtype=torch.float32),
|
175 |
+
)
|
176 |
+
X_s = None
|
177 |
+
|
178 |
+
elif long_fir_threshold is None:
|
179 |
+
H = torch.fft.rfft(h.to(dtype=torch.float32), n=fft_size) / fft_size
|
180 |
+
X_s = torch.fft.fft(x1v.to(dtype=torch.float32), n=fft_size)
|
181 |
+
X = X_s[..., : H.shape[-1]]
|
182 |
+
if len(z_pre.shape) > 3:
|
183 |
+
H = H.unsqueeze(1)
|
184 |
+
y = torch.fft.irfft(X * H, n=fft_size, norm="forward")[..., :L]
|
185 |
+
|
186 |
+
else:
|
187 |
+
assert h.shape[0] == 1, "batch size must be 1 for long_fir_threshold"
|
188 |
+
h = h[0][:, None] # rearrange to d, 1, l for depthwise conv1d
|
189 |
+
h = h[..., :long_fir_threshold]
|
190 |
+
y = F.conv1d(
|
191 |
+
x1v,
|
192 |
+
h.to(dtype=x1v.dtype),
|
193 |
+
stride=1,
|
194 |
+
groups=x1v.shape[1],
|
195 |
+
padding=h.shape[-1] - 1,
|
196 |
+
)[..., :L]
|
197 |
+
|
198 |
+
y = y.to(dtype=x1v.dtype)
|
199 |
+
y = (y + x1v * D.unsqueeze(-1)) * x2
|
200 |
+
|
201 |
+
if inference_params is not None:
|
202 |
+
if prefill_style == "fft":
|
203 |
+
self.prefill_via_modal_fft(
|
204 |
+
inference_params=inference_params,
|
205 |
+
x1v=x1v,
|
206 |
+
X_s=X_s,
|
207 |
+
L=L,
|
208 |
+
t=t,
|
209 |
+
poles=poles,
|
210 |
+
dims=dims,
|
211 |
+
layer_idx=layer_idx,
|
212 |
+
use_flashfft=use_flashfft,
|
213 |
+
fftconv_fn=fftconv_fn,
|
214 |
+
)
|
215 |
+
|
216 |
+
elif prefill_style == "recurrence":
|
217 |
+
# recurrent prefill is done before
|
218 |
+
pass
|
219 |
+
else:
|
220 |
+
raise NotImplementedError
|
221 |
+
if self.low_mem_mode:
|
222 |
+
# TODO: smarter gc
|
223 |
+
del z_pre, x2, x1, v, x1v, h, poles, residues
|
224 |
+
torch.cuda.empty_cache()
|
225 |
+
|
226 |
+
return y.permute(0, 2, 1)
|
227 |
+
|
228 |
+
def step_fir(self, u, fir_state, weight, bias=None):
|
229 |
+
"""Step the FIR filter.
|
230 |
+
|
231 |
+
Note:
|
232 |
+
`fir_state` contains the last `short_filter_length - 1` elements of `u`: `u_(L-2), u_{L-1), ...`
|
233 |
+
We assume dimensions of `short_filter_weight` to be `[d, 1, short_filter_len]` (SISO / multi SISO layout).
|
234 |
+
"""
|
235 |
+
h0, h = weight[..., 0, -1], weight[..., 0, :-1]
|
236 |
+
h0, h = h0[None], h[None]
|
237 |
+
y = h0 * u + torch.sum(fir_state * h, dim=-1) + bias
|
238 |
+
|
239 |
+
# update
|
240 |
+
fir_state = torch.roll(fir_state, -1, dims=2)
|
241 |
+
fir_state[..., -1] = u
|
242 |
+
return y, fir_state
|
243 |
+
|
244 |
+
def step_iir(self, x2, x1, v, D, residues, poles, iir_state, iir_groups=1):
|
245 |
+
x1v = x1 * v
|
246 |
+
|
247 |
+
residues, poles = (
|
248 |
+
torch.view_as_complex(residues.to(torch.float32)),
|
249 |
+
torch.view_as_complex(poles.to(torch.float32)),
|
250 |
+
)
|
251 |
+
# squeeze the dummy seqlen dimension
|
252 |
+
# D, state_dim, 1 -> 1, D, state_dim
|
253 |
+
residues, poles = residues[..., 0][None], poles[..., 0][None]
|
254 |
+
iir_state = poles * iir_state + x1v[..., None]
|
255 |
+
|
256 |
+
res_state = torch.sum(residues * iir_state, dim=-1).real
|
257 |
+
|
258 |
+
if iir_groups > 1:
|
259 |
+
raise NotImplementedError
|
260 |
+
y = x2 * (res_state + D * x1v)
|
261 |
+
|
262 |
+
return y, iir_state
|
263 |
+
|
264 |
+
def prefill_via_fir_caching(self, u, inference_params, L, *args, **kwargs):
|
265 |
+
"""Turns the IIR filter into a FIR and uses a cache for decoding."""
|
266 |
+
raise NotImplementedError(":)")
|
267 |
+
|
268 |
+
def prefill_via_direct_recurrence(
|
269 |
+
self, inference_params, x1v, L, residues, poles, *args, **kwargs
|
270 |
+
) -> torch.Tensor:
|
271 |
+
"""
|
272 |
+
Compute the IIR state via explicit SSM recurrence (modal form)
|
273 |
+
|
274 |
+
This is the most memory efficient prefilling method for Hyena filters.
|
275 |
+
|
276 |
+
Note:
|
277 |
+
dtypes: [state: float32, poles: float32, x1v: bfloat16, output: bfloat16]
|
278 |
+
"""
|
279 |
+
state_dim = poles.shape[1]
|
280 |
+
x1v_ = x1v[..., None, None] # b, d, l, sdim, reim
|
281 |
+
x1v_ = x1v_.repeat(1, 1, 1, state_dim, 2) # b, d, l, sdim, reim
|
282 |
+
x1v_[..., 1] = 0
|
283 |
+
|
284 |
+
state = 0 * x1v_[:, :, 0]
|
285 |
+
output = 0 * x1v_[:, :, :, 0, 0] # b, d, l
|
286 |
+
|
287 |
+
# suppress dummy seqlen dimension
|
288 |
+
poles = poles[:, :, 0][None]
|
289 |
+
residues = residues[:, :, 0][None].repeat(x1v_.shape[0], 1, 1, 1) # b, d, sdim, reim
|
290 |
+
|
291 |
+
# state: b, d, sdim, reim
|
292 |
+
# poles: 1, d, sdim, reim
|
293 |
+
# x1v_: b, d, l, sdim, reim
|
294 |
+
for i in range(L):
|
295 |
+
state[..., 0] = poles[..., 0] * state[..., 0] - poles[..., 1] * state[..., 1] + x1v_[:, :, i, :, 0]
|
296 |
+
state[..., 1] = poles[..., 0] * state[..., 1] + poles[..., 1] * state[..., 0] + x1v_[:, :, i, :, 1]
|
297 |
+
output[:, :, i] = torch.sum(residues * state, dim=-2)[..., 0] # .real
|
298 |
+
|
299 |
+
inference_params.state_dict[self.layer_idx] = torch.view_as_complex(state.to(dtype=torch.float32))
|
300 |
+
|
301 |
+
return output
|
302 |
+
|
303 |
+
def prefill_via_hybrid_recurrence(self, inference_params, u, log_poles, x1v_f_a, L, *args, **kwargs):
|
304 |
+
"""
|
305 |
+
Compute the IIR state via hybrid recurrence-convolution over blocks
|
306 |
+
"""
|
307 |
+
raise NotImplementedError(":)")
|
308 |
+
|
309 |
+
def prefill_via_scan(self, u, inference_params=None, *args, **kwargs):
|
310 |
+
raise NotImplementedError
|
311 |
+
|
312 |
+
def prefill_via_canonical_fft(self, u, inference_params=None, *args, **kwargs):
|
313 |
+
"""
|
314 |
+
Compute the IIR state via a single FFT with the denominator of the SSM in companion form.
|
315 |
+
|
316 |
+
This is the most memory efficient "parallelized" prefilling method for Hyena.
|
317 |
+
|
318 |
+
From: https://arxiv.org/abs/2310.18780
|
319 |
+
"""
|
320 |
+
raise NotImplementedError(":)")
|
321 |
+
|
322 |
+
def prefill_via_modal_fft(
|
323 |
+
self,
|
324 |
+
inference_params,
|
325 |
+
x1v,
|
326 |
+
L,
|
327 |
+
poles,
|
328 |
+
t,
|
329 |
+
dims,
|
330 |
+
layer_idx,
|
331 |
+
X_s=None,
|
332 |
+
use_flashfft=False,
|
333 |
+
fftconv_fn=None,
|
334 |
+
state_dtype=torch.complex64,
|
335 |
+
*args,
|
336 |
+
**kwargs,
|
337 |
+
):
|
338 |
+
"""
|
339 |
+
Compute the IIR state via a single FFT, using the poles of the SSM in modal form.
