Update README.md
Browse files
README.md
CHANGED
@@ -7,17 +7,17 @@ datasets:
|
|
7 |
- togethercomputer/llama-instruct
|
8 |
---
|
9 |
|
10 |
-
# LLaMA-2-7B-32K-
|
11 |
|
12 |
## Model Description
|
13 |
|
14 |
-
LLaMA-2-7B-32K-
|
15 |
-
We built
|
16 |
We hope that this can enable everyone to finetune their own version of [LLaMA-2-7B-32K](https://huggingface.co/togethercomputer/LLaMA-2-7B-32K) — play with [Together API](https://together.ai/blog/api-announcement) and give us feedback!
|
17 |
|
18 |
## Data Collection Details
|
19 |
|
20 |
-
LLaMA-2-7B-32K-
|
21 |
1. **19K single- and multi-round conversations generated by human instructions and [Llama-2-70B-Chat](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf) outputs**.
|
22 |
We collected the dataset following the distillation paradigm that is used by Alpaca, Vicuna, WizardLM, Orca — producing instructions by querying a powerful LLM (in this case, [Llama-2-70B-Chat](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf)).
|
23 |
The complete dataset is also released [here](https://huggingface.co/datasets/togethercomputer/llama-instruct).
|
@@ -36,8 +36,8 @@ Alternatively, you can load the model directly from the Hugging Face model hub u
|
|
36 |
```python
|
37 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
38 |
|
39 |
-
tokenizer = AutoTokenizer.from_pretrained("togethercomputer/LLaMA-2-7B-32K-
|
40 |
-
model = AutoModelForCausalLM.from_pretrained("togethercomputer/LLaMA-2-7B-32K-
|
41 |
input_ids = tokenizer.encode(<your instruction>, return_tensors="pt")
|
42 |
output = model.generate(input_ids, max_length=..., temperature=...)
|
43 |
output_text = tokenizer.decode(output[0], skip_special_tokens=True)
|
@@ -90,25 +90,25 @@ We evaluate the model from three aspects: 1) [Normalized perplexity](https://tog
|
|
90 |
| Model | 2K Seq | 4K Seq | 8K Seq | 16K Seq | 32K Seq |
|
91 |
| -------- | ------- | ------- | ------- | ------- | ------- |
|
92 |
| LLaMA-2-7B-Chat (Meta) | 1.844 | 1.833 | N/A | N/A | N/A |
|
93 |
-
| LLaMA-2-7B-32K-
|
94 |
|
95 |
* Rouge Score over BookSum
|
96 |
| Model | R1 | R2 | RL |
|
97 |
| -------- | ------- | ------- | ------- |
|
98 |
| LLaMA-2-7B-Chat (Meta) | 0.055 | 0.008 | 0.046 |
|
99 |
-
| LLaMA-2-7B-32K-
|
100 |
|
101 |
* Accuracy over MQA
|
102 |
| Model | 20 docs (Avg 2.9K tokens) | 30 docs (Avg 4.4K tokens) | 50 docs (Avg 7.4K tokens) |
|
103 |
| -------- | ------- | ------- | ------- |
|
104 |
| LLaMA-2-7B-Chat (Meta) | 0.384 | 0.375 | 0.313 |
|
105 |
-
| LLaMA-2-7B-32K-
|
106 |
|
107 |
-
We observe that LLaMA-2-7B-32K-
|
108 |
|
109 |
## Limitations and Bias
|
110 |
|
111 |
-
As with all language models, LLaMA-2-7B-32K-
|
112 |
|
113 |
## Community
|
114 |
|
|
|
7 |
- togethercomputer/llama-instruct
|
8 |
---
|
9 |
|
10 |
+
# LLaMA-2-7B-32K-Instruct
|
11 |
|
12 |
## Model Description
|
13 |
|
14 |
+
LLaMA-2-7B-32K-Instruct is an open-source, long-context chat model finetuned from [LLaMA-2-7B-32K](https://huggingface.co/togethercomputer/LLaMA-2-7B-32K), over high-quality instruction and chat data.