|
340 |
+
"""
|
341 |
+
# When the model has a long convolution derived from a SSM in modal form and prefill_style is "fft",
|
342 |
+
# we split the filter into poles and residues and reuse FFT computation on the input.
|
343 |
+
# This optimization is currently not supported when using flashfftconv.
|
344 |
+
hidden_size, _, _, state_size, hyena_filter_groups = dims
|
345 |
+
|
346 |
+
if use_flashfft:
|
347 |
+
# using real states
|
348 |
+
poles = poles.squeeze().reshape(poles.shape[0], -1)[..., None]
|
349 |
+
|
350 |
+
state_s = poles**t
|
351 |
+
if hyena_filter_groups > 1:
|
352 |
+
raise NotImplementedError
|
353 |
+
|
354 |
+
x1v = x1v[:, :, None].repeat(1, 1, 2 * state_size, 1)
|
355 |
+
x1v = x1v.reshape(x1v.shape[0], -1, x1v.shape[-1])
|
356 |
+
state_s = state_s[None]
|
357 |
+
|
358 |
+
state = fftconv_fn(
|
359 |
+
x1v.contiguous(),
|
360 |
+
state_s.to(dtype=torch.float32),
|
361 |
+
)
|
362 |
+
state = state[..., L - 1].reshape(x1v.shape[0], hidden_size, state_size, 2)
|
363 |
+
state = torch.view_as_complex(state.contiguous().to(dtype=torch.float32))
|
364 |
+
inference_params.state_dict[self.layer_idx] = state
|
365 |
+
else:
|
366 |
+
assert X_s is not None
|
367 |
+
bs = x1v.shape[0]
|
368 |
+
fft_size = 2 * L
|
369 |
+
poles = torch.view_as_complex(poles.to(torch.float32))
|
370 |
+
state_s = poles**t
|
371 |
+
state_S = torch.fft.fft(state_s, n=fft_size).repeat(bs, 1, 1, 1) # B, D, state_dim, 2 * L
|
372 |
+
if hyena_filter_groups > 1:
|
373 |
+
state_S = state_S.repeat_interleave(hidden_size // hyena_filter_groups, 1)
|
374 |
+
state = torch.fft.ifft(X_s[..., None, :] * state_S, n=fft_size)
|
375 |
+
inference_params.state_dict[layer_idx] = state[..., L - 1].to(dtype=state_dtype)
|
376 |
+
|
377 |
+
def _compute_state(self, log_poles, u, t, L, *args, **kwargs):
|
378 |
+
"""
|
379 |
+
Compute the IIR state given an input `u` and log_poles of the modal system.
|
380 |
+
"""
|
381 |
+
bs = u.shape[0]
|
382 |
+
fft_size = 2 * L
|
383 |
+
U = torch.fft.rfft(u.to(torch.float32), n=fft_size)
|
384 |
+
fft_size = 2 * L
|
385 |
+
x = (log_poles * t).exp()
|
386 |
+
# [batch, hidden_size, state_dim, 2 * seqlen]
|
387 |
+
X = torch.fft.fft(x, n=fft_size).repeat(bs, 1, 1, 1)
|
388 |
+
state = torch.fft.ifft(U[..., None, :] * X, n=fft_size)[..., :L]
|
389 |
+
return state
|
layers.py
ADDED
@@ -0,0 +1,155 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Together
|
2 |
+
# This software is distributed under the terms of the Apache License, Version 2.0
|
3 |
+
# Author: Michael Poli
|
4 |
+
|
5 |
+
import torch
|
6 |
+
from torch import Tensor
|
7 |
+
import torch.nn.functional as F
|
8 |
+
import torch.nn as nn
|
9 |
+
from .utils import grab_first_if_tuple
|
10 |
+
|
11 |
+
def grab_first_if_tuple(x):
|
12 |
+
if x.__class__.__name__ == "tuple":
|
13 |
+
return x[0]
|
14 |
+
else:
|
15 |
+
return x
|
16 |
+
|
17 |
+
class RMSNorm(torch.nn.Module):
|
18 |
+
def __init__(self, config):
|
19 |
+
super(RMSNorm, self).__init__()
|
20 |
+
self.eps, self.hidden_size = config.eps, config.hidden_size
|
21 |
+
self.scale = torch.nn.Parameter(torch.ones(self.hidden_size))
|
22 |
+
self.register_parameter("scale", self.scale)
|
23 |
+
self.use_flash_rmsnorm = config.get("use_flash_rmsnorm", False)
|
24 |
+
|
25 |
+
if self.use_flash_rmsnorm:
|
26 |
+
try:
|
27 |
+
from flash_attn.ops.rms_norm import rms_norm as rmsnorm_func
|
28 |
+
|
29 |
+
self.rmsnorm_func = rmsnorm_func
|
30 |
+
except:
|
31 |
+
raise ImportError(
|
32 |
+
"For `use_flash_rmsnorm`: `pip install git+https://github.com/HazyResearch/flash-attention.git#subdirectory=csrc/layer_norm`"
|
33 |
+
)
|
34 |
+
|
35 |
+
def forward(self, x):
|
36 |
+
if self.use_flash_rmsnorm:
|
37 |
+
return self.rmsnorm_func(x, self.scale, self.eps)
|
38 |
+
else:
|
39 |
+
y = x / (x.norm(2, dim=-1, keepdim=True) * self.hidden_size ** (-1.0 / 2) + self.eps)
|
40 |
+
return self.scale * y
|
41 |
+
|
42 |
+
|
43 |
+
class ParallelGatedMLP(nn.Module):
|
44 |
+
def __init__(
|
45 |
+
self,
|
46 |
+
config,
|
47 |
+
):
|
48 |
+
super().__init__()
|
49 |
+
|
50 |
+
multiple_of = config.get("inner_size_multiple_of", 64)
|
51 |
+
self.act_type = config.get("mlp_activation", "silu")
|
52 |
+
if self.act_type == "gelu":
|
53 |
+
self.act = F.gelu
|
54 |
+
elif self.act_type == "silu":
|
55 |
+
self.act = F.silu
|
56 |
+
else:
|
57 |
+
raise NotImplementedError
|
58 |
+
|
59 |
+
self.multiple_of = multiple_of * config.model_parallel_size
|
60 |
+
|
61 |
+
inner_size = int(2 * config.hidden_size * 4 / 3)
|
62 |
+
inner_size = self.multiple_of * ((inner_size + self.multiple_of - 1) // self.multiple_of)
|
63 |
+
if config.get("inner_mlp_size", None) is not None:
|
64 |
+
inner_size = config.inner_mlp_size
|
65 |
+
|
66 |
+
self.l1 = nn.Linear(
|
67 |
+
in_features=config.hidden_size,
|
68 |
+
out_features=inner_size,
|
69 |
+
bias=False,
|
70 |
+
)
|
71 |
+
self.l2 = nn.Linear(
|
72 |
+
in_features=config.hidden_size,
|
73 |
+
out_features=inner_size,
|
74 |
+
bias=False,
|
75 |
+
)
|
76 |
+
self.l3 = nn.Linear(
|
77 |
+
in_features=inner_size,
|
78 |
+
out_features=config.hidden_size,
|
79 |
+
bias=False,
|
80 |
+
)
|
81 |
+
|
82 |
+
def forward(self, z):
|
83 |
+
z1, z2 = self.l1(z), self.l2(z)
|
84 |
+
z1, z2 = grab_first_if_tuple(z1), grab_first_if_tuple(z2)
|
85 |
+
y = self.l3(self.act(z1) * z2)
|
86 |
+
return grab_first_if_tuple(y)
|
87 |
+
|
88 |
+
|
89 |
+
class Embedding(nn.Module):
|
90 |
+
_train_dtype = "bf16"
|
91 |
+
|
92 |
+
def __init__(self, config):
|
93 |
+
super().__init__()
|
94 |
+
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=0)
|
95 |
+
|
96 |
+
def embed(self, input_ids, position_ids=None, tokentype_ids=None):
|
97 |
+
embeddings = self.word_embeddings(input_ids)
|
98 |
+
return embeddings
|
99 |
+
|
100 |
+
def unembed(self, u):
|
101 |
+
weight = self.word_embeddings.weight
|
102 |
+
return torch.matmul(u, weight)
|
103 |
+
|
104 |
+
|
105 |
+
class VocabParallelEmbedding(nn.Embedding):
|
106 |
+
"Adapted from https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/modules/embedding.py"
|
107 |
+
|
108 |
+
def __init__(self, config):
|
109 |
+
vocab_size, process_group, padding_idx = (
|
110 |
+
config.vocab_size,
|
111 |
+
config.get("process_group", None),
|
112 |
+
config.get("padding_idx", None),
|
113 |
+
)
|
114 |
+
self.process_group = process_group
|
115 |
+
if process_group is not None:
|
116 |
+
world_size = torch.distributed.get_world_size(process_group)
|
117 |
+
if vocab_size % world_size != 0:
|
118 |
+
raise ValueError(
|
119 |
+
f"vocab_size ({vocab_size}) must be divisible by " f"world_size ({world_size})"
|
120 |
+
)
|
121 |
+
if world_size > 1 and padding_idx is not None:
|
122 |
+
raise RuntimeError("ParallelEmbedding does not support padding_idx")
|
123 |
+
else:
|
124 |
+
world_size = 1
|
125 |
+
super().__init__(
|
126 |
+
vocab_size // world_size,
|
127 |
+
embedding_dim=config.hidden_size,
|
128 |
+
padding_idx=padding_idx,
|
129 |
+
)
|
130 |
+
|
131 |
+
def embed(self, x: Tensor) -> Tensor:
|
132 |
+
if self.process_group is None:
|
133 |
+
return self.forward(x)
|
134 |
+
else:
|
135 |
+
rank = torch.distributed.get_rank(self.process_group)
|
136 |
+
vocab_size = self.num_embeddings
|
137 |
+
vocab_start_index, vocab_end_index = (
|
138 |
+
rank * vocab_size,
|
139 |
+
(rank + 1) * vocab_size,
|
140 |
+
)
|
141 |
+
# Create a mask of valid vocab ids (1 means it needs to be masked).
|
142 |
+
input_ids_mask = (x < vocab_start_index) | (x >= vocab_end_index)
|
143 |
+
x = x - vocab_start_index
|
144 |
+
x[input_ids_mask] = 0
|
145 |
+
embeddings = self.forward(x)
|
146 |
+
embeddings[input_ids_mask] = 0.0
|
147 |
+
# Reduce to the global process group
|
148 |
+
torch.distributed.all_reduce(embeddings, group=self.process_group)
|
149 |
+
return embeddings
|
150 |
+
|
151 |
+
def unembed(self, u: Tensor) -> Tensor:
|
152 |
+
if self.process_group is None:
|
153 |
+
return u @ self.weight.T
|
154 |
+
else:
|
155 |
+
raise NotImplementedError
|
model.py
ADDED
@@ -0,0 +1,472 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Together
|
2 |
+
# This software is distributed under the terms of the Apache License, Version 2.0
|
3 |
+
# Author: Michael Poli
|
4 |
+
# Note: MP and PP utilities are removed for ease of use and editing.
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import torch.nn as nn
|
8 |
+
import torch.nn.functional as F
|
9 |
+
|
10 |
+
from .cache import InferenceParams, RecurrentInferenceParams
|
11 |
+
from .engine import HyenaInferenceEngine
|
12 |
+
from .layers import ParallelGatedMLP, RMSNorm, VocabParallelEmbedding
|
13 |
+
from .utils import column_split, print_rank_0
|
14 |
+
|
15 |
+
try:
|
16 |
+
from flash_attn.modules.mha import MHA
|
17 |
+
except ImportError:
|
18 |
+
"flash_attn not installed"
|
19 |
+
|
20 |
+
try:
|
21 |
+
from .positional_embeddings import swap_mha_rope
|
22 |
+
except ImportError:
|
23 |
+
"could not import swap_mha_rope from positional_embeddings.py"
|
24 |
+
|
25 |
+
# dummy import to force huggingface to bundle the tokenizer
|
26 |
+
from .tokenizer import ByteTokenizer
|
27 |
+
|
28 |
+
|
29 |
+
class AttentionBlock(nn.Module):
|
30 |
+
def __init__(self, config, layer_idx) -> None:
|
31 |
+
super().__init__()
|
32 |
+
self.config = config
|
33 |
+
self.pre_norm, self.post_norm = RMSNorm(config), RMSNorm(config)
|
34 |
+
self.layer_idx = layer_idx
|
35 |
+
self.proj_groups = config.get("proj_groups", 1)
|
36 |
+
dtype = config.get("attn_block_dtype", torch.bfloat16)
|
37 |
+
mlp_dtype = config.get("mlp_dtype", torch.bfloat16)
|
38 |
+
self.num_attention_heads = config.num_attention_heads
|
39 |
+
self.hidden_size_per_attention_head = config.hidden_size // config.num_attention_heads
|
40 |
+
|
41 |
+
self.counter = 0
|
42 |
+
self.inner_mha_cls = MHA(
|
43 |
+
embed_dim=config.hidden_size,
|
44 |
+
num_heads=config.num_attention_heads,
|
45 |
+
num_heads_kv=config.num_attention_heads // self.proj_groups,
|
46 |
+
rotary_emb_dim=config.hidden_size // config.num_attention_heads,
|
47 |
+
qkv_proj_bias=config.get("qkv_proj_bias", True),
|
48 |
+
rotary_emb_base=config.get("rotary_emb_base", 10000),
|
49 |
+
causal=True,
|
50 |
+
layer_idx=layer_idx,
|
51 |
+
out_proj_bias=config.get("mha_out_proj_bias", True),
|
52 |
+
use_flash_attn=self.config.use_flash_attn,
|
53 |
+
).to(dtype=dtype)
|
54 |
+
|
55 |
+
# check if using interpolated rotary pos emb from config, and swap the rope emb
|
56 |
+
if config.get("use_interpolated_rotary_pos_emb", False):
|
57 |
+
swap_mha_rope(
|
58 |
+
mha=self.inner_mha_cls,
|
59 |
+
kwargs_new_rope={'scaling_factor': config.get("rotary_emb_scaling_factor", 1.)},
|
60 |
+
)
|
61 |
+
|
62 |
+
if self.config.get("smeared_gqa", False):
|
63 |
+
self.inner_mha_cls.num_heads_kv = self.inner_mha_cls.num_heads
|
64 |
+
self.inner_mha_cls.rotary_emb.register_buffer("inv_freq", self.inner_mha_cls.rotary_emb.inv_freq)
|
65 |
+
|
66 |
+
self.mlp = ParallelGatedMLP(config).to(dtype=mlp_dtype)
|
67 |
+
|
68 |
+
def forward(self, u, inference_params=None, padding_mask=None, *args, **kwargs):
|
69 |
+
if (
|
70 |
+
type(padding_mask) == torch.Tensor
|
71 |
+
): # workaround for masking bug in FA. This works because Wqkv does not have bias
|
72 |
+
# and attention scores will be also automatically zeroed.
|
73 |
+
u = u * padding_mask[..., None]
|
74 |
+
u = (
|
75 |
+
self.inner_mha_cls(
|
76 |
+
self.pre_norm(u),
|
77 |
+
inference_params=inference_params,
|
78 |
+
)
|
79 |
+
+ u
|
80 |
+
)
|
81 |
+
if type(padding_mask) == torch.Tensor: # guard against bias
|
82 |
+
u = u * padding_mask[..., None]
|
83 |
+
u = self.mlp(self.post_norm(u)) + u
|
84 |
+
return u, None
|
85 |
+
|
86 |
+
|
87 |
+
class ParallelHyenaFilter(nn.Module):
|
88 |
+
def __init__(self, config, layer_idx) -> None:
|
89 |
+
super().__init__()
|
90 |
+
self.config = config
|
91 |
+
self.layer_idx = layer_idx
|
92 |
+
self.hyena_filter_groups = config.get("hyena_filter_groups", self.config.hidden_size)
|
93 |
+
|
94 |
+
self.use_flashfft = config.get("use_flashfft", False)
|
95 |
+
self.state_size = config.state_size
|
96 |
+
self.hidden_size = config.hidden_size
|
97 |
+
self.num_filters = config.num_filters
|
98 |
+
self.inference_mode = config.get("inference_mode", True)
|
99 |
+
self.counter = 0
|
100 |
+
self.column_split_hyena = config.get("column_split_hyena", True)
|
101 |
+
|
102 |
+
assert self.hidden_size % self.num_filters == 0 and self.num_filters <= self.hidden_size
|
103 |
+
|
104 |
+
self.D = nn.Parameter(torch.zeros(self.hidden_size))
|
105 |
+
|
106 |
+
# attention heads are not used except to split post short_filter
|
107 |
+
# projections in the same way as the checkpoint
|
108 |
+
self.num_attention_heads = config.num_attention_heads
|
109 |
+
self.hidden_size_per_attention_head = self.hidden_size // self.num_attention_heads
|
110 |
+
|
111 |
+
# after preprocessing here we can save the new checkpoint
|
112 |
+
self.short_filter_length = config.short_filter_length
|
113 |
+
self.short_filter_weight = nn.Parameter(torch.randn(3 * config.hidden_size, 1, config.short_filter_length))
|
114 |
+
self.short_filter_bias = (
|
115 |
+
nn.Parameter(torch.randn(3 * config.hidden_size)) if config.short_filter_bias else None
|
116 |
+
)
|
117 |
+
|
118 |
+
self.engine = HyenaInferenceEngine(layer_idx=layer_idx)
|
119 |
+
self.use_flash_depthwise = config.get("use_flash_depthwise", False)
|
120 |
+
self.data_dtype = None
|
121 |
+
|
122 |
+
if self.use_flash_depthwise:
|
123 |
+
self.fir_fn = FlashDepthwiseConv1d(
|
124 |
+
channels=3 * self.hidden_size,
|
125 |
+
kernel_size=self.short_filter_length,
|
126 |
+
padding=self.short_filter_length - 1,
|
127 |
+
weights=self.short_filter_weight,
|
128 |
+
bias=self.short_filter_bias,
|
129 |
+
device=None,
|
130 |
+
dtype=self.config.get("depthwise_dtype", torch.bfloat16),
|
131 |
+
)
|
132 |
+
else:
|
133 |
+
self.fir_fn = F.conv1d
|
134 |
+
|
135 |
+
self.fftconv_fn = None
|
136 |
+
self.long_fir_threshold = config.get("long_fir_threshold", None)
|
137 |
+
if self.long_fir_threshold is not None:
|
138 |
+
assert self.use_flashfft is False, "long_fir_threshold not compatible with fused flashfft"
|
139 |
+
|
140 |
+
self.num_systems = self.hidden_size // self.hyena_filter_groups
|
141 |
+
|
142 |
+
poles = torch.randn(self.num_systems, self.state_size, 1, 2)
|
143 |
+
|
144 |
+
# TODO: bring over init from internals
|
145 |
+
poles[..., 0] = 1e-2 * torch.randn(self.num_systems, self.state_size, 1)
|
146 |
+
poles[..., 1] = 1e-3 * torch.randn(self.num_systems, self.state_size, 1)
|
147 |
+
|
148 |
+
self.poles = nn.Parameter(poles)
|
149 |
+
|
150 |
+
self.residues = nn.Parameter(torch.randn(self.num_systems, self.state_size, 1, 2))
|
151 |
+
self.h = None
|
152 |
+
|
153 |
+
def forward(self, u, inference_params=None, padding_mask=None, *args, **kwargs):
|
154 |
+
if inference_params is not None and self.layer_idx in inference_params.fir_state_dict.keys():
|
155 |
+
return self.sequential_forward(u, inference_params)
|
156 |
+
|
157 |
+
else:
|
158 |
+
return self.parallel_forward(u, inference_params, padding_mask)
|
159 |
+
|
160 |
+
def parallel_forward(self, u, inference_params=None, padding_mask=None):
|
161 |
+
L = u.shape[1]
|
162 |
+
z_pre, fir_state = self.engine.parallel_fir(
|
163 |
+
self.fir_fn,
|
164 |
+
u,
|
165 |
+
self.short_filter_weight,
|
166 |
+
self.short_filter_bias,
|
167 |
+
L,
|
168 |
+
fir_length=self.short_filter_length,
|
169 |
+
inference_params=inference_params,
|
170 |
+
padding_mask=padding_mask,
|
171 |
+
)
|
172 |
+
if inference_params:
|
173 |
+
inference_params.fir_state_dict[self.layer_idx] = fir_state
|
174 |
+
|
175 |
+
if self.h is None:
|
176 |
+
h, filter_dtype, poles, residues = self.compute_filter(L, u.device)
|
177 |
+
else:
|
178 |
+
h = self.h
|
179 |
+
filter_dtype = self.h.dtype
|
180 |
+
|
181 |
+
if self.hyena_filter_groups > 1:
|
182 |
+
h = h.repeat_interleave(self.hidden_size // self.hyena_filter_groups, 1)