|
15 |
+
We built LLaMA-2-7B-32K-Instruct with less than 200 lines of Python script using [Together API](https://together.ai/blog/api-announcement), and we also make the [recipe fully available](https://github.com/togethercomputer/LLaMA-2-32K-Instruct).
|
16 |
We hope that this can enable everyone to finetune their own version of [LLaMA-2-7B-32K](https://huggingface.co/togethercomputer/LLaMA-2-7B-32K) — play with [Together API](https://together.ai/blog/api-announcement) and give us feedback!
|
17 |
|
18 |
## Data Collection Details
|
19 |
|
20 |
+
LLaMA-2-7B-32K-Instruct is fine-tuned over a combination of two parts:
|
21 |
1. **19K single- and multi-round conversations generated by human instructions and [Llama-2-70B-Chat](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf) outputs**.
|
22 |
We collected the dataset following the distillation paradigm that is used by Alpaca, Vicuna, WizardLM, Orca — producing instructions by querying a powerful LLM (in this case, [Llama-2-70B-Chat](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf)).
|
23 |
The complete dataset is also released [here](https://huggingface.co/datasets/togethercomputer/llama-instruct).
|
|
|
36 |
```python
|
37 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
38 |
|
39 |
+
tokenizer = AutoTokenizer.from_pretrained("togethercomputer/LLaMA-2-7B-32K-Instruct")
|
40 |
+
model = AutoModelForCausalLM.from_pretrained("togethercomputer/LLaMA-2-7B-32K-Instruct", trust_remote_code=True, torch_dtype=torch.float16)
|
41 |
input_ids = tokenizer.encode(<your instruction>, return_tensors="pt")
|
42 |
output = model.generate(input_ids, max_length=..., temperature=...)
|
43 |
output_text = tokenizer.decode(output[0], skip_special_tokens=True)
|
|
|
90 |
| Model | 2K Seq | 4K Seq | 8K Seq | 16K Seq | 32K Seq |
|
91 |
| -------- | ------- | ------- | ------- | ------- | ------- |
|
92 |
| LLaMA-2-7B-Chat (Meta) | 1.844 | 1.833 | N/A | N/A | N/A |
|
93 |
+
| LLaMA-2-7B-32K-Instruct (ours) | 1.813 | 1.798 | 1.781 | 1.778 | 1.772|
|
94 |
|
95 |
* Rouge Score over BookSum
|
96 |
| Model | R1 | R2 | RL |
|
97 |
| -------- | ------- | ------- | ------- |
|
98 |
| LLaMA-2-7B-Chat (Meta) | 0.055 | 0.008 | 0.046 |
|
99 |
+
| LLaMA-2-7B-32K-Instruct (ours) | 0.365 | 0.086 | 0.192 |
|
100 |
|
101 |
* Accuracy over MQA
|
102 |
| Model | 20 docs (Avg 2.9K tokens) | 30 docs (Avg 4.4K tokens) | 50 docs (Avg 7.4K tokens) |
|
103 |
| -------- | ------- | ------- | ------- |
|
104 |
| LLaMA-2-7B-Chat (Meta) | 0.384 | 0.375 | 0.313 |
|
105 |
+
| LLaMA-2-7B-32K-Instruct (ours) | 0.451 | 0.434 | 0.373 |
|
106 |
|
107 |
+
We observe that LLaMA-2-7B-32K-Instruct obtains reasonable (and even better) perplexity, rouge score and accuracy over the original LLaMA-2-7B-Chat model.
|
108 |
|
109 |
## Limitations and Bias
|
110 |
|
111 |
+
As with all language models, LLaMA-2-7B-32K-Instruct may generate incorrect or biased content. It's important to keep this in mind when using the model.
|
112 |
|
113 |
## Community
|
114 |
|