|
183 |
+
|
184 |
+
# if inference_params is not None, we plan to perform generation:
|
185 |
+
# prefilling is handled by the engine.
|
186 |
+
dims = (
|
187 |
+
self.hidden_size,
|
188 |
+
self.num_attention_heads,
|
189 |
+
self.hidden_size_per_attention_head,
|
190 |
+
self.state_size,
|
191 |
+
self.hyena_filter_groups,
|
192 |
+
)
|
193 |
+
y = self.engine.parallel_iir(
|
194 |
+
z_pre,
|
195 |
+
h,
|
196 |
+
self.D,
|
197 |
+
L,
|
198 |
+
t=self.t,
|
199 |
+
poles=self.poles,
|
200 |
+
residues=self.residues,
|
201 |
+
dims=dims,
|
202 |
+
inference_params=inference_params,
|
203 |
+
layer_idx=self.layer_idx,
|
204 |
+
prefill_style=self.config.get("prefill_style", "fft"),
|
205 |
+
use_flashfft=self.use_flashfft,
|
206 |
+
fftconv_fn=self.fftconv_fn,
|
207 |
+
column_split_hyena=self.column_split_hyena,
|
208 |
+
long_fir_threshold=self.long_fir_threshold,
|
209 |
+
padding_mask=padding_mask,
|
210 |
+
)
|
211 |
+
|
212 |
+
return y, inference_params
|
213 |
+
|
214 |
+
def sequential_forward(self, u, inference_params):
|
215 |
+
if self.data_dtype is None:
|
216 |
+
self.data_dtype = u.dtype
|
217 |
+
if len(u.shape) > 2:
|
218 |
+
u = u[:, -1]
|
219 |
+
|
220 |
+
fir_state, iir_state = (
|
221 |
+
inference_params.fir_state_dict[self.layer_idx],
|
222 |
+
inference_params.state_dict[self.layer_idx],
|
223 |
+
)
|
224 |
+
|
225 |
+
z_pre, fir_state = self.engine.step_fir(
|
226 |
+
u, fir_state, weight=self.short_filter_weight, bias=self.short_filter_bias
|
227 |
+
)
|
228 |
+
x2, x1, v = (
|
229 |
+
column_split(z_pre, self.num_attention_heads, self.hidden_size_per_attention_head)
|
230 |
+
if self.column_split_hyena
|
231 |
+
else z_pre.split([self.hidden_size, self.hidden_size, self.hidden_size], dim=1)
|
232 |
+
)
|
233 |
+
|
234 |
+
y, iir_state = self.engine.step_iir(
|
235 |
+
x2,
|
236 |
+
x1,
|
237 |
+
v,
|
238 |
+
self.D,
|
239 |
+
self.residues,
|
240 |
+
self.poles,
|
241 |
+
iir_state,
|
242 |
+
iir_groups=self.hyena_filter_groups,
|
243 |
+
)
|
244 |
+
|
245 |
+
inference_params.fir_state_dict[self.layer_idx] = fir_state
|
246 |
+
inference_params.state_dict[self.layer_idx] = iir_state
|
247 |
+
y = y.to(dtype=self.data_dtype)
|
248 |
+
return y[:, None], inference_params
|
249 |
+
|
250 |
+
def update_time(self, L, device):
|
251 |
+
"""
|
252 |
+
Set [0, 1, ..., L-1] where L is the length of the current batch of inputs.
|
253 |
+
If L is greater than the length of the previous batch, then the time vector is
|
254 |
+
reinitialized. Otherwise, the time vector is truncated from cache.
|
255 |
+
"""
|
256 |
+
if not hasattr(self, "t"):
|
257 |
+
self.t = torch.arange(L, device=device)[None, None]
|
258 |
+
elif self.t.shape[-1] < L:
|
259 |
+
self.t = torch.arange(L, device=device)[None, None]
|
260 |
+
else:
|
261 |
+
self.t = self.t[..., :L]
|
262 |
+
|
263 |
+
def compute_filter(self, L, device):
|
264 |
+
self.update_time(L, device)
|
265 |
+
filter_dtype = torch.float32
|
266 |
+
residues, log_poles = (
|
267 |
+
torch.view_as_complex(self.residues.to(filter_dtype)),
|
268 |
+
torch.view_as_complex(self.poles.to(filter_dtype)).log(),
|
269 |
+
)
|
270 |
+
h = (residues * (log_poles * self.t).exp()).real.sum(1)[None]
|
271 |
+
return h, filter_dtype, log_poles, residues
|
272 |
+
|
273 |
+
|
274 |
+
class ParallelGatedConvBlock(nn.Module):
|
275 |
+
def __init__(self, config, layer_idx) -> None:
|
276 |
+
super().__init__()
|
277 |
+
self.config = config
|
278 |
+
self.layer_idx = layer_idx
|
279 |
+
self.low_mem_mode = config.get("low_mem_mode", False)
|
280 |
+
dtype = config.get("hyena_block_dtype", torch.float32)
|
281 |
+
mlp_dtype = config.get("mlp_dtype", torch.bfloat16)
|
282 |
+
self.pre_norm, self.post_norm = RMSNorm(config).to(dtype=dtype), RMSNorm(config).to(dtype=dtype)
|
283 |
+
self.filter = ParallelHyenaFilter(config, layer_idx).to(dtype=dtype)
|
284 |
+
self.projections = nn.Linear(config.hidden_size, 3 * config.hidden_size)
|
285 |
+
self.out_filter_dense = nn.Linear(config.hidden_size, config.hidden_size).to(dtype)
|
286 |
+
self.mlp = ParallelGatedMLP(config).to(dtype=mlp_dtype)
|
287 |
+
|
288 |
+
self.proj_norm_fn = self.proj_norm
|
289 |
+
self.res_mlp_norm_fn = self.res_mlp_norm
|
290 |
+
|
291 |
+
if self.config.get("compile", False):
|
292 |
+
self.proj_norm_fn = torch.compile(self.proj_norm, fullgraph=True, dynamic=False, mode="reduce-overhead")
|
293 |
+
self.res_mlp_norm_fn = torch.compile(
|
294 |
+
self.res_mlp_norm, fullgraph=True, dynamic=False, mode="reduce-overhead"
|
295 |
+
)
|
296 |
+
|
297 |
+
def proj_norm(self, x):
|
298 |
+
return self.projections(self.pre_norm(x))
|
299 |
+
|
300 |
+
def res_mlp_norm(self, x):
|
301 |
+
return self.mlp(self.post_norm(x)) + x
|
302 |
+
|
303 |
+
def forward(self, u, inference_params=None, padding_mask=None, *args, **kwargs):
|
304 |
+
z = self.proj_norm_fn(u)
|
305 |
+
|
306 |
+
if type(padding_mask) == torch.Tensor: # guard against bias
|
307 |
+
z = z * padding_mask[..., None]
|
308 |
+
|
309 |
+
z, inference_params = self.filter(z, inference_params=inference_params, padding_mask=padding_mask)
|
310 |
+
|
311 |
+
z_in = self.out_filter_dense(z) + u
|
312 |
+
|
313 |
+
if type(padding_mask) == torch.Tensor: # guard against bias
|
314 |
+
z_in = z_in * padding_mask[..., None]
|
315 |
+
|
316 |
+
y = self.res_mlp_norm_fn(z_in)
|
317 |
+
|
318 |
+
return y, inference_params
|
319 |
+
|
320 |
+
|
321 |
+
def get_block(config, layer_idx, flash_fft=None):
|
322 |
+
if layer_idx in config.attn_layer_idxs:
|
323 |
+
return AttentionBlock(config, layer_idx)
|
324 |
+
elif layer_idx in config.hyena_layer_idxs:
|
325 |
+
block = ParallelGatedConvBlock(config, layer_idx)
|
326 |
+
if config.get("use_flashfft", "False"):
|
327 |
+
block.filter.fftconv_fn = flash_fft
|
328 |
+
return block
|
329 |
+
else:
|
330 |
+
raise NotImplementedError
|
331 |
+
|
332 |
+
|
333 |
+
class StripedHyena(nn.Module):
|
334 |
+
def __init__(self, config):
|
335 |
+
super().__init__()
|
336 |
+
self.config = config
|
337 |
+
self.embedding_layer = VocabParallelEmbedding(config)
|
338 |
+
self.norm = RMSNorm(config) if config.get("final_norm", True) else None
|
339 |
+
self.unembed = self.embedding_layer if config.tie_embeddings else VocabParallelEmbedding(config)
|
340 |
+
|
341 |
+
if config.get("use_flashfft", "False"):
|
342 |
+
from flashfftconv import FlashFFTConv
|
343 |
+
|
344 |
+
self.flash_fft = FlashFFTConv(2 * config.seqlen, dtype=torch.bfloat16)
|
345 |
+
else:
|
346 |
+
self.flash_fft = None
|
347 |
+
|
348 |
+
self.blocks = nn.ModuleList(
|
349 |
+
get_block(config, layer_idx, flash_fft=self.flash_fft) for layer_idx in range(config.num_layers)
|
350 |
+
)
|
351 |
+
|
352 |
+
def forward(self, x, inference_params_dict=None, padding_mask=None):
|
353 |
+
L = x.shape[1]
|
354 |
+
x = self.embedding_layer.embed(x)
|
355 |
+
if inference_params_dict is not None:
|
356 |
+
x, inference_params_dict_out = self.stateful_forward(
|
357 |
+
x,
|
358 |
+
inference_params_dict=inference_params_dict,
|
359 |
+
)
|
360 |
+
else:
|
361 |
+
x, inference_params_dict_out = self.stateless_forward(x, padding_mask=padding_mask)
|
362 |
+
|
363 |
+
x = self.norm(x)
|
364 |
+
x = self.unembed.unembed(x)
|
365 |
+
return x, inference_params_dict_out
|
366 |
+
|
367 |
+
def stateful_forward(self, x, inference_params_dict=None):
|
368 |
+
for block_idx, block in enumerate(self.blocks):
|
369 |
+
block_name = "mha" if block_idx in self.config.attn_layer_idxs else "hyena"
|
370 |
+
inference_params = inference_params_dict[block_name]
|
371 |
+
x, _ = block(x, inference_params=inference_params)
|
372 |
+
|
373 |
+
return x, inference_params_dict
|
374 |
+
|
375 |
+
def stateless_forward(self, x, padding_mask=None):
|
376 |
+
if type(padding_mask) == torch.Tensor:
|
377 |
+
x = x * padding_mask[..., None]
|
378 |
+
|
379 |
+
for _, block in enumerate(self.blocks):
|
380 |
+
x, _ = block(x, inference_params=None, padding_mask=padding_mask)
|
381 |
+
return x, None
|
382 |
+
|
383 |
+
def initialize_inference_params(self):
|
384 |
+
print_rank_0("Initializing inference params...")
|
385 |
+
inference_params_dict = {
|
386 |
+
"mha": InferenceParams(
|
387 |
+
max_seqlen=self.config.get("max_seqlen", 8192),
|
388 |
+
max_batch_size=self.config.get("max_batch_size", 1),
|
389 |
+
seqlen_offset=0,
|
390 |
+
),
|
391 |
+
"hyena": RecurrentInferenceParams(
|
392 |
+
fir_filter_length=self.config.short_filter_length,
|
393 |
+
state_dim=self.config.state_size,
|
394 |
+
seqlen_offset=0,
|
395 |
+
),
|
396 |
+
}
|
397 |
+
return inference_params_dict
|
398 |
+
|
399 |
+
def precompute_filters(self, L, device):
|
400 |
+
for block_idx, block in enumerate(self.blocks):
|
401 |
+
if type(block) == ParallelGatedConvBlock:
|
402 |
+
if type(block.filter) == ParallelHyenaFilter:
|
403 |
+
L = block.filter.long_fir_threshold or L
|
404 |
+
print_rank_0(f"Precomputing filters, L={L}...")
|
405 |
+
|
406 |
+
filter_dtype = torch.float16 if L >= 2048 else torch.float32
|
407 |
+
|
408 |
+
block.filter._set_time(L, device)
|
409 |
+
residues, poles = (
|
410 |
+
torch.view_as_complex(block.filter.residues.to(torch.float16)),
|
411 |
+
torch.view_as_complex(block.filter.poles.to(torch.float16)),
|
412 |
+
)
|
413 |
+
|
414 |
+
block.filter.h = (residues * poles**block.filter.t).real.sum(1)[None]
|
415 |
+
block.filter.h = block.filter.h.to(dtype=filter_dtype)
|
416 |
+
|
417 |
+
def load_poles_residues(self, path):
|
418 |
+
"Load different poles and residues for each layer."
|
419 |
+
for block_idx, block in enumerate(self.blocks):
|
420 |
+
if type(block) == ParallelGatedConvBlock:
|
421 |
+
if type(block.filter) == ParallelHyenaFilter:
|
422 |
+
print(f"Loading poles and residues for block {block_idx}")
|
423 |
+
poles = torch.load(path + f"/approx_poles_{block_idx+1}.pt", map_location="cpu")
|
424 |
+
poles = torch.view_as_real(poles)
|
425 |
+
residues = torch.load(path + f"/approx_residues_{block_idx+1}.pt", map_location="cpu")
|
426 |
+
residues = torch.view_as_real(residues)
|
427 |
+
poles = poles.permute(1, 0, 2).unsqueeze(-2)
|
428 |
+
residues = residues.permute(1, 0, 2).unsqueeze(-2)
|
429 |
+
|
430 |
+
block.filter.poles = nn.Parameter(poles)
|
431 |
+
block.filter.residues = nn.Parameter(residues)
|
432 |
+
|
433 |
+
def to_bfloat16_except_poles_residues(self):
|
434 |
+
"""Convert all parameters to bfloat16 except for the poles and residues.
|
435 |
+
|
436 |
+
Particularly important for longer prompts.
|
437 |
+
"""
|
438 |
+
for k, p in self.named_parameters():
|
439 |
+
if "poles" not in k and "residues" not in k:
|
440 |
+
p.data = p.data.to(torch.bfloat16)
|
441 |
+
|
442 |
+
def load_from_split_converted_state_dict(self, path):
|
443 |
+
|
444 |
+
print("Loading from split converted state dict")
|
445 |
+
|
446 |
+
embedding_weight = torch.load(path + "/layer_00.pt")["word_embeddings.weight"]
|
447 |
+
self.embedding_layer.weight = nn.Parameter(embedding_weight.to(self.embedding_layer.weight.dtype))
|
448 |
+
|
449 |
+
print("Loading embedding weight ok")
|
450 |
+
|
451 |
+
if self.config.get("final_norm", False) is not None:
|
452 |
+
idx = len(self.blocks) + 1
|
453 |
+
final_norm_scale = torch.load(path + f"/layer_{idx:02d}.pt")["norm.scale"]
|
454 |
+
self.norm.scale = nn.Parameter(final_norm_scale.to(self.norm.scale.dtype))
|
455 |
+
|
456 |
+
print("loading final norm ok")
|
457 |
+
|
458 |
+
if not self.config.get("tie_embeddings", True):
|
459 |
+
idx = len(self.blocks) + 2
|
460 |
+
embedding_weight = torch.load(path + f"/layer_{idx:02d}.pt")["word_embeddings.weight"]
|
461 |
+
self.unembed.weight = nn.Parameter(embedding_weight.to(self.unembed.weight.dtype))
|
462 |
+
|
463 |
+
print("loading unembed weight ok")
|
464 |
+
|
465 |
+
for block_idx, block in enumerate(self.blocks):
|
466 |
+
print("loading block {}...".format(block_idx))
|
467 |
+
# strict = False if type(block) == ParallelGatedConvBlock else True
|
468 |
+
# some blocks (optionally) go through a round of conv distillation on some parameters
|
469 |
+
strict = True # safer to be strict and account for every layer
|
470 |
+
|
471 |
+
loaded_dict = torch.load(path + f"/layer_{block_idx + 1:02d}.pt")
|
472 |
+
block.load_state_dict(loaded_dict, strict=strict)
|
modeling_hyena.py
ADDED
@@ -0,0 +1,145 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""StripedHyena custom code port for the Hugging Face Hub"""
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from torch.nn import functional as F
|
6 |
+
from .configuration_hyena import StripedHyenaConfig
|
7 |
+
from transformers import PreTrainedModel
|
8 |
+
from transformers.modeling_outputs import CausalLMOutput, CausalLMOutputWithPast
|
9 |
+
from transformers.utils import logging
|
10 |
+
from typing import Optional, Tuple, Union
|
11 |
+
from .model import StripedHyena
|
12 |
+
from .utils import dotdict
|
13 |
+
from .cache import InferenceParams
|
14 |
+
from .engine import HyenaInferenceEngine
|
15 |
+
from .layers import RMSNorm
|
16 |
+
from .utils import dotdict, column_split
|
17 |
+
|
18 |
+
logger = logging.get_logger(__name__)
|
19 |
+
|
20 |
+
|
21 |
+
class StripedHyenaPreTrainedModel(PreTrainedModel):
|
22 |
+
config_class = StripedHyenaConfig
|
23 |
+
base_model_prefix = "sh"
|
24 |
+
supports_gradient_checkpointing = False
|
25 |
+
_no_split_modules = ["AttentionBlock", "ParallelGatedConvBlock"]
|
26 |
+
_skip_keys_device_placement = "past_key_values"
|
27 |
+
_keys_to_ignore_on_load_missing = [r"freq"]
|
28 |
+
_keys_to_ignore_on_load_unexpected = [r"fftconv", r"twiddle_factors"]
|
29 |
+
_supports_flash_attn_2 = True
|
30 |
+
|
31 |
+
|
32 |
+
class StripedHyenaModelForCausalLM(StripedHyenaPreTrainedModel):
|
33 |
+
supports_gradient_checkpointing = True
|
34 |
+
|
35 |
+
def __init__(self, config, **kwargs):
|
36 |
+
super().__init__(config, **kwargs)
|
37 |
+
model_config = dotdict(config.to_dict())
|
38 |
+
self.backbone = StripedHyena(model_config)
|
39 |
+
self.backbone.gradient_checkpointing = False
|
40 |
+
self.config = config
|
41 |
+
vocab_size = config.vocab_size
|
42 |
+
if vocab_size % config.make_vocab_size_divisible_by != 0:
|
43 |
+
vocab_size += config.make_vocab_size_divisible_by - (
|
44 |
+
vocab_size % config.make_vocab_size_divisible_by
|
45 |
+
)
|
46 |
+
self.vocab_size = vocab_size
|
47 |
+
self.post_init()
|
48 |
+
self.force_dtype()
|
49 |
+
|
50 |
+
def force_dtype(self):
|
51 |
+
self.backbone.to_bfloat16_except_poles_residues()
|
52 |
+
|
53 |
+
def _set_gradient_checkpointing(self, enable, gradient_checkpointing_func):
|
54 |
+
self.backbone.gradient_checkpointing = enable
|
55 |
+
|
56 |
+
def get_input_embeddings(self):
|
57 |
+
return self.backbone.embedding_layer
|
58 |
+
|
59 |
+
def forward(
|
60 |
+
self,
|
61 |
+
input_ids: torch.LongTensor = None,
|
62 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
63 |
+
labels: Optional[torch.LongTensor] = None,
|
64 |
+
use_cache: Optional[bool] = None,
|
65 |
+
output_attentions: Optional[bool] = None,
|
66 |
+
output_hidden_states: Optional[bool] = None,
|
67 |
+
past_key_values=None,
|
68 |
+
return_dict: Optional[bool] = None,
|
69 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
70 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
71 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
72 |
+
|
73 |
+
if use_cache:
|
74 |
+
if self.backbone.gradient_checkpointing and self.backbone.training:
|
75 |
+
logger.warning_once(
|
76 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
77 |
+
)
|
78 |
+
use_cache = False
|
79 |
+
elif labels is not None:
|
80 |
+
logger.warning_once(
|
81 |
+
"`use_cache=True` is incompatible with loss calculation. Setting `use_cache=False`..."
|
82 |
+
)
|
83 |
+
use_cache = False
|
84 |
+
|
85 |
+
inputs = input_ids
|
86 |
+
if use_cache:
|
87 |
+
if past_key_values is None:
|
88 |
+
past_key_values = self.backbone.initialize_inference_params()
|
89 |
+
|
90 |
+
batch_size = input_ids.shape[0]
|
91 |
+
past_key_values["mha"].max_batch_size = batch_size
|
92 |
+
past_key_values["hyena"].max_batch_size = batch_size
|
93 |
+
else:
|
94 |
+
seqlen_offset = past_key_values["mha"].seqlen_offset
|
95 |
+
if seqlen_offset == 0:
|
96 |
+
# second loop through generate will have prompt_len + 1 as seqlen
|
97 |
+
seqlen_offset = input_ids.shape[-1] - 1
|
98 |
+
past_key_values["hyena"].seqlen_offset = seqlen_offset
|
99 |
+
past_key_values["mha"].seqlen_offset = seqlen_offset
|
100 |
+
else:
|
101 |
+
past_key_values["mha"].seqlen_offset += 1
|
102 |
+
past_key_values["hyena"].seqlen_offset += 1
|
103 |
+
|
104 |
+
inputs = input_ids[
|
105 |
+
:,
|
106 |
+
-1:,
|
107 |
+
]
|
108 |
+
|
109 |
+
logits, past_key_values = self.backbone(
|
110 |
+
inputs,
|
111 |
+
padding_mask=attention_mask,
|
112 |
+
inference_params_dict=past_key_values if use_cache else None,
|
113 |
+
)
|
114 |
+
|
115 |
+
loss = None
|
116 |
+
if labels is not None:
|
117 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
118 |
+
shift_labels = labels[..., 1:].contiguous()
|
119 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
120 |
+
shift_labels = shift_labels.view(-1)
|
121 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
122 |
+
loss = F.cross_entropy(shift_logits, shift_labels)
|
123 |
+
|
124 |
+
if return_dict:
|
125 |
+
return CausalLMOutputWithPast(
|
126 |
+
logits=logits,
|
127 |
+
hidden_states=None,
|
128 |
+
past_key_values=past_key_values if use_cache else None,
|
129 |
+
loss=loss,
|
130 |
+
)
|
131 |
+
else:
|
132 |
+
return logits
|
133 |
+
|
134 |
+
@classmethod
|
135 |
+
def can_generate(cls) -> bool:
|
136 |
+
return True
|
137 |
+
|
138 |
+
def prepare_inputs_for_generation(
|
139 |
+
self, input_ids, attention_mask=None, past_key_values=None, **kwargs
|
140 |
+
):
|
141 |
+
return {
|
142 |
+
"input_ids": input_ids,
|
143 |
+
"attention_mask": attention_mask,
|
144 |
+
"past_key_values": past_key_values,
|
145 |
+
}
|
positional_embeddings.py
ADDED
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This software is distributed under the terms of the Apache License, Version 2.0
|
2 |
+
# Author: Armin Thomas, Eric Nguyen
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import copy
|
6 |
+
from einops import rearrange
|
7 |
+
from flash_attn.layers.rotary import RotaryEmbedding
|
8 |
+
from flash_attn.modules.mha import MHA
|
9 |
+
|
10 |
+
|
11 |
+
# simple wrapper for flash-attn RoPE with linear scaling:
|
12 |
+
class LinearlyScaledRotaryEmbedding(RotaryEmbedding):
|
13 |
+
def __init__(
|
14 |
+
self,
|
15 |
+
dim: int,
|
16 |
+
scaling_factor: float=1.,
|
17 |
+
base=10000.0,
|
18 |
+
interleaved=False,
|
19 |
+
scale_base=None,
|
20 |
+
pos_idx_in_fp32=True,
|
21 |
+
device=None,
|
22 |
+
):
|
23 |
+
super().__init__(
|
24 |
+
dim=dim,
|
25 |
+
base=base,
|
26 |
+
interleaved=interleaved,
|
27 |
+
scale_base=scale_base,
|
28 |
+
pos_idx_in_fp32=pos_idx_in_fp32,
|
29 |
+
device=device
|
30 |
+
)
|
31 |
+
self._linear_scaling_factor = scaling_factor
|
32 |
+
# adpated from: https://github.com/Dao-AILab/flash-attention/blob/43ceab630bc6c27712428da5a33fc9cb5c369d91/flash_attn/layers/rotary.py#L368
|
33 |
+
def _update_cos_sin_cache(self, seqlen, device=None, dtype=None):
|
34 |
+
# Reset the tables if the sequence length has changed,
|
35 |
+
# if we're on a new device (possibly due to tracing for instance),
|
36 |
+
# or if we're switching from inference mode to training
|
37 |
+
if (
|
38 |
+
seqlen > self._seq_len_cached
|
39 |
+
or self._cos_cached is None
|
40 |
+
or self._cos_cached.device != device
|
41 |
+
or self._cos_cached.dtype != dtype
|
42 |
+
or (self.training and self._cos_cached.is_inference())
|
43 |
+
):
|
44 |
+
self._seq_len_cached = seqlen
|
45 |
+
# We want fp32 here, not self.inv_freq.dtype, since the model could be loaded in bf16
|
46 |
+
# And the output of arange can be quite large, so bf16 would lose a lot of precision.
|
47 |
+
# However, for compatibility reason, we add an option to use the dtype of self.inv_freq.
|
48 |
+
if self.pos_idx_in_fp32:
|
49 |
+
t = torch.arange(seqlen, device=device, dtype=torch.float32)
|
50 |
+
# linear scaling:
|
51 |
+
t = t / self._linear_scaling_factor
|
52 |
+
# We want fp32 here as well since inv_freq will be multiplied with t, and the output
|
53 |
+
# will be large. Having it in bf16 will lose a lot of precision and cause the
|
54 |
+
# cos & sin output to change significantly.
|
55 |
+
# We want to recompute self.inv_freq if it was not loaded in fp32
|
56 |
+
if self.inv_freq.dtype != torch.float32:
|
57 |
+
inv_freq = self._compute_inv_freq(device=device)
|
58 |
+
else:
|
59 |
+
inv_freq = self.inv_freq
|
60 |
+
else:
|
61 |
+
t = torch.arange(seqlen, device=device, dtype=self.inv_freq.dtype)
|
62 |
+
# linear scaling:
|
63 |
+
t = t / self._linear_scaling_factor
|
64 |
+
inv_freq = self.inv_freq
|
65 |
+
# Don't do einsum, it converts fp32 to fp16 under AMP
|
66 |
+
# freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
67 |
+
freqs = torch.outer(t, inv_freq)
|
68 |
+
if self.scale is None:
|
69 |
+
self._cos_cached = torch.cos(freqs).to(dtype)
|
70 |
+
self._sin_cached = torch.sin(freqs).to(dtype)
|
71 |
+
else:
|
72 |
+
power = (
|
73 |
+
torch.arange(seqlen, dtype=self.scale.dtype, device=self.scale.device)
|
74 |
+
- seqlen // 2
|
75 |
+
) / self.scale_base
|
76 |
+
scale = self.scale.to(device=power.device) ** rearrange(power, "s -> s 1")
|
77 |
+
# We want the multiplication by scale to happen in fp32
|
78 |
+
self._cos_cached = (torch.cos(freqs) * scale).to(dtype)
|
79 |
+
self._sin_cached = (torch.sin(freqs) * scale).to(dtype)
|
80 |
+
self._cos_k_cached = (torch.cos(freqs) / scale).to(dtype)
|
81 |
+
self._sin_k_cached = (torch.sin(freqs) / scale).to(dtype)
|
82 |
+
|
83 |
+
# swap out RoPE of existing mha:
|
84 |
+
def swap_mha_rope(
|
85 |
+
mha,
|
86 |
+
new_rope: torch.nn.Module=LinearlyScaledRotaryEmbedding,
|
87 |
+
kwargs_new_rope: dict=None
|
88 |
+
):
|
89 |
+
# determine mha dtype and device:
|
90 |
+
dtype = mha.Wq.weight.dtype if mha.cross_attn else mha.Wqkv.weight.dtype
|
91 |
+
device = mha.Wq.weight.device if mha.cross_attn else mha.Wqkv.weight.device
|
92 |
+
# determine RoPE settings:
|
93 |
+
kwargs_old_rope = dict(
|
94 |
+
dim = mha.rotary_emb.dim,
|
95 |
+
base = mha.rotary_emb.base,
|
96 |
+
interleaved = mha.rotary_emb.interleaved,
|
97 |
+
scale_base = mha.rotary_emb.scale_base,
|
98 |
+
pos_idx_in_fp32 = mha.rotary_emb.pos_idx_in_fp32,
|
99 |
+
device = mha.rotary_emb.inv_freq.device
|
100 |
+
)
|
101 |
+
# delete old RoPE:
|
102 |
+
del mha.rotary_emb
|
103 |
+
# create new RoPE:
|
104 |
+
kwargs_new_rope = kwargs_new_rope or {'scaling_factor': 1.0}
|
105 |
+
scaled_rope = new_rope(
|
106 |
+
**kwargs_new_rope,
|
107 |
+
**kwargs_old_rope
|
108 |
+
).to(dtype)
|
109 |
+
# attach new RoPE to mha:
|
110 |
+
mha.rotary_emb = scaled_rope
|
111 |
+
# make new sure RoPE is correctly registered:
|
112 |
+
assert isinstance(mha.rotary_emb, new_rope)
|
113 |
+
return mha
|
streamer.py
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoTokenizer
|
2 |
+
|
3 |
+
|
4 |
+
class BaseStreamer:
|
5 |
+
"""
|
6 |
+
Base class from which `.generate()` streamers should inherit.
|
7 |
+
"""
|
8 |
+
|
9 |
+
def put(self, value):
|
10 |
+
"""Function that is called by `.generate()` to push new tokens"""
|
11 |
+
raise NotImplementedError()
|
12 |
+
|
13 |
+
def end(self):
|
14 |
+
"""Function that is called by `.generate()` to signal the end of generation"""
|
15 |
+
raise NotImplementedError()
|
16 |
+
|
17 |
+
|
18 |
+
class ByteStreamer(BaseStreamer):
|
19 |
+
"""
|
20 |
+
Simple text streamer that prints the token(s) to stdout as soon as entire words are formed.
|
21 |
+
|
22 |
+
<Tip warning={true}>
|
23 |
+
|
24 |
+
The API for the streamer classes is still under development and may change in the future.
|
25 |
+
|
26 |
+
</Tip>
|
27 |
+
|
28 |
+
Parameters:
|
29 |
+
tokenizer (`AutoTokenizer`):
|
30 |
+
The tokenized used to decode the tokens.
|
31 |
+
skip_prompt (`bool`, *optional*, defaults to `False`):
|
32 |
+
Whether to skip the prompt to `.generate()` or not. Useful e.g. for chatbots.
|
33 |
+
decode_kwargs (`dict`, *optional*):
|
34 |
+
Additional keyword arguments to pass to the tokenizer's `decode` method.
|
35 |
+
|
36 |
+
Examples:
|
37 |
+
|
38 |
+
```python
|
39 |
+
>>> from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
|
40 |
+
|
41 |
+
>>> tok = AutoTokenizer.from_pretrained("gpt2")
|
42 |
+
>>> model = AutoModelForCausalLM.from_pretrained("gpt2")
|
43 |
+
>>> inputs = tok(["An increasing sequence: one,"], return_tensors="pt")
|
44 |
+
>>> streamer = TextStreamer(tok)
|
45 |
+
|
46 |
+
>>> # Despite returning the usual output, the streamer will also print the generated text to stdout.
|
47 |
+
>>> _ = model.generate(**inputs, streamer=streamer, max_new_tokens=20)
|
48 |
+
An increasing sequence: one, two, three, four, five, six, seven, eight, nine, ten, eleven,
|
49 |
+
```
|
50 |
+
"""
|
51 |
+
|
52 |
+
def __init__(self, tokenizer: "AutoTokenizer", skip_prompt: bool = False, **decode_kwargs):
|
53 |
+
self.tokenizer = tokenizer
|
54 |
+
self.skip_prompt = skip_prompt
|
55 |
+
self.decode_kwargs = decode_kwargs
|
56 |
+
|
57 |
+
# variables used in the streaming process
|
58 |
+
self.token_cache = []
|
59 |
+
self.print_len = 0
|
60 |
+
self.next_tokens_are_prompt = True
|
61 |
+
|
62 |
+
def put(self, value):
|
63 |
+
"""
|
64 |
+
Receives tokens, decodes them, and prints them to stdout as soon as they form entire words.
|
65 |
+
"""
|
66 |
+
if len(value.shape) > 1 and value.shape[0] > 1:
|
67 |
+
raise ValueError("TextStreamer only supports batch size 1")
|
68 |
+
elif len(value.shape) > 1:
|
69 |
+
value = value[0]
|
70 |
+
|
71 |
+
if self.skip_prompt and self.next_tokens_are_prompt:
|
72 |
+
self.next_tokens_are_prompt = False
|
73 |
+
return
|
74 |
+
|
75 |
+
# Add the new token to the cache and decodes the entire thing.
|
76 |
+
self.token_cache.extend(value.tolist())
|
77 |
+
text = self.tokenizer.decode(self.token_cache, **self.decode_kwargs)
|
78 |
+
|
79 |
+
# After the symbol for a new line, we flush the cache.
|
80 |
+
if text.endswith("\n"):
|
81 |
+
printable_text = text[self.print_len :]
|
82 |
+
self.token_cache = []
|
83 |
+
self.print_len = 0
|
84 |
+
else:
|
85 |
+
printable_text = text[self.print_len : self.print_len + 1]
|
86 |
+
self.print_len += len(printable_text)
|
87 |
+
|
88 |
+
self.on_finalized_text(printable_text)
|
89 |
+
|
90 |
+
def end(self):
|
91 |
+
"""Flushes any remaining cache and prints a newline to stdout."""
|
92 |
+
# Flush the cache, if it exists
|
93 |
+
if len(self.token_cache) > 0:
|
94 |
+
text = self.tokenizer.decode(self.token_cache, **self.decode_kwargs)
|
95 |
+
printable_text = text[self.print_len :]
|
96 |
+
self.token_cache = []
|
97 |
+
self.print_len = 0
|
98 |
+
else:
|
99 |
+
printable_text = ""
|
100 |
+
|
101 |
+
self.next_tokens_are_prompt = True
|
102 |
+
self.on_finalized_text(printable_text, stream_end=True)
|
103 |
+
|
104 |
+
def on_finalized_text(self, text: str, stream_end: bool = False):
|
105 |
+
"""Prints the new text to stdout. If the stream is ending, also prints a newline."""
|
106 |
+
print(text, flush=True, end="" if not stream_end else None)
|
tokenizer.py
ADDED
@@ -0,0 +1,116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# based on https://github.com/EleutherAI/gpt-neox/blob/main/megatron/tokenizer/tokenizer.py
|
2 |
+
from abc import ABC
|
3 |
+
import json
|
4 |
+
import pathlib
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import tqdm
|
8 |
+
from tokenizers import Tokenizer
|
9 |
+
from abc import abstractmethod
|
10 |
+
from typing import Any, List, Union
|
11 |
+
import numpy as np
|
12 |
+
|
13 |
+
|
14 |
+
class HFAutoTokenizer:
|
15 |
+
def __init__(self, vocab_file):
|
16 |
+
self.tokenizer = Tokenizer.from_file(vocab_file)
|
17 |
+
self.eos = "</s>"
|
18 |
+
self.bos = "<s>"
|
19 |
+
self.eos_id = self.tokenize(self.eos)
|
20 |
+
self.bos_id = self.tokenize(self.bos)
|
21 |
+
self.vsize = 32000
|
22 |
+
|
23 |
+
def encode_to_list(self, text):
|
24 |
+
return self.tokenizer.encode(text, add_special_tokens=False)
|
25 |
+
|
26 |
+
def tokenize_file(self, input_file, output_file, verbose=False):
|
27 |
+
if verbose:
|
28 |
+
print(f"Tokenizing file: {input_file}")
|
29 |
+
|
30 |
+
if pathlib.Path(output_file).exists():
|
31 |
+
print(f"Output file {output_file} already exists, skipping")
|
32 |
+
return
|
33 |
+
with open(input_file, "r") as fin, open(output_file, "w") as fout:
|
34 |
+
for line in tqdm.tqdm(fin):
|
35 |
+
if verbose:
|
36 |
+
print(f"Tokenizing line: {line[-200:]}")
|
37 |
+
data = json.loads(line.strip())
|
38 |
+
if "text" not in data.keys():
|
39 |
+
break
|
40 |
+
tokenized_data = self.tokenize(data["text"])
|
41 |
+
fout.write(json.dumps({"tokens": tokenized_data}) + "\n")
|
42 |
+
|
43 |
+
def tokenize(self, text: str, *args, **kwargs):
|
44 |
+
ids = self.tokenizer.encode(text)
|
45 |
+
if type(ids) == list:
|
46 |
+
return torch.tensor(ids)
|
47 |
+
else:
|
48 |
+
return torch.tensor(ids.ids)
|
49 |
+
|
50 |
+
def tokenize_batch(self, text_batch):
|
51 |
+
return self.tokenizer.encode_batch(text_batch)
|
52 |
+
|
53 |
+
def detokenize(self, token_ids, skip_special_tokens=False):
|
54 |
+
return self.tokenizer.decode(token_ids, skip_special_tokens=skip_special_tokens)
|
55 |
+
|
56 |
+
def detokenize_batch(self, token_ids_batch, skip_special_tokens=False):
|
57 |
+
out = []
|
58 |
+
for token_ids in token_ids_batch:
|
59 |
+
out.append(
|
60 |
+
self.detokenize(
|
61 |
+
[t.item() for t in token_ids],
|
62 |
+
skip_special_tokens=skip_special_tokens,
|
63 |
+
)
|
64 |
+
)
|
65 |
+
return out
|
66 |
+
|
67 |
+
@property
|
68 |
+
def eod(self):
|
69 |
+
return self.eod_id
|
70 |
+
|
71 |
+
@property
|
72 |
+
def vocab_size(self):
|
73 |
+
return 32000
|
74 |
+
|
75 |
+
|
76 |
+
class ByteTokenizer:
|
77 |
+
"""UTF-8 Encoder."""
|
78 |
+
|
79 |
+
def __init__(self):
|
80 |
+
self.vocab_size = 512
|
81 |
+
self.eod_id = 0
|
82 |
+
self.eos_id = 0
|
83 |
+
self.eos_token = 0
|
84 |
+
self.eos_token_id = 0
|
85 |
+
self.pad_id = 1
|
86 |
+
|
87 |
+
def clamp(self, n):
|
88 |
+
return max(32, min(n, self.vocab_size))
|
89 |
+
|
90 |
+
def decode_token(self, token: int):
|
91 |
+
return str(chr(self.clamp(token)))
|
92 |
+
|
93 |
+
def __call__(self, text: str, *args, **kwargs):
|
94 |
+
ids = torch.tensor(self.tokenize(text), dtype=torch.long).unsqueeze(0)
|
95 |
+
return {"input_ids": ids}
|
96 |
+
|
97 |
+
def tokenize(self, text: str):
|
98 |
+
return list(np.fromstring(text, dtype=np.uint8))
|
99 |
+
|
100 |
+
def tokenize_batch(self, text_batch: Union[List[str], str]):
|
101 |
+
if isinstance(text_batch, list):
|
102 |
+
return [self.tokenize(s) for s in text_batch]
|
103 |
+
else:
|
104 |
+
return self.tokenize(text_batch)
|
105 |
+
|
106 |
+
def decode(self, token_ids):
|
107 |
+
return "".join(list(map(self.decode_token, token_ids)))
|
108 |
+
|
109 |
+
def decode_batch(self, token_ids: Union[List[str], str]):
|
110 |
+
if isinstance(token_ids, list):
|
111 |
+
return [self.decode(s) for s in token_ids]
|
112 |
+
# elif if tensor, convert to list first
|
113 |
+
elif isinstance(token_ids, torch.Tensor):
|
114 |
+
return [self.decode(s) for s in token_ids.tolist()]
|
115 |
+
else:
|
116 |
+
return self.decode(token_ids)
|
utils.py
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
|
4 |
+
def grab_first_if_tuple(x):
|
5 |
+
if x.__class__.__name__ == "tuple":
|
6 |
+
return x[0]
|
7 |
+
else:
|
8 |
+
return x
|
9 |
+
|
10 |
+
|
11 |
+
def column_split(x, num_heads, head_size):
|
12 |
+
"""Split a tensor with `num_heads` alongside the head dimension, instead of
|
13 |
+
across heads. Fixed to three projections
|
14 |
+
"""
|
15 |
+
|
16 |
+
x_reshaped = x.reshape(
|
17 |
+
x.shape[0],
|
18 |
+
num_heads,
|
19 |
+
3 * head_size,
|
20 |
+
)
|
21 |
+
|
22 |
+
x2, x1, v = (
|
23 |
+
x_reshaped[:, :, :head_size],
|
24 |
+
x_reshaped[
|
25 |
+
:,
|
26 |
+
:,
|
27 |
+
head_size : 2 * head_size,
|
28 |
+
],
|
29 |
+
x_reshaped[:, :, 2 * head_size :],
|
30 |
+
)
|
31 |
+
x2, x1, v = (
|
32 |
+
x2.reshape(x2.shape[0], -1),
|
33 |
+
x1.reshape(x1.shape[0], -1),
|
34 |
+
v.reshape(v.shape[0], -1),
|
35 |
+
)
|
36 |
+
return x2, x1, v
|
37 |
+
|
38 |
+
|
39 |
+
def get_init_from_string(init_str):
|
40 |
+
if type(init_str) == str:
|
41 |
+
if init_str == "torch.nn.init.zeros_":
|
42 |
+
return torch.nn.init.zeros_
|
43 |
+
elif init_str == "torch.nn.init.xavier_uniform_":
|
44 |
+
return torch.nn.init.xavier_uniform_
|
45 |
+
elif init_str == "torch.nn.init.xavier_normal_":
|
46 |
+
return torch.nn.init.xavier_normal_
|
47 |
+
else:
|
48 |
+
raise ValueError(f"Unrecognized init {init_str}")
|
49 |
+
|
50 |
+
|
51 |
+
def print_rank_0(message, debug=False, end="\n"):
|
52 |
+
"""Print from rank 0 only."""
|
53 |
+
if torch.distributed.is_initialized():
|
54 |
+
if torch.distributed.get_rank() == 0:
|
55 |
+
print(message, flush=True, end=end)
|
56 |
+
else:
|
57 |
+
print(message, flush=True, end=end)
|
58 |
+
|
59 |
+
|
60 |
+
class dotdict(dict):
|
61 |
+
"""dot.notation access to dictionary attributes"""
|
62 |
+
|
63 |
+
__getattr__ = dict.get
|
64 |
+
__setattr__ = dict.__setitem__
|
65 |
+
__delattr__ = dict.__delitem__
|
66 |
+
|
67 |
+
|
68 |
+
def ensure_divisibility(numerator, denominator):
|
69 |
+
"""Ensure that numerator is divisible by the denominator."""
|
70 |
+
assert numerator % denominator == 0, "{} is not divisible by {}".format(numerator, denominator)
|
71 |
+
|
72 |
+
|
73 |
+
def divide(numerator, denominator):
|
74 |
+
"""Ensure that numerator is divisible by the denominator and return
|
75 |
+
the division value."""
|
76 |
+
ensure_divisibility(numerator, denominator)
|
77 |
+
return numerator // denominator
|
78 |
+
|
79 |
+
|
80 |
+
class VocabUtility:
|
81 |
+
"""Split the vocabulary into `world_size` chunks amd return the
|
82 |
+
first and last index of the vocabulary belonging to the `rank`
|
83 |
+
partition: Note that indices in [first, last]"""
|
84 |
+
|
85 |
+
@staticmethod
|
86 |
+
def vocab_range_from_per_partition_vocab_size(per_partition_vocab_size, rank, world_size):
|
87 |
+
index_f = rank * per_partition_vocab_size
|
88 |
+
index_l = index_f + per_partition_vocab_size
|
89 |
+
return index_f, index_l
|
90 |
+
|
91 |
+
@staticmethod
|
92 |
+
def vocab_range_from_global_vocab_size(global_vocab_size, rank, world_size):
|
93 |
+
per_partition_vocab_size = divide(global_vocab_size, world_size)
|
94 |
+
return VocabUtility.vocab_range_from_per_partition_vocab_size(
|
95 |
+
per_partition_vocab_size, rank, world_size
|
96 |
+
)
